A 13,000-YEAR REGIONAL RECORD OF HOLOCENE STORMS IN THE NORTHEASTERN UNITED STATES

A Thesis Presented

by

Anders Joseph Noren

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Geology

March, 2002

Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Master of Science, specializing in Geology.

Thesis Examination Committee:

____ Advisor Paul R. Bierman, Ph.D.

Andrea Lini, Ph.D.

____ Chairperson

Lesley-Ann Dupigny-Giroux, Ph.D.

Interim Dean, Anne E. Huot, Ph.D. Graduate College

Date: October 22, 2001

ABSTRACT

Using 18 lake sediment cores, this thesis establishes a 13,000-year storm chronology for the northeastern United States. This is the longest storm record yet established for this region, and reveals regional storm patterns not identifiable from single lake records. I retrieved 18 long (3.5 to 6 m) sediment cores from 11 small (0.03 to 4 km²), deep (13 to 32 m) lakes with inflowing streams and surrounded by steep hillslopes across a ~20,000 km² region in Vermont and eastern New York. Twelve of the 18 cores were dated and thoroughly analyzed (the remaining 6 cores were either duplicates or contained deeper sediment from the same location as another core from the same lake). In each core, several coarse-grained, mineral-rich layers with abundant macrofossils of terrestrial plants punctuate the otherwise fine-grained gyttja. Previous, independent paleostorm research and the character of these layers both suggest that such terrigenous material is eroded from the uplands during rainstorms of great intensity or duration.

The recovery of such terrigenous material in lake sediment cores is controlled by lake characteristics and coring location. Lakes most likely to preserve sedimentary storm layers have steep surrounding hillslopes, a large volume of erodible sediment in the uplands, and competent, high-gradient inflowing streams with deltas composed of sand and gravel. Coring locations adjacent to the center of the delta foreslope usually yield cores with the greatest number and thickness of terrigenous layers.

Comparison of the storm chronologies indicates the size (spatial extent) of typical erosion-producing storms. The ages of most storm layers are dissimilar between cores, suggesting that small rainstorms formed by convection may locally cause as much flooding and erosion as hurricanes, nor'easters, or other large-scale storms.

Considering individual lake chronologies together reveals the frequency and possibly the magnitude of storms in this region through the Holocene. Storm magnitude, as estimated by average terrigenous layer thickness, was greatest at 11,800, 10,800, and 1,200 years before present, when New England climate was cool and moist. Storm magnitude varies in cycles of ~510 years, which may reflect the influence of oceanic thermohaline circulation.

Storm frequency varied in regular millennial-scale cycles of ~3,000 years and quasi-regular centennial-scale cycles of ~230 and 390 years. While the centennial-scale variability may reflect changes in solar irradiance, the millennial-scale oscillation is similar to variability documented in other storm and flood records from several locations around the North Atlantic. Evidently, conditions favorable for the generation of severe storms followed similar pacing across this broad region during the Holocene. Storminess reached variable maxima lasting ~1,500 years, centered at approximately 2,600, 5,800, 9,100, and 11,900 years ago, and appears to be presently increasing toward another peak. These periods of increased storminess coincide with cold periods in Europe, and increased sea salt aerosol deposition on the Greenland ice sheet (and hence meridional atmospheric flow). This relationship is consistent with modern, observed climate states during the low phase of the Artic Oscillation (AO); thus, the New England storminess documented here may reflect long-term changes in the preferred phase of the AO. These findings underscore the potential for modulation of this dominant atmospheric mode to account for a significant portion of Holocene North Atlantic climate variability.

Independent storm records in this region exhibit good correlation with the data obtained in this study, suggesting that hillslopes across this region have responded to storms under similar climate forcing since deglaciation. However, storm frequency and magnitude both varied in cycles of much shorter duration than the average Holocene climate of this region. Minor climatic changes that do not significantly affect regional vegetation assemblages may have caused disproportionate increases or decreases in storminess.

ACKNOWLEDGEMENTS

This thesis was supported by National Science Foundation Career Grant EAR9702643 awarded to Paul Bierman. I received a University of Vermont Student Travel Mini-Grant for travel to a meeting where I presented some of these findings. I would like to thank Paul Bierman, my advisor, for developing the idea for this research in the first place, and for his endless enthusiasm, inspiration, and support of all kinds as I worked. I wish to extend a special thanks to Josh Galster, who went above and beyond the call of duty in helping me with both field and lab work. Without his able assistance, this work would not have been possible. I also give special thanks to Karen Jennings for investing countless hours helping me with field reconnaissance and coring, and for support throughout the project. I thank Eric Steig (University of Washington), whose invaluable expertise in analyzing and interpreting the data significantly improved this work. I thank Andrea Lini for spending a lot of time maintaining and fixing the lab equipment that I used. John Southon, Brian Krantz, and others at Lawrence Livermore National Laboratory showed me how to prepare and analyze samples for radiocarbon analysis; I thank them for their help and patience.

Several people spent entire days (and in many cases, evenings) helping me on coring expeditions in cold, wet winter conditions: Josh Galster, Paul Bierman, Karen Jennings, Rachael Howse, Carrie Williams, Sara Gran Mitchell, Drew Lamneck, Gretchen Fowles, Christine Massey, Stephen Turgeon, and Simon Rupard. I sincerely thank all of you for volunteering so much time and effort.

Many people helped in other capacities. I thank Sarah Brown for lab training and both scientific and moral support. Forrest Janukajtis provided able lab and field assistance. Ben Copans, Simon Rupard, and Jen Cunningham also assisted with some of the lab work. I thank Andy Bosley and Angie Conlan for their hard work on grain size analysis of the Lake Morey cores. The 1999 UVM Geohydrology class did much of the footwork for the bathymetric surveys of Amherst and Echo Lakes, and the core from Echo Lake that they retrieved and analyzed guided much of my work during the remainder of the first field season. UVM professor Gagan Mirchandani assisted with the development of the time series filter. Claude Gaboriault and Gordon Chadburn provided swift snowmobile shuttles for our coring crew and equipment to and from Duck and Vail Ponds. Kyle Nichols, Sara Gran, Karen Jennings, and Darrin Santos provided thoughtful comments on drafts of my thesis proposal. I thank comrades Adam Parris, Laura Mallard, and Andi Lord for providing shelter and food during my many trips to Vermont after I'd moved away, and for running errands for me in between trips.

Finally, I thank the many graduate and undergraduate students I've met at UVM for their camaraderie and friendship. Above all, I thank Carrie, and my family and faraway friends Steve and Kate Surbaugh, and Ellen and Nate Hultman, for unending support and perspective throughout my studies.

TABLE OF CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	vii
CHAPTER 1: INTRODUCTION	1
Background Statement of Problem Structure of Thesis	
CHAPTER 2: PAPER 1	4
REFERENCES CITED ACKNOWLEDGEMENTS FIGURE CAPTIONS	11 15 16
CHAPTER 3: PAPER 2	
ABSTRACT	
2. BACKGROUND 3. ENVIRONMENTAL SETTING	27
 4. FIELD METHODS 5. LAB METHODS	
6.1. Magnetic Susceptibility 6.2. X-Radiography	
6.3. Visual Logging 6.4. Loss-on-Ignition 6.5. Radiocarbon Analysis	
7. DATA ANALYSIS	
7.2. Composite Sediment Record 7.3. Age Modeling	
 7.4. Spectral Analysis 8. DISCUSSION	
8.2. Chronology comparisons	
8.4. Comparison with regional storm and climate records	
ACKNOWLEDGEMENTS REFERENCES	
CHAPTER 4: SUMMARY OF FINDINGS	
CHAPTER 5: SUGGESTIONS FOR FUTURE RESEARCH	77
REFERENCES CITED	81

APPENDIX A: SURVEY DATA	
APPENDIX B: BATHYMETRIC MAPS	124
APPENDIX C: MAGNETIC SUSCEPTIBILITY DATA	
APPENDIX D: LOSS-ON-IGNITION DATA	145
APPENDIX E: CORE LAYER BOUNDARIES	155

LIST OF TABLES

Paper 1

Supplemental Table 1: Study Lake Characteristics	18
Supplemental Table 2: Radiocarbon Dates	19

Paper 2

Table 1: Study Lake Characteristics and Coring Location Coordinates	.60
Table 2: Number of Terrigenous Layers Identified	61
Table 3: Radiocarbon Dates	62

LIST OF FIGURES

Paper 1

Figure 1: Map of study area	21
Figure 2: Storminess in the northeastern United States and relevant North Atlantic	
climate records	22
Figure 3: Spectral analysis results	23

Paper 2

Figure 1: Topographic map of area surrounding Chapel Pond64
Figure 2: Map of study area65
Figure 3: Bathymetric map of Vail Pond66
Figure 4: Whole-core magnetic susceptibility values67
Figure 5: Photograph and x-radiograph, and LOI and MS values of 20-cm core section68
Figure 6: Whole-core percent mass loss-on-ignition values
Figure 7: Comparison of whole-core datasets from Lake Dunmore core70
Figure 8: Comparison of composite sediment record with results of grain size analysis71
Figure 9: Individual storm chronologies, time series of regional storminess variability,
and local storm records72
Figure 10: Spectral analysis results for average terrigenous layer thickness73

CHAPTER 1: INTRODUCTION

Background

Lacustrine sediment is primarily composed of organic material (gyttja) formed by the accumulation of aquatic organisms and their wastes, and terrestrially-derived inorganic and organic material transported to the lakes via inflowing streams and wind. The composition of a particular sedimentary layer depends upon a variety of environmental factors, including climatic variables such as temperature and moisture, and the chemistry of local soils and bedrock. These physical variables influence the aquatic and terrestrial biological assemblages, which affect the composition of the slowly accumulating sediment. Lacustrine sedimentary archives thus preserve a continuous record of environmental conditions both in and around the lake.

The sediment in lakes with steep surrounding hillslopes is often punctuated by discreet, coarse-grained, terrestrially-derived sediment layers (e.g., Thorndycraft et al., 1998; Bierman et al., 1997; Rodbell et al., 1999; Nesje et al., 2001). Such terrigenous material is eroded from the uplands and transported to the lake when severe rainstorms of high intensity or duration pass over the drainage basin (Bierman et al., 1997; Thorndycraft et al., 1998; Rodbell et al., 1999; Brown et al., 2000; Nesje et al., 2001). Stratigraphic and dating analyses performed on sediment cores recovered from such lakes thus allow the determination of paleostorm chronologies.

Previous paleostorm chronologies constructed from sedimentary terrigenous layers have used sediment cores recovered from a single lake to generalize about regional storm variability (Bierman et al., 1997; Thorndycraft et al., 1998; Rodbell et al., 1999; Brown et al., 2000; Nesje et al., 2001). Consequently, these studies do not resolve the size (spatial extent) of typical erosion-producing storms. Because such studies are biased to the particular environmental setting of the lake examined, they also may not reveal variability in the character of terrigenous deposits (important for future paleostorm research), and they may misrepresent true regional storm variability.

Statement of Problem

My research investigates the sedimentary archives of several lakes in the northeastern United States, in order to achieve the following objectives:

- Describe the character of storm-related terrigenous deposits in lake sediment, detailing how they vary, and in what ways they exhibit uniformity.
- Determine the size (spatial extent) of storms that caused significant erosion in the northeastern United States. Determine whether terrigenous layers were deposited synchronously in multiple lakes (indicative of hurricanes or other large storms), or at different times (indicative of small storms formed by free convection).
- 3. Analyze regional storm variability to determine whether periods of increased storm frequency or magnitude (as estimated by storm layer thickness) occurred across the entire region, and to document any cyclic variability in storminess.
- Compare regional storminess with local and distant records of past climate, to reveal possible teleconnections and forcing mechanisms for temporal variability in extreme precipitation events.

Structure of Thesis

This thesis consists of two papers to be submitted to peer-reviewed journals for publication. The first paper is the shorter of the two, and follows this section as Chapter 2. It discusses millennial-scale cycles in the data, the relationship of these long-term changes to other North Atlantic paleoclimate records, and proposes a climate mechanism consistent with these relationships to explain the observed variability. The second paper (Chapter 3) is considerably longer, and includes the comprehensive literature review for the entire thesis in its first 3 sections. The second paper details the methods I used in the field, laboratory, and for data analysis, and presents suggestions for those who wish to perform similar research. In the second paper I compare individual storm chronologies to examine storm size (spatial extent), discuss a potential representation of average storm intensity, and compare my data to other local records of both storms and average climate. Following the second paper, I summarize the findings of the thesis as a whole in Chapter 4, and list several suggestions for improving this method of reconstructing past storminess in Chapter 5. The appendices contain all survey and laboratory data, and include all bathymetric maps for the study lakes.

CHAPTER 2: PAPER 1

For submission to Nature

A Holocene millennial-scale storm cycle in the northeastern United States

Anders J. Noren*, Paul R. Bierman*, Eric J. Steig†, Andrea Lini*, John Southon‡

*Department of Geology, University of Vermont, Burlington, Vermont 05405, USA

†Quaternary Research Center and Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA

‡Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94551, USA

Documenting past changes and cycles in climate is crucial for distinguishing between natural climate variability and the effects of human activities. Many paleoclimate records exist that reflect changes in average climate conditions; few reveal variability in the occurrence of extreme climate events such as storms with exceptional rainfall¹. Here, we show that the frequency of severe rainstorms in the northeastern United States has varied in regular cycles during the past 13,000 years, with a dominant periodicity of about 3,000 years. Storminess peaked at approximately 2,600, 5,800, 9,100, and 11,900 years ago, and appears to be presently increasing toward another peak. These maxima coincide with cold periods in Europe²⁻⁵, with periods of enhanced aerosol deposition on the Greenland ice sheet⁶, and with storm and flood events from several locations around the North Atlantic⁶⁻¹². These relationships are consistent with long-term changes in the preferred phase of the Arctic Oscillation¹³, suggesting that modulation of this dominant atmospheric mode may account for a significant fraction of Holocene climate variability in North America and Europe.

Lakes in the hilly terrain of Vermont and eastern New York contain sedimentary archives that consist of organic lake mud (gyttja), punctuated by layers of terrestriallyderived material¹⁴. The terrigenous layers are commonly coarser, less organic, and contain more macrofossils of terrestrial plants than the surrounding gyttja; they are graded¹⁴ and have distinctive stable isotopic signatures¹⁵. Previous work has demonstrated that such terrigenous layers are deposited when rainfall of great intensity and/or duration affects lake drainage basins¹⁴⁻²⁰. In New England, the heaviest rains occur during localized convective storms, "nor'easters" or other mid-latitude cyclones, and hurricanes/tropical storms or their remnants. During and immediately after these events, material stored in upland streams and on steep basin hillslopes is eroded and transported to lake basins. Thus, stratigraphic analysis and dating of lake sediment cores allows the determination of paleostorm chronologies¹⁴⁻²⁰.

Other mechanisms (earthquakes, fires, lake-level fluctuations, and removal of vegetation by drought or disease) may also cause or facilitate the deposition of terrigenous material in lakes, but their effects have been shown to be minimal in New England^{14,21-23}. The first European settlers in the area deforested most of the landscape, but the significant effects of these and other human activities are limited to the past ~250 years¹⁵. Snowmelt floods do not transport enough sediment to cause the deposition of terrigenous layers^{17,20}. Most germane to the argument that terrigenous layers represent storms are findings in locations with long documentary records, which reveal a strong correlation between heavy rainfall and the occurrence and thickness of terrigenous layers¹⁶⁻¹⁹. Our field observations

5

during two major storms documented increased transport to New England lakes of woody forest debris, sand, and gravel.

We cored 13 small lakes (Fig. 1) with high drainage basin relief, deep water, steep perimeter bathymetry, and inflowing streams with sandy deltas (a supplemental table of lake characteristics is available). We used a Reasoner coring device²⁴ fitted with a piston to recover sediment cores from locations in deep water, adjacent to the stream delta foreslopes. The cores vary in length from 3.5 to 6 m, spanning 2,100 to 13,200 years (2.1 to 13.2 ky; Fig. 2a). We documented core stratigraphy with magnetic susceptibility, X-radiography, visual logging, and loss-on-ignition (LOI) analyses¹⁴. In this manner, we created four distinct records for each core.

We identified significant terrigenous layers in LOI curves by comparing peaks to the background signal. To establish appropriate background estimates, we used singular spectrum analysis (lags = 20) to identify the first principal component in each series, after setting all data points greater than 1 from the median to equal the median. Any shifts in the original data series that were more than 1 from the first principal component were considered to be significant. Hence, significance is conservatively measured relative to the local background, rather than the entire data series.

We created a composite record for each core from the results of these four analyses. In the composite record, most terrigenous layers were identified when two or more of the individual analytical techniques detected such layers. In some cases, layers were identified from the results of a single analysis. We believe that this composite record overcomes the limitations of the individual analyses, and most accurately represents the locations and thickness of terrigenous layers. Comparison of our composite record with the results from high-resolution, whole-core grain size analysis²⁵, a more sensitive analysis for determining the locations of terrigenous deposits, shows good agreement and indicates that the

6

composite record emphasizes the most extreme events. We used the composite record for all subsequent analyses and present those results here.

We dated the cores with 80 accelerator mass spectrometer (AMS) ¹⁴C ages of terrestrial plant macrofossils and calibrated these dates using CALIB v4.2 (ref. 26) (a supplemental table of radiocarbon dates is available). We mathematically removed the rapidly-deposited¹⁵ terrigenous layers from each record before creating age models, for which we assumed linear sedimentation rates between successive radiocarbon ages¹⁴. Combining the age models with the composite sediment records yields a dated event record for each lake (Fig. 2a). Using the 14 event chronologies, we created a single histogram indicating the frequency of depositional events and by inference, the most severe storms during the Holocene (Fig. 2b).

Storminess reached broad and variable maxima lasting ~1,500 years, with the highest peaks centred at approximately 2.6, 5.8, 9.1 and 11.9 ky before present (BP). Prior to European settlement of the area at ~250 BP, when deforestation and livestock grazing accelerated rates of hillslope erosion (which overprints our record¹⁵), storminess appears to have been increasing toward another peak. This most recent period of increased storminess began at about 600 BP, coincident with the beginning of the Little Ice Age (LIA)²⁷; the earliest stormy interval peaked during the Younger-Dryas climate oscillation³.

Other, independent records of storminess from around the North Atlantic show maxima that correspond with those from our records (Fig. 2c). For example, exceptional storm surge sediment layers were deposited along the northwestern coast of England at ~6 ky BP (ref. 12). Historical records from western Europe and geologic records from both the northern and southern North Atlantic document increases in the frequency and severity of storms during the LIA^{8,10}. Somewhat farther afield, the frequency of hurricane landfalls along the northern Gulf of Mexico peaked from ~1 to ~3 ky BP (ref. 11), while the magnitude of floods in the central United States exhibit maxima during at least the last three

maxima observed in our records^{7,9}. Oscillations in Holocene glaciochemical records from central Greenland ice cores are similar to those in our record of storminess. In particular, the time series of sea-salt sodium (ssNa) in the Greenland Ice Sheet Project Two (GISP2) core, believed to be an indicator of storminess and sea spray in the atmosphere⁶, exhibits peaks at times similar to the maxima identified here (Fig. 2d). Thus, the frequency of storms in the northeastern United States appears to be related to widespread North Atlantic climate variability. This result appears to validate the interpretation of the GISP2 glaciochemical record in terms of large-scale atmospheric circulation changes³.

The pacing of storminess maxima from the various North Atlantic records suggest a quasi-regular cycle of ~3,000 years. Spectral analysis of our New England storminess time series by several methods (Fig. 3) confirms the existence of this oscillation, revealing significant spectral power in a broad, double peak centred at a period of ~3,070 years, and less-significant peaks at ~390 and 229 years. Similar spectral peaks exist in the power spectrum of the GISP2 time series of aerosol deposition⁶ (Figs. 2d-e, 3). While the centennial-scale variability may reflect the influence (through unknown mechanisms) of changes in solar irradiance^{28,29}, the correlation in both the period and phase of the long-term variability in these records suggests the involvement of the Arctic Oscillation (AO)¹³. If, as argued by O'Brien and others⁶, enhanced aerosol deposition to the Greenland ice sheet reflects an increase in the relative strength of meridional versus zonal circulation, then increased New England storminess would coincide with a mode of atmospheric circulation most similar to the low phase of the AO, when high-latitude westerlies are weakened. Conversely, times when the frequency of storminess in New England was low would coincide with the enhanced zonal flow of the high phase AO.

Such a relationship between New England storminess and the AO has recently been confirmed for modern climate conditions by Thompson and Wallace¹³, who show that nor'easters are four times as likely to occur during low-phase than during high-phase AO.

Thus, the millennial-scale oscillation in New England storminess may reflect long-term modulation of the preferred phase of the AO. This explanation is appealing because it makes a specific prediction that New England storminess should be at its greatest when Europe is cold (characteristic of the low-phase AO). Comparison of our results with the other climate records (Fig. 2), including European glacier fluctuations, suggests that, as predicted, intense storms in New England tend to occur more frequently during periods that are cooler than average in Europe²⁻⁵.

Dominant atmospheric modes, such as the AO and El Niño-Southern Oscillation (ENSO), account for significant fractions of modern climate variability on interannual timescales^{1,13,19}. Unlike ENSO, which primarily operates in cycles of 2.5 to 7 years¹⁹, the AO is known to fluctuate on timescales of weeks to decades, without regular cycles¹³. Our results demonstrate that these and other dominant atmospheric modes may be modulated on longer timescales, and could therefore account for much of the variability in the paleoclimate record. In particular, changes in the AO, perhaps modulated by solar forcing, may provide a more robust explanation of Holocene climate variability in the North Atlantic than changes in ocean thermohaline circulation—for which evidence has been difficult to find³⁰.

Climate models suggest that human activities, specifically the emission of atmospheric greenhouse gases, may lead to increases in the frequency of severe storms in certain regions of the northern hemisphere¹. However, the existence of natural cycles in storminess confounds reliable detection of human-induced effects. For example, during the past 800 years, New England storminess appears to have been increasing naturally (Figure 2b). If the millennial storm cycle that we documented through the Holocene persists into the future, New England storminess would continue to increase for the next ~700 years. This cyclical and natural increase in storms may explain some of the recently observed increases in extreme precipitation events¹. Because climate synopses compiled from

instrumental records cannot distinguish underlying natural increases in storminess from anthropogenic effects, detected increases in contemporary storminess may not be a reliable indicator of human-induced climate change.

References Cited

- Easterling, D. R. *et al.* Climate Extremes: Observations, Modeling, and Impacts. *Science* 289, 2068-2074 (2000).
- 2. Denton, G. H. & Karlén, W. Holocene climatic variations; their pattern and possible cause. *Quaternary Research* **3**, 155-205 (1973).
- 3. Mayewski, P. A. *et al.* Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. *Science* **263**, 1747-1751 (1994).
- Alley, R. B. *et al.* Holocene climatic instability: A prominent, widespread event 8200 yr ago. *Geology* 25, 483-486 (1997).
- Andrews, J. T. & Ives, J. D. in *Climate Changes in Arctic Areas During the Last Ten-Thousand Years*. (eds. Vasari, Y., Hyvärinen, H. & Hicks, S.) 149-176 (University of Oulu, Oulu, Finland, 1972).
- O'Brien, S. R. *et al.* Complexity of Holocene climate as reconstructed from a Greenland ice core. *Science* 270, 1962-1964 (1995).
- Brown, P., Kennett, J. P. & Ingram, B. L. Marine evidence for episodic Holocene megafloods in North America and the northern Gulf of Mexico. *Paleoceanography* 14, 498-510 (1999).
- Hass, H. C. Depositional processes under changing climate: upper Subatlantic granulometric records from the Skagerrak (NE-North Sea). *Marine Geology* 111, 361-378 (1993).

- Knox, J. C. Sensitivity of modern and Holocene floods to climate change. *Quaternary Science Reviews* 19, 439-457 (1999).
- Lamb, H. H. Variation and changes in the wind and ocean circulation: the Little Ice Age in the northeast Atlantic. *Quaternary Research* 11, 1-20 (1979).
- Liu, K. b. & Fearn, M. L. Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records. *Quaternary Research* 54, 238-245 (2000).
- Zong, Y. & Tooley, M. J. Evidence of mid-Holocene storm-surge deposits from Morecambe Bay, northwest England: A biostratigraphical approach. *Quaternary International* 55, 43-50 (1999).
- Thompson, D. W. J. & Wallace, J. M. Regional Climate Impacts of the Northern Hemisphere Annular Mode. *Science* 293, 85-89 (2001).
- Brown, S. L., Bierman, P. R., Lini, A. & Southon, J. R. 10,000 yr record of extreme hydrologic events. *Geology* 28, 335-338 (2000).
- Bierman, P. R. *et al.* Postglacial ponds and alluvial fans: Recorders of Holocene landscape history. *GSA Today* 7, 1-8 (1997).
- Eden, D. N. & Page, M. J. Palaeoclimatic implications of a storm erosion record from late Holocene lake sediments, North Island, New Zealand. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* 139, 37-58 (1998).
- Lamoureux, S. F. Five centuries of interannual sediment yield and rainfall-induced erosion in the Canadian High Arctic recorded in lacustrine varves. *Water Resources Research* 36, 309-318 (2000).

- Nesje, A., Dahl, S. O., Matthews, J. A. & Berrisford, M. S. A ~4500-yr record of river floods obtained from a sediment core in Lake Atnsjøen, eastern Norway. *Journal of Paleolimnology* 25, 329-342 (2001).
- Rodbell, D. T. *et al.* An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador. *Science* 283, 516-520 (1999).
- Thorndycraft, V., Hu, Y., Oldfield, F., Crooks, P. R. J. & Appleby, P. G. Individual flood events detected in the recent sediments of the Petit Lac d'Annecy, eastern France. *The Holocene* 8, 741-746 (1998).
- Jackson, S. T. & Whitehead, D. R. Holocene vegetation patterns in the Adirondack Mountains. *Ecology* 72, 641-653 (1991).
- Ouellet, M. Lake sediments and Holocene seismic hazard assessment within the St. Lawrence Valley, Quebec. *Geological Society of America Bulletin* 109, 631-642 (1997).
- Spear, R., Davis, M. B. & Shane, L. C. Late Quaternary history of low- and midelevation vegetation in the White Mountains of New Hampshire. *Ecological Monographs* 64, 85-109 (1994).
- Reasoner, M. A. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. *Journal of Paleolimnology* 8, 273-281 (1993).
- Bosley, A. C., Bierman, P. R., Noren, A. J. & Galster, J. C. Identification of paleoclimatic cycles during the Holocene using grain size analysis of sediments cored from Lake Morey in Fairlee, VT. *GSA Abstracts with Programs (Regional)* 33, 15 (2001).

- Stuiver, M. & Reimer, P. J. Extended ¹⁴C Data Base and Revised CALIB 3.0 ¹⁴C Age Calibration Program. *Radiocarbon* 35, 215-230 (1993).
- 27. Grove, J. M. *The Little Ice Age* (Methuen, London, 1988).
- Hodell, D. A., Brenner, M., Curtis, J. H. & Guilderson, T. Solar Forcing of Drought Frequency in the Maya Lowlands. *Science* 292, 1367-1370 (2001).
- Landscheidt, T. in *Climate: History, Periodicity, and Predictability* (eds. Rampino, M.R., et al.) 428-445 (Van Nostrand Reinhold, New York, 1987).
- Keigwin, L. D. & Boyle, E. A. Detecting Holocene changes in thermohaline circulation. *Proceedings of the National Academy of Sciences* 97, 1343-1346 (2000).
- Gran, S. E., Bierman, P. R. & Nichols, K. K. Teaching winter geohydrology using frozen lakes and snowy mountains. *Journal of Geoscience Education* 47, 420-447 (1999).
- Thomson, D. J. Spectrum estimation and harmonic analysis. *Proc. IEEE* 70, 1055-1096 (1982).
- Mann, M. E. & Lees, J. M. Robust estimation of background noise and signal detection in climatic time series. *Climatic Change* 33, 409-445 (1996).

Acknowledgements

We thank J. Galster for extensive field and lab assistance, K. Jennings for field assistance, S. Brown for lab training, P.T. Davis for coring training, assistance, and device design, and J. M. Wallace for insightful comments and discussion. Supported by a US National Science Foundation grant to P.R.B.

Correspondence and requests for materials should be addressed to A.N. (email anders.noren@alumni.carleton.edu).

Figure Captions

Figure 1. Maps showing location of study area in the northeastern United States (inset, shaded) and lakes from which we collected and analysed sediment cores. A = Amherst Lake, Plymouth, VT; B = Echo Lake, Plymouth, VT; C = Lake Elligo, Greensboro, VT; D = Lake Dunmore, Salisbury, VT; E = Emerald Lake, Dorset, VT; F = Beebe Pond, Hubbardton, VT; G = Vail Pond, Sutton, VT; H = Thirteenth Lake, North River, NY; I = Richmond Pond, Richmond, VT^{31} ; J = Ritterbush Pond, Eden, VT^{14} ; K = Chapel Pond, Saint Huberts, NY; L = Lake Morey, Fairlee, VT; M = Duck Pond, Sutton, VT.

Figure 2. Storminess in the northeastern United States and relevant climate records. a, Individual terrigenous sedimentation event chronologies from study lakes. Two cores were recovered from Echo Lake, each in a distinct depocenter. These depocenters record terrigenous sediment delivery from different stream basins. **b**, Histogram of terrigenous sedimentation events (100 yr bins). Values above the superimposed linear regression are shaded. Histogram values are weighted by the inverse of the number of chronologies that cover each time interval, removing the effect of decreasing numbers of records covering earlier time intervals. However, the resulting plot has more data from more recent times, and is therefore increasingly accurate in depicting regional averages toward the present. The slight linear trend in the data may reflect the slow progradation of the stream deltas into the lakes, toward the coring locations. As these deltas approach, smaller pulses of sediment are more readily transported to the coring locations. c, Other relevant climate records. 1: Coolings—1A, worldwide glacial expansions²; 1B, the Cockburn Stade and associated cooling^{4,5}; 1C, the Younger-Dryas event³. 2: GISP2 glaciochemical cold events⁶. 3: Storminess—3A, LIA historical¹⁰ and geologic⁸ evidence; 3B, high frequency of hurricane landfalls along the northern Gulf of Mexico coast¹¹; 3C, occurrence of storm surge deposits on the northwestern coast of England¹². 4: Increased magnitude of 1.58-yr recurrence

interval floods in the north-central United States (NCUS)⁹. 5: Increased magnitude of the largest floods in the NCUS⁹. 6: Highest frequency of megafloods on the Mississippi River⁷. **d**, GISP2 ssNa concentration, with values above the superimposed linear regression shaded⁶. **e**, GISP2 nssK concentration, with values above the superimposed linear regression shaded⁶. Other GISP2 aerosol deposition time series⁶ exhibit variability similar to ssNa and nssK.

Figure 3. Multitaper spectral analysis (3 tapers) of storminess and GISP2 nssK time series, interpolated with a 100-year interval and with linear trend removed³². Spectral analysis of other GISP2 aerosol deposition time series⁶ reveal power spectra similar to that of nssK. The harmonic spectrum represents the estimated significant periodic component of the raw spectrum, as measured by the Thomson variance ratio test for periodic signals (F-test). CI = confidence interval. Confidence level is relative to red noise estimated from lag-1 autocorrelation with a median averaging filter³³. The nssK raw spectrum has been rescaled such that the confidence intervals apply to both power spectra. Median core sampling intervals varied from 2 years in lakes with the highest sedimentation rates, to 27 years in lakes with the lowest sedimentation rates, and the interval varied throughout each core due to the effects of autocompaction and changing sedimentation rates. We used several different interpolation intervals (varying from 10 to 200 years) to obtain evenly-spaced data for spectral analysis, all of which produced similar results. We found the results to be robust to varying resolutions and tapers, and comparable results were obtained with the multitaper, Blackman-Tukey, and maximum entropy methods, as well as periodogram analysis using the Lomb-Scargle method (which avoids the need to interpolate the data).

ID*	Lake	Location	Elev. (m)	Area (km²)	Depth (m)	Basin Area (km²)	Basin Relief (m)	Relief Ratio (m/km ²)
Α	Amherst	Plymouth, VT	326	0.33	27	49.4	675	14
В	Echo	Plymouth, VT	323	0.42	28	68.1	678	10
С	Elligo	Greensboro, VT	269	0.70	30	13.1	259	20
D	Dunmore	Salisbury, VT	173	3.99	32	52.9	812	15
Е	Emerald	Dorset, VT	217	0.13	13	14.7	713	48
F	Beebe	Hubbardton, VT	188	0.45	13	7.5	215	29
G	Vail	Sutton, VT	455	0.06	14	2.0	354	177
Н	Thirteenth	North River, NY	510	1.33	15	28.5	536	19
I	Richmond [†]	Richmond, VT	223	0.10	3	2.2	273	125
J	Ritterbush‡	Eden, VT	317	0.05	14	2.2	293	133
K	Chapel	Saint Huberts, NY	485	0.07	24	4.6	925	202
L	Morey	Fairlee, VT	127	2.22	13	20.7	414	20
М	Duck	Sutton, VT	520	0.03	14	0.7	290	414

Supplemental Table 1. Study lake characteristics.

*ID letters correspond to lakes in Figs. 1 and 2. †From ref. 31. ‡From ref. 14.

CAMS #	Lake	Core	Depth (cm)	Radiocarbon Age	Calendar Age*	1 age range
62298	Amherst	1	108	450 ± 40	500	479 - 525
62299†	Amherst	1	141	2150 ± 40	2160	2061 - 2299
67834	Amherst	1	224	920 ± 50	850	789 - 913
62452	Amherst	1	397	1570 ± 50	1470	1412 - 1519
62300†	Amherst	1	426	1330 ± 180	1230	1015 - 1408
67835	Amherst	1	542	2060 ± 60	2030	1949 - 2112
57711	Duck	1	48	220 ± 110	210	1 - 428
57712	Duck	1	192	2510 ± 50	2590	2473 - 2737
57713	Duck	1	311	4040 ± 40	4490	4424 - 4568
57784	Duck	1	480	7530 ± 50	8330	8214 - 8390
57714	Duck	1	522	8790 ± 50	9810	9703 - 10104
57715	Duck	1	529	8790 ± 50	9810	9703 - 10104
57715	Duck	1	558	10900 ± 50	12960	12858 - 13114
57717	Duck	1	567	10980 ± 50	13020	12924 - 13131
62301†	Duck	1	578	10930 ± 40	12980	12882 - 13119
52942	Echo	1	165	360 ± 30	400	324 - 473
52943	Echo	1	307.5	1150 ± 50	1050	974 - 1168
52941	Echo	1	417	2070 ± 140	2050	1876 - 2300
62302†	Echo	2	62	5010 ± 40	5740	5660 - 5859
57718†	Echo	2	68	3850 ± 40	4250	4153 - 4351
57719	Echo	2	215	1270 ± 50	1220	1149 - 1274
57720	Echo	2	345	2480 ± 40	2590	2470 - 2710
62303	Elligo	1	56	200 ± 40	180	3 - 294
57721†	Elligo	1	57	1280 ± 40	1220	1176 - 1262
57722	Elligo	1	217	1260 ± 40	1210	1149 - 1263
57723	Elligo	1	320	1830 ± 50	1760	1706 - 1856
57724	Elligo	1	464	2450 ± 40	2520	2360 - 2707
57725	Elligo	1	591	3250 ± 50	3470	3394 - 3551
67850	Emerald	1	244	2160 ± 40	2190	2067 - 2301
67851	Emerald	1	335	3260 ± 50	3480	3404 - 3552
62304	Emerald	1	583	7740 ± 40	8500	8433 - 8585
57744	Morey	2	16	180 ± 50	170	2 - 293
57745	Morey	2	124	1870 ± 60	1800	1731 - 1870
57746	Morey	2	221	3070 ± 40	3290	3214 - 3344
57747	Morey	2	305	4300 ± 40	4860	4829 - 4954
57748	Morey	2	381	5720 ± 50	6510	6412 - 6617
62305	Morey	2	419	7840 ± 40	8610	8542 - 8695
62306	Morey	2	431	9450 ± 520	10720	9916 - 11551
57749	Morey	2	454	10230 ± 50	11940	11705 - 12285
57750	Morey	2	468	10270 ± 110	12040	11699 - 12333
57751	Morey	2	501	10370 ± 50	12320	11975 - 12606
57752†	Morey	2	519	10180 ± 100	11840	11446 - 12265

Supplemental Table 2. Radiocarbon dates.

*Radiocarbon ages calibrated by using a weighted average of the 1 calibrated age range midpoints, according to the relative area under the probability distribution²⁶; median calibrated ¹⁴C age uncertainty is ± 100 years. †Not used in age model.

CAMS #	Lake	Core	Depth (cm)	Radiocarbon Age	Calendar Age*	1 age range
67866	Vail	1	99	320 ± 40	380	312 - 435
57753	Vail	1	202	2230 ± 90	2240	2147 - 2337
57754	Vail	1	252	2590 ± 50	2700	2519 - 2773
57755	Vail	1	313	3150 ± 50	3380	3272 - 3444
57756	Vail	1	410	4500 ± 40	5180	5053 - 5285
57757	Vail	1	475	5800 ± 50	6600	6505 - 6663
57758	Vail	1	549	7520 ± 120	8300	8192 - 8399
57759	Vail	1	583	8350 ± 50	9380	9297 - 9467
67862	Beebe	1	48	1990 ± 50	1940	1889 - 1989
67836	Beebe	1	131	3810 ± 40	4190	4095 - 4253
67837	Beebe	1	205	5090 ± 50	5820	5753 - 5905
67838	Beebe	1	309	6930 ± 50	7740	7686 - 7788
65337	Beebe	1	347	7820 ± 30	8590	8546 - 8630
67839	Chapel	1	32	Modern		
67840†	Chapel	1	100	200 ± 40	180	9 - 294
67841	Chapel	1	159	110 ± 40	130	29 - 261
67842	Chapel	1	273	1890 ± 60	1820	1736 - 1888
67843	Chapel	1	327	3750 ± 50	4090	3989 - 4224
67844	Chapel	1	404	8360 ± 60	9390	9298 - 9469
67845	Chapel	1	459	9380 ± 50	10600	10508 - 10684
67846	Chapel	1	484	9640 ± 60	10980	10793 - 11163
67847	Chapel	1	498	9970 ± 50	11400	11253 - 11550
65338†	Chapel	1	523	220 ± 40	200	8 - 304
67863	Dunmore	1	196	3060 ± 50	3280	3213 - 3344
67848	Dunmore	1	237	3440 ± 40	3700	3638 - 3811
67849	Dunmore	1	354	4690 ± 40	5390	5326 - 5467
65339	Dunmore	1	465	5470 ± 40	6250	6204 - 6296
67852	Thirteenth	1	102	1250 ± 40	1200	1140 - 1259
67853	Thirteenth	1	183	2050 ± 50	2010	1946 - 2096
67854	Thirteenth	1	303	2910 ± 40	3030	2959 - 3137
67855†	Thirteenth	1	403	7440 ± 40	8260	8191 - 8327
67874	Thirteenth	1	498	4680 ± 50	5390	5323 - 5465
67875	Thirteenth	1	580	5990 ± 40	6810	6752 - 6869
65340†	Thirteenth	1	584	2190 ± 30	2230	2146 - 2302
65341	Thirteenth	2	45	5800 ± 40	6610	6553 - 6660
67864	Thirteenth	2	53	5920 ± 50	6730	6670 - 6790
67865	Thirteenth	2	94	7800 ± 60	8550	8459 - 8632
65342	Thirteenth	2	148	8920 ± 260	9930	9564 - 10354

Supplemental Table 2 (continued).

*Radiocarbon ages calibrated by using a weighted average of the 1 calibrated age range midpoints, according to the relative area under the probability distribution²⁶; median calibrated ¹⁴C age uncertainty is ± 100 years. †Not used in age model.

Noren et al., Figure 1

Noren et al., Figure 2

Noren et al., Figure 3

CHAPTER 3: PAPER 2

For submission to Palaeogeography, Palaeoclimatology, Palaeoecology

Holocene storm-induced erosion in the northeastern United States revealed by multiple lake records

- Anders J. Noren, Paul R. Bierman, Josh C. Galster, Andrea Lini, Department of Geology, University of Vermont, Burlington, VT 05405, USA
- John Southon, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

Abstract

Using layers of terrigenous material in sediment cores from 11 lakes in Vermont and New York, we established a ~13,000-year regional record of Holocene storms for the northeastern United States. The composition of these storm-related terrigenous layers varied from nearly pure sand to a mixture of sand and macrofossils of woody forest debris. Lakes most likely to preserve sedimentary storm layers have steep surrounding hillslopes, a large volume of erodible sediment in the uplands, and competent, high-gradient inflowing streams with deltas composed of sand and gravel. Coring locations adjacent to the center of the delta foreslope usually yield cores with the greatest number and thickness of sedimentary terrigenous layers.

Comparison of the storm chronologies, augmented with the results from two previous local studies, reveals disparate ages for most storm layers in individual cores. This result suggests that rainstorms formed by free convection and limited in spatial extent may locally cause as much (or more) flooding and erosion as hurricanes, nor'easters, or other mesoscale to synoptic-scale storms. Storm magnitude, as estimated by average terrigenous layer thickness, was greatest in the early and late Holocene, when New England's climate was cool and moist, and varied in regular cycles of ~510 years. This centennial-scale rhythm in event magnitude may reflect the influence of oceanic thermohaline circulation.

Independent, local paleostorm records are well-correlated with our data. Stormrelated depositional events on alluvial fans in Vermont occurred during stormy intervals we identified. In contrast, average New England Holocene climate is not strongly related to storminess. Both the frequency and magnitude of erosion-producing storms vary in cycles of much shorter duration than average regional climate as revealed by studies of pollen, macrofossils, lake levels, and estimates of temperature and precipitation generated in climate models. Thus, minor climatic changes that do not significantly affect regional vegetation assemblages or moisture balance may have caused major increases or decreases in storminess.

Keywords: paleoclimatology; storms; floods; New England; lake cores; Holocene

1. Introduction

Understanding natural climate variability is crucial for interpreting the influence of human activities on future climate change. The climatic effects of increasing average global temperatures, likely due in part to anthropogenic greenhouse gas emissions, will probably not be limited to higher average temperatures and temperature extremes (IPCC, 2001). These human-induced climate changes are also likely to affect storminess and precipitation, including the occurrence of extreme precipitation events, droughts, and wet periods. Past changes in the frequency or severity of these events may reveal underlying patterns from which humans have caused significant, or possibly little, deviation.

Clues to natural climate variability come from archives of past climate preserved in a variety of media, including tree rings, coral growth bands, wetland, lake, and ocean sediment, and annual ice layers in continental and alpine glaciers, among other sources (e.g. Conkey, 1986; Tudhope et al., 2001; Newby et al., 2000; Lamoureux et al., 2001; Bond et al., 1997; Dansgaard et al., 1984; Thompson et al., 2000). These natural media record average temperature or annual precipitation fluctuations, whether directly or indirectly. For example, the varying thickness of annual tree or coral growth rings directly reflects average local temperature fluctuations. In contrast, the changing spectra of sedimentary pollen reflect changing regional vegetation assemblages (which, in turn, reflect longer-term and larger-scale temperature and precipitation variability).

Most Holocene paleoclimate research in the heavily-populated northeastern United States has focused on long-term changes in regional average temperature and/or moisture conditions. Past values of these climate parameters have been revealed by the pollen spectra of lake sediment (Delcourt and Delcourt, 1984; Jackson and Whitehead, 1991; Newby et al., 2000; Spear et al., 1994; Winkler, 1985), which reflect changes in regional vegetation assemblages. Lake level variability, an indicator of the balance between precipitation and evaporation, has been reconstructed from lake sediment compositional changes (Webb et al., 1993). In central New York, Mullins (1998) determined Holocene average summer temperatures from the calcium carbonate content of lake sediments. Cronin et al. (2000) detailed a record of drought from the past millennium by examining microfossils (foraminifera and ostracodes) in sediment cores from Chesapeake Bay. On timescales of the past few centuries, tree ring widths and densities have allowed the reconstructions have been made of extreme climate events such as rainstorms with exceptional precipitation

(Brown et al., 2000; Donnelly et al., 2001a-b; Jennings et al., in review). As historical records of intense storms have shown (Ludlum, 1996), these extreme weather events have profound consequences for society and ecosystems.

In hilly or mountainous terrain, lake sediment is often comprised of organic lake mud (gyttja), largely formed by the decay of aquatic organisms, punctuated by layers of terrestrially-derived material (Brown et al., 2000; Eden and Page, 1998; Nesje et al., 2001; Rodbell et al., 1999; Thorndycraft et al., 1998). Such terrigenous layers are deposited during floods that result from storms producing intense or persistent precipitation. In the northeastern United States, the heaviest rainfall occurs during localized but intense convective storms, "nor'easters" or other mid-latitude cyclones, and hurricanes/tropical storms or their remnants (Keim et al., 1998). As surface runoff from uplands surrounding a lake increases during such events, sediment is transported to the lake in flooded stream channels. Consequently, paleostorm chronologies can be determined by analyzing and dating lake cores (Brown et al., 2000; Eden and Page, 1998; Nesje et al., 2001; Rodbell et al., 1999; Thorndycraft et al., 1998). In this paper, we present the character and ages of terrigenous deposits in sediment cores recovered from 11 lakes in Vermont and eastern New York, and discuss the implications of this record in terms of paleostorm frequency, magnitude, and distribution.

2. Background

Paleoflood research first became well established two decades ago, when Kochel and Baker (1982) analyzed and dated slackwater deposits in river channels to determine the stage and discharge of past river floods. Much subsequent research on prehistoric floods has used these methods (for a summary, see Knox, 1999). More recently, researchers in this field have developed additional methods for reconstructing paleoflood and paleostorm
histories. For example, storm surge overwash deposits along coastal areas have been used to establish records of hurricane or cyclone landfalls (Liu and Fearn, 1993; Collins et al., 1999; Liu and Fearn, 2000; Donnelly et al., 2001a-b; Hayne and Chappell, 2001; Nott and Hayne, 2001).

The use of terrigenous deposits in lake sediment as a proxy for floods and storms is also a relatively recent development. Page et al. (1994) demonstrated that a well-dated series of these deposits from Lake Tutira (New Zealand) exhibited good correlation with a nearly century-long written record of daily rainfall; the ages of terrigenous layers corresponded to dates of heavy rainfall. They established the magnitude, frequency, and threshold for erosion-producing storms, and established a positive correlation between the thickness of these sediment layers and storm rainfall. This storm record was later extended beyond the historic period to ~2250 years before present (BP) (Eden and Page, 1998). At Laguna Pallcacocha in Ecuador, Rodbell et al. (1999) recovered a sediment core spanning the past ~15,000 years that contained hundreds of terrigenous clastic layers. They demonstrated that these layers were deposited by storms generated during El Niño events, and showed that the sediment record from the last ~200 years closely matches the historical record of moderate to severe El Niños. On the eastern side of the North Atlantic, Thorndycraft et al. (1997) determined that layers in a short sediment core recovered from Petit Lac d'Annecy (eastern France) were composed of material from the soils in the uplands surrounding the lake, and suggested that the ages of these layers correlated with the dates of historic floods. Farther north, Nesje et al. (2001) recently established a 4500year flood record from sandy layers in a sediment core retrieved from Atnsjøen in southeastern Norway. They showed that ages of the sandy layers correlated with dates of large historic floods, and documented higher flood frequencies during the Little Ice Age (LIA) (Grove, 1988) and between 1290 and 2690 BP. In the northwestern United States,

Ambers (2001) showed that historic flood events were recorded as distinct sedimentary layers in a large reservoir.

In the northeastern United States, Lin (1996) speculated that inorganic deposits in sediment cores from Ritterbush Pond (northern Vermont) reflected the erosive work of storm or flood runoff. Subsequent analysis of these cores (Bierman et al., 1997) demonstrated that ¹³C values of these layers were consistently more positive than the surrounding gyttja. This relationship was interpreted as indicating different source material for the gyttja (aquatic) and inorganic layers (terrestrial). Pairs of radiocarbon dates that bracket the thickest of the inorganic layers revealed that these layers were deposited rapidly. Bierman et al. (1997) also showed that periods of increased deposition of these layers in Ritterbush Pond were coincident with periods of increased aggradation on alluvial fans in central Vermont. They suggested that the correlation between these intervals reflected periods of increased storminess driven by large-scale climate forcing.

Several analyses performed on additional cores retrieved from Ritterbush Pond (Brown et al., 2000; Brown et al., in press) yielded a more detailed chronology and showed that each terrigenous layer was deposited across the entire lake basin. Grain size analysis revealed that the mean particle size of these layers is larger than the surrounding gyttja, and that the layers are often graded. Brown et al. (2000) also speculated about the rainfall intensity/duration threshold required for layer deposition in Ritterbush Pond. They showed that if layer thickness is related to rainfall intensity/duration, then storms much more severe than the historic flood of record (1927) have affected Ritterbush Pond in the past.

Other processes may cause or facilitate the deposition of terrigenous layers, but their effects are probably minimal in New England. Earthquakes may cause mass movements, but the tectonic stability of this region during the Holocene (Ouellet, 1997) suggests that terrigenous layers were not deposited in New England lakes as a result of such events. Vegetative declines caused by drought or disease may decrease evapotranspiration and increase runoff, thus lowering the precipitation intensity/duration threshold for terrigenous layer deposition. However, studies of pollen and terrestrial plant macrofossils indicate continuous vegetative cover on the landscape of this region during the Holocene (Jackson and Whitehead, 1991; Lin, 1996; Spear et al., 1994). Snowmelt floods probably do not transport enough sediment to cause the deposition of terrigenous layers (Thorndycraft et al., 1998; Lamoureux, 2000). Lake-level fluctuations caused by periods of drought or wetness could change the distance between the stream delta and the center of the lake, thereby facilitating or hindering the transport of terrigenous sediment to the coring locations. Choosing lakes with steep perimeter bathymetry surrounded by steep hillslopes minimizes this effect. Early European settlers deforested the New England landscape and used hillslopes for growing food crops and livestock pasture (Meeks, 1986). However, the significant effect of these and other human activities is limited to the past ~250 years (Bierman et al., 1997).

3. Environmental Setting

Lakes and their drainage basins in Vermont and northeastern New York are underlain by a wide variety of metamorphic and sedimentary bedrock lithologies. This suite of rock types is simpler in eastern Vermont and more complex in the western and southern portions of the state. It includes schist, phyllite, quartzite, slate, gneiss, marble, graywacke, greenstone, amphibolite, and granulite; as well as dolostone, limestone, and sandstone with varying degrees of metamorphism (Doll et al., 1961). New York study lakes are underlain by meta-anorthosite, granitic gneiss, marble, and quartzite (Fisher et al., 1970). Continental glaciers modified the New England landscape during the Pleistocene (Ridge et al., 1999). Deglaciation of southern Vermont (and hence, this field area) began about 15,200 BP (15.2 ky BP), and the ice had receded north into Québec by about 13.4 ky BP (Ridge et al., 1999). Glacial deposits mantle the bedrock over most of the region. At higher elevations, these deposits are commonly limited to glacial till (Doll et al., 1970; Cadwell, 1990). Terraces and/or deltas formed by rivers and glacial lakes locally overly the till at lower elevations. These sandy deposits usually contain larger volumes of easily erodible sediment than till alone. Study lakes are commonly fed by several ephemeral and perennial streams, which vary in order from first to third as determined from United States Geological Survey (USGS) 1:24,000 topographic maps.

4. Field Methods

To identify candidate lakes for coring, we examined all USGS 1:24,000- or 1:25,000-scale topographic maps of Vermont, eastern New York, and Massachusetts. Accessible lakes surrounded by steep hillslopes with inflowing streams were marked for field checking. We procured available bathymetric maps for these lakes, and rejected lakes with shallow water (our coring device requires at least ~8m water depth—see below) or gently sloping perimeter bathymetry. During spring, summer, and autumn field reconnaissance, we examined the deltas of inflowing streams to determine whether coarsegrained sediment had been transported to the lake in the past. We looked for large, fresh deltas, with sand, gravel, and cobbles on the surface. We performed informal surveys of the stream catchments, to determine the availability of loose sediment for erosion and transport to the lake. For lakes without bathymetric maps, we took several preliminary depth soundings to ensure deep water and steep perimeter bathymetry. We chose for coring 11 lakes that most closely met the above criteria (e.g., Fig. 1), and that were broadly distributed across the region (Table 1 and Fig. 2).

During the two winter field seasons, late January to late March of 1999 and 2000, we created bathymetric maps for unmapped lakes (Amherst, Duck, Echo, Emerald, Vail; e.g. Fig. 3). We surveyed depth measurement locations with a Trimble Pathfinder ProXRS differential global positioning system (GPS) or a Pentax PZ-11 total station. Although several streams commonly flow into each lake, we preferentially chose coring locations near the mouths of streams that flow over steep hillslopes, avoiding low-gradient streams. Using a modified Reasoner coring device (Reasoner, 1993) fitted with a piston and not using a core catcher (Brown et al., in press), we retrieved 18 continuous, 1- to 6-m cores from deep water locations, adjacent to the delta foreslopes. Three of these cores (Echo 3 and 4; Vail 2) were replicates, recovered only a few meters away from earlier coring locations to assess local sediment variability. One core (Thirteenth 2) was pushed into lower sediment at the same location as a previous core. We cut the cores into 1.5-m sections, which were stored at 4°C until processing.

5. Lab Methods

Using the most sensitive and robust whole-core analytical techniques of Brown et al. (in press), we documented core stratigraphy with magnetic susceptibility, X-radiography, visual logging, and loss-on-ignition analyses. Magnetic susceptibility (MS) analysis determines the magnetic mineral content of core sediment; therefore, peaks in MS indicate the location of terrigenous layers. MS measurements were made at 1 cm intervals on unopened core sections using a Bartington Magnetic Susceptibility Meter (model MS2) mounted on an automated core track. Because this device integrates measurements over ~5 cm of core, the resulting MS curve provides a low-resolution record of core stratigraphy.

We used MS to assess rapidly the contents of a core and to adjust our field procedures accordingly, and for comparison with other lab analyses. X-radiography (XR) was also performed on unopened cores. As X-rays pass more easily through organic material and are blocked by inorganic material, terrigenous layers are identified visually at ~0.5 cm resolution in the black-and-white images that result from this analysis.

After splitting the cores in half lengthwise and archiving one half, we photographed the core with a high-resolution digital camera. We then made a detailed visual log (VL) of the core at 0.5 cm resolution, noting changes in sediment color and texture, and in the abundance of terrestrial plant macrofossils. We sampled the core at 1 cm intervals and freeze dried these samples for at least 48 hours. Loss-on-ignition (LOI) analysis, at 1 cm resolution, determined the organic content along the length of the core (Brown et al., in press). Samples were weighed, burned for 2 hours at 450°C, cooled for 1 hour, and reweighed. Expressed as the percent of the original sample mass lost during combustion, both anomalously low and high LOI values typically correspond to terrigenous deposits.

Age control on these cores is provided by accelerator mass spectrometer (AMS) radiocarbon (¹⁴C) analyses of 80 terrestrial plant macrofossils. We prepared samples using standard techniques (Brown et al., in press) and calibrated the resulting ages using CALIB v4.2 (Stuiver and Reimer, 1993; Stuiver et al., 1998). Single calibrated ¹⁴C ages were determined by averaging the midpoints of 1 age ranges, weighted according to the relative area under the probability distribution for each age range as determined by the CALIB program. We chose this method over others (for example, simply choosing the single age associated with the greatest probability) to avoid significant errors for age estimates. These errors could arise if the true age and chosen age are at opposite ends of the age range. With the application of age models between successive radiocarbon dates, such a situation would yield large errors in age estimates for a substantial section of the core above and below the stratigraphic location of the macrofossil that provided the date. Using a weighted average

reduces the maximum possible error by choosing ages closer to the middle of the age range.

6. Results

6.1. Magnetic Susceptibility

Median single-core MS values range from 0.4 to 50.7 (SI units) (Fig. 4). The wide range of these baseline values underscores the sensitivity of this analysis not only to changes in minerogenic sediment content, but also to local differences in magnetic mineral content of the bedrock eroding and supplying sediment to the lake. MS values are typically high near the top of the cores, and decrease downcore to a baseline from which several peaks deviate in the middle sections of the cores. Some of these peaks are two orders of magnitude higher than baseline values. Some negative peaks (troughs) are present and occasional shifts in baseline values occur. Most MS troughs occur at core depths determined in the VL to contain a mixture of coarse-grained, inorganic material and a high abundance of terrestrial plant macrofossils (see below). Near the bottoms of some cores, baseline MS values and were not analyzed by the other lab methods. MS is the least sensitive of the lab techniques, recognizing an average of 14 layers per core (range from 3 to 21 layers) (Table 2).

6.2. X-Radiography

The black-and-white XR images of the cores produced from this analysis commonly exhibit a slightly mottled, dark gray appearance punctuated by several thin (~0.5

to 20 cm), lighter bands that indicate the presence of increased inorganic material (e.g., Fig. 5; Brown et al., 2000). Similar bands that were slightly darker than the average dark gray core tone existed in some of the cores, but were fewer in number than the lighter layers. Other thin layers appeared to be a mixture of both light and dark material. The locations of these dark and/or mixed-color bands correspond to locations in the VL containing a mixture of coarse-grained, inorganic material and a high abundance of terrestrial plant macrofossils (see below). Some cores (and sections of cores) with lower overall organic content appear lighter on average, making the differentiation of slight changes in sediment character more difficult. The bottom sections of certain cores appear mostly white in the XR images. Depending on the core, the number of terrigenous layers identified by XR ranges from 4 to 39, and averages ~18 per core (Table 2).

6.3. Visual Logging

Most core sediment is dark brown in color, but other sediment colors included gray, red, and green hues. The value (lightness/darkness) of the average core sediment also varies slightly. The gyttja near the tops of most cores is usually dark brown, and gradually lightens downcore. Near the bottoms of some cores, grayish tones become more common; in a few cores, the bottom sediment is entirely gray and composed of clay, sand, gravel, or a mixture of these materials, devoid of visible organic material. Terrigenous layers commonly appear anomalously light or dark compared to the surrounding gyttja—often light brown or tan, or less commonly very dark brown, gray, or black (e.g. Fig. 5). The terrigenous layers usually have a speckled appearance due to the presence of both dark and light minerals and an increased abundance of terrestrial plant macrofossils, which appear much darker than most of the core sediment. Terrigenous layers thus vary in composition from nearly pure sand, silt, gravel, or clay to a mixture of these inorganic materials and

macrofossils of terrestrial plants. The texture of these layers is universally coarser than the surrounding gyttja; sand grains are usually visible, and thicker (>1 cm) terrigenous layers often appear to be graded. Some of these terrigenous layers contain gravel clasts up to \sim 3 cm diameter. The number of terrigenous layers identified through visual logging ranges from 3 to 47 per core, with an average of \sim 19 per core (Table 2).

6.4. Loss-on-Ignition

Median single-core LOI values range from 11.8 to 56.9% (Fig. 6), and are somewhat negatively correlated with median single-core MS values ($r^2 = 0.43$). LOI values are often low near the tops of the cores. Downcore, LOI values do not commonly tend toward a stable baseline; instead, the baseline typically varies along the length of the core. Many troughs of small to large size and a much smaller number of lesser peaks commonly deviate from this variable baseline. Most of these LOI peaks occur at core depths determined in the VL to contain a mixture of coarse-grained, inorganic material and a high abundance of terrestrial plant macrofossils. We therefore consider both troughs and peaks in LOI to represent significant deposits of terrigenous material. Near the bottoms of some cores, LOI values gradually shift toward lower values and ultimately tend toward values near 0%. LOI was the most sensitive of the lab techniques, identifying an average of ~31 terrigenous layers per core (range from 6 to 55 layers) (Table 2).

6.5. Radiocarbon Analysis

Radiocarbon ages of the 80 terrestrial plant macrofossils vary from modern to 10,980 ¹⁴C years (Table 3). Uncertainties range from 30 to 520 ¹⁴C years, with a median uncertainty of 50 ¹⁴C years. Median calibrated ¹⁴C age uncertainty is \pm 100 years, and

varies from ± 20 to ± 830 years. Of the 80 macrofossils analyzed, 7 ages showed significant (> 2) stratigraphic inversion and were therefore discarded; 4 additional ages were inverted, but not significantly (< 2). Cores Elligo 2 and Morey 1 were not dated.

7. Data Analysis

7.1. Time Series Filter

To isolate significant troughs and peaks in LOI curves from noise, we compared these shifts to the background LOI signal (Fig. 7). To establish an appropriate background estimate, all data points in the LOI curve greater than 1 whole-core standard deviation from the whole-core median were set to equal the median. The resulting series was filtered with singular spectrum analysis (SSA, Broomhead and King, 1986; Vautard and Ghil, 1989), using a 20-point window to identify the first principal component, which we define as the background. Any shifts in the original data series that were more than one standard deviation from this background were considered to be significant. The nature of the shifting baseline LOI values is therefore considered, as significance is measured relative to the local background rather than the entire data series.

7.2. Composite Sediment Record

We created a composite record of core stratigraphy from the results of the four individual analytical techniques (Fig. 7). In the composite record, we determined the locations of most terrigenous deposits when two or more of the individual techniques identified such layers. In some cases, we identified terrigenous layers from the results of a single analysis. In these cases, the individual analysis was strongly indicative of terrigenous material, and the character of the layer in question masked its location in the other analyses. For example, some terrigenous layers consisted of a mixture of macrofossils and sand in proportion that yielded LOI or MS values similar to background gyttja levels (e.g. core Morey 2 at depths 275 and 357 cm).

This composite record overcomes the limitations of the four individual analyses, and most accurately represents the locations and thickness of terrigenous layers. Comparing the composite record with the results of high-resolution, whole-core grain size analysis (a more sensitive method for determining the locations of terrigenous deposits; see Bosley et al., 2001; Conlan, 2001) shows that the composite record is a conservative representation of the number of terrigenous layers in each core and emphasizes the most extreme events (Fig. 8). Below, we present and discuss the results from data analyses applied to the composite record. Similar results were achieved using the records resulting from each of the four different core analytical techniques. The number of terrigenous layers recognized in the composite records ranges from 6 to 50, averaging ~27 per core (Table 2).

7.3. Age Modeling

To account for the difference in sedimentation rates between the rapidly-deposited terrigenous layers (Bierman et al., 1997) and the slow accumulation of gyttja, we mathematically compressed the composite sediment record by removing the rapidly-deposited terrigenous layers from the stratigraphy. This systematic compression removed from ~5 to 32 percent of the core sediment. Non-inverted ¹⁴C ages were used to construct age models for each core, for which we assumed linear sedimentation rates between successive ages. Comparing these age models to the compressed core stratigraphy yields age estimates for each terrigenous layer in the core. These core chronologies may be

analyzed individually, or combined into a single histogram that indicates regional storminess (Fig. 9).

7.4. Spectral Analysis

We used spectral analysis to determine whether significant periodicities exist in our data. Using the Analyseries v1.2 (Paillard et al., 1996) and SSA–MTM Toolkit v4.1 (Mann and Lees, 1996) software packages, we detrended and analyzed the data (augmented with the results from previous research in this region (Brown et al., 2000; Gran et al., 1999)) using the multitaper, Blackman–Tukey, and maximum entropy methods. We performed these analyses on our data interpolated to several intervals ranging from 10 to 200 years, all with similar results.

8. Discussion

The analysis and comparison of sedimentary archives from multiple lakes in the northeastern United States provides a unique perspective on past climate. Our regional approach demonstrates the variability in the character and number of sedimentary terrigenous layers in different lakes, and reveals storm patterns not identifiable from single lake records.

8.1. Recovery of terrigenous material

The number and thickness of terrigenous sediment layers present in individual cores varies widely. Based on reconnaissance surveys of the lake catchments and comparing

coring locations, we determine that sediment supply, coring location, and inflowing stream competence affect the number and thickness of terrigenous layers recovered in cores.

Field surveys suggest that lakes with large quantities of erodible sediment in their catchments are more likely to have greater numbers and thickness of sedimentary terrigenous layers. Examples of such lakes include Ritterbush, Beebe, and Echo. High-gradient streams feeding Echo and Beebe flow through terrace deposits that are probably either fluvial or lacustrine in origin. In the Ritterbush basin, a large deposit of sandy, unconsolidated material (likely a delta from a higher glacial lake) is perched on a hillslope and cut by a well-incised stream that feeds Ritterbush Pond.

Choosing appropriate coring locations is of paramount importance for maximizing recovery of terrigenous material in cores. In small lakes with only one depocenter located near (~100 to 200 m) inflowing stream deltas, cores from such depocenters contained abundant, obvious layers of terrigenous material. Cores retrieved from locations near the middle of larger lakes (e.g. Emerald and Morey) contained few distinct terrigenous layers, and few macrofossils of terrestrial plants (used for radiocarbon dating). In contrast, cores from locations within 10 to 20 m of the center of the delta foreslope in these larger lakes contained thick, obvious deposits of terrigenous material and abundant terrestrial plant macrofossils. Mid-lake cores from the larger lakes with exceptionally competent, high-gradient inflowing streams and an abundant sediment supply (e.g. Dunmore, Echo) were less affected by their greater distance from the delta, but few lakes with such characteristics exist in this region. High-resolution, whole-core grain size analysis is more sensitive to small changes in sediment character, and reveals terrigenous deposits in cores recovered from distal locations (Bosley et al., 2001; Conlan, 2001; Parris et al., 2001).

The character of inflowing streams also determines the amount of sedimentary terrigenous material in lakes. Stream competence appears to be the determining factor. Terrigenous layers were more common and distinct in cores recovered from lakes with high-gradient inflowing streams, which are capable of transporting larger quantities of coarser-grained sediment than similar-sized but lower-gradient streams flowing in alluvium (e.g. Echo vs. Amherst). The average discharge of these streams also seems to be important, as cores from lakes with larger streams and well-developed channels contained more terrigenous material (e.g. Vail vs. Duck). However, cores from lakes with large but low-gradient streams contained little terrigenous material (e.g. Amherst).

8.2. Chronology comparisons

Storm-related deposition does not appear to have occurred synchronously in multiple lake basins, with the notable caveat that the uncertainties associated with our radiocarbon ages and age models do not allow us to identify conclusively single storm events reflected in multiple cores (Fig. 9). However, if we assume that our modeled ages are reasonably accurate and precise, we can conclude that distinct temporal clustering of events on such short timescales does not predominate in this region. This finding may be interpreted in several different ways: (a) localized, convective rainstorms delivered more sediment to lakes in this region during the Holocene than storms affecting wider areas; (b) hurricanes, nor'easters, and other mesoscale to synoptic-scale storms affected different portions of this region simultaneously but with varying results on the landscape; or (c) inaccurate model ages for terrigenous layers mask any actual correlations between the true ages of these deposits. Differing sensitivities of individual lake basins to a given rainfall intensity or duration may reflect orographic effects on rainfall, the availability of erodible sediment in the catchment, varying antecedent soil moisture levels, or other factors of landscape conditioning (Rodbell et al., 1999). Investigations into varved lake sediment (Gremillion and Rodbell, 1998; Lamoureux, 2000) or other proxies with annual resolution could determine more precisely the ages of past storms and allow better comparisons

between individual chronologies. Unfortunately, such lakes with varved sediment are uncommon in New England.

These results suggest that rare, intense hurricanes, nor'easters, or other mesoscale to synoptic-scale storms did not affect multiple lake basins equally and more severely than localized storms formed by free convection. Had such large, catastrophic storms been the primary erosive force in New England during the Holocene, the ages of event layers in Figure 9 would likely exhibit distinct clustering on timescales ~100 years. Thus, in this region, intense but localized convective rainstorms cause at least as much flooding and erosion, and consequently damage to property or infrastructure, as their larger counterparts that usually receive considerably more public attention.

8.3. Storm magnitude

The accuracy of terrigenous layer thickness as a proxy for rainfall, and hence storm magnitude, has yet to be established in the northeastern United States (Brown et al., 2000). Determining such a relationship has been problematic for several reasons. First, accurate age control near the tops of sediment cores is difficult to attain, both due to the loss of some of the unconsolidated uppermost sediment during coring, and because of large uncertainties associated with radiocarbon dates during the past few hundred years (Stuiver et al., 1998). Thus, the ages of recently deposited terrigenous layers are often uncertain, and comparing them to the dates of major historic storms is difficult. Second, precipitation in this region is highly variable locally (Ludlum, 1996); therefore, long historic records, available for only a few stations, may not adequately reflect actual precipitation values at remote lake locations. The problem of age control may be alleviated by using ²¹⁰Pb or perhaps ¹³⁷Cs dating techniques, both of which are more accurate over historic time frames than ¹⁴C (Robbins and Edgington, 1975). Using these dating methods on lake cores with associated historic

rainfall records may allow for the establishment of terrigenous layer thickness as a proxy for rainfall.

Variable landscape condition and inflowing stream location pose more difficult problems for establishing such a relationship. A relatively saturated landscape from a summer with higher than average rainfall would be more sensitive to fall storms than a landscape following summer drought (Dunne and Leopold, 1978). For example, Hurricane Floyd (September, 1999) brought considerable precipitation to the northeastern United States, but caused little erosion, gullying, or mass movement because it occurred following a summer of below-average rainfall (NOAA/NCDC, 2001). Conversely, the flood of record (November, 1927), which produced extensive erosion, followed a period of higher than normal precipitation (Ludlum, 1996). Landslides or other mass movements that result from intense rainfall might make large quantities of sediment available for rapid transport to the lakes by less-intense storms (Rodbell et al., 1999). Similarly, the position of the inflowing stream on the delta with respect to the coring location might mask the true magnitude of storm floods. If the stream were incised and flowing along the edge of the delta, a very large flood could deposit a thick layer of material to the side of the delta but little material in the front of the delta, where cores are recovered.

If we accept these caveats and interpret terrigenous layer thickness as a proxy for storm magnitude (Fig. 9C), the millennial-scale variability (Fig. 9B; Noren et al., in review) becomes less apparent. Maximum event magnitude prior to the arrival of European settlers to the area (~250 BP) occurred at 11.8, 10.8, and 1.2 ky BP. The highest peak in average terrigenous layer thickness, which occurred during historic times, likely reflects accelerated rates of hillslope erosion caused by deforestation and livestock grazing (Bierman et al., 1997). Lesser peaks in event magnitude occurred at 11.5, 9.8, 6.7, 5.8, 4.3, 2.6, 1.9, and 1.4 ky BP. Spectral analysis of this time series reveals high spectral power, significant at 99% confidence, in a broad peak centered at 509 years (Fig. 10). This

peak is close to the 512-year period in atmospheric ¹⁴C inventory, thought to reflect instabilities in North Atlantic thermohaline circulation (Stuiver and Braziunas, 1993). Other, longer-scale trends in event magnitude follow average regional climate trends (see below).

8.4. Comparison with regional storm and climate records

Combined into a single histogram, the ages of terrigenous layers and by inference, the most severe rainstorms in New England exhibit temporal clustering on millennial and centennial timescales (Fig. 9B; Noren et al., in review). Storminess reached broad and variable maxima lasting ~1.5 ky, with the highest peaks centered at approximately 2.6, 5.8, 9.1 and 11.9 ky BP, and appears to be presently increasing toward another peak (Noren et al., in review).

Independent storm records from this region are well-correlated with our data. Jennings et al. (in review) investigated the stratigraphies of five postglacial alluvial fans in Vermont to determine their sedimentation histories, which span up to 13.3 ky. Their findings augment the existing Holocene sedimentation chronologies for five other postglacial fans determined by Bierman et al. (1997). Nearly all of the distinct, prehistoric depositional events on alluvial fans in Vermont occurred at times we identify as particularly stormy (Fig. 9D; Noren et al., in review). The correlation between these different paleostorm proxies suggests that hillslopes across this region have responded similarly to storms under the same millennial-scale climate forcing since deglaciation (Noren et al., in review).

The average Holocene climate of the northeastern United States since deglaciation includes a gradual transition from cold, moist postglacial conditions to a warm, dry mid-Holocene, followed by gradual cooling and moistening until present (e.g. Webb et al., 1993; Delcourt and Delcourt, 1984; Jackson and Whitehead, 1991; Spear et al., 1994; Kutzbach et al., 1987; Mullins, 1998; Winkler, 1985). In particular, this region was cold from deglaciation to ~11.6 ky BP, and became gradually warmer, and perhaps moister, with prevalent meridional air flow until ~8.6 ky BP. Climate was warm and dry with predominantly zonal air flow (with the possible exception of a brief, ~200-400-year, cool, dry, and dusty interval centered at ~8.2 ky BP) until ~4.5 ky BP. A gradual climatic transition followed, to conditions that were cool and wet with mostly meridional flow (similar to present conditions), which became fully established at ~3.2 ky BP.

The average thickness of lacustrine terrigenous deposits (Fig. 9C), and by inference, storm magnitude, exhibits long-term variability similar to regional climate. Average storm layers were thickest in the early and late Holocene, when climate was cool and moist; they were thinnest in the mid-Holocene, when warm and dry conditions were predominant. This correlation between layer thickness and climate may indicate that extreme precipitation events were more intense during periods of increased wetness, a result consistent with relationships observed in modern, instrumental records of climate (Easterling et al., 2000).

Alternatively, the deposition of thicker storm layers in the early and late Holocene could reflect higher antecedent soil moisture that resulted from wet climate conditions during those intervals. As discussed above, larger volumes of terrigenous sediment may be more easily eroded when the landscape is wetter than average. If antecedent soil moisture is the primary control on the thickness of terrigenous layers, such deposits should be both thicker and more numerous during moist climate conditions—as frequent, low-intensity storms would more easily erode sediment during these intervals. However, the number of terrigenous layers deposited during the early and late Holocene was not significantly different than during the mid-Holocene. Thus, storm intensity rather than antecedent soil moisture is probably the primary control on the thickness of terrigenous layers.

On shorter (centennial to millennial) timescales, the average regional climate of the northeastern United States exhibits little variability, unlike both storm frequency and magnitude. The centennial- and millennial-scale variability of these storm time series are not apparent in average climate trends as revealed by studies of pollen, macrofossils, lake levels, and estimates of temperature and precipitation generated in climate models (e.g. Webb et al., 1993; Delcourt and Delcourt, 1984; Jackson and Whitehead, 1991; Spear et al., 1994; Kutzbach et al., 1987; Mullins, 1998; Winkler, 1985). These documented fluctuations in storminess may have been caused by minor climatic changes that did not significantly affect regional vegetation or moisture balance. This result underscores the potential for other climatic changes, notably anthropogenic temperature increases caused by greenhouse gas emissions, to produce conditions more (or less) favorable for the generation of severe storms (IPCC, 2001).

9. Conclusion

Since deglaciation more than 13,000 years ago, severe rainstorms in the northeastern United States have caused the erosion of silt, sand, gravel, and woody forest debris from steep hillslopes. This material was transported in flooded stream channels to lakes beneath these hillslopes, and deposited as distinctive layers in the lake sediment. Such terrigenous layers in sediment cores recovered from several lakes in this region reveal much about significant, erosion-producing storms and their effects. This is the longest storm record yet established for the northeastern United States, and the first regional paleostorm record established from the sediment of multiple lakes. Such an approach reveals variability in the character and numbers of sedimentary terrigenous layers in different lakes, and regional storm patterns not identifiable from single lake records.

The composition of terrigenous layers varies from nearly pure sand to a mixture of sand and macrofossils of woody forest debris. The quantity of terrigenous material in sediment cores is controlled by lake characteristics and coring location. Lakes most likely to preserve sedimentary storm layers have steep surrounding hillslopes, a large volume of erodible sediment in the uplands, and competent, high-gradient inflowing streams with deltas composed of sand and gravel. Coring locations adjacent to the center of the delta foreslope usually yield cores with the greatest number and thickness of sedimentary terrigenous layers.

The most severe Holocene rainstorms in this region have been both localized but intense storms formed by free convection, as well as hurricanes, nor'easters, or other synoptic-scale storms. Such storms were probably most severe in the early and late Holocene, when New England's climate was cool and moist, and the magnitude of these storms most likely varied in regular cycles of ~510 years. This rhythm in storm severity may reflect the influence of oceanic thermohaline circulation. Storm-related depositional events on alluvial fans in Vermont occurred during intervals we identified as having frequent severe storms. The frequency and magnitude of such storms varied in cycles of much shorter duration than the average regional climate of the northeastern United States. Thus, minor climatic changes that did not significantly affect regional vegetation assemblages or moisture balance may have caused disproportionate increases or decreases in storminess.

Acknowledgements

We thank K. Jennings for field assistance, S. Brown for lab training, and P.T. Davis for coring training, assistance, and device design. Thanks to A. Bosley and A. Conlan for grain size analysis of the Morey cores. We thank R. Howse, C. Williams, S. Gran Mitchell, D. Lamneck, G. Fowles, C. Massey, S. Turgeon, and S. Rupard for assistance with core collection. We thank F. Janukajtis, B. Copans, and J. Cunningham for assistance in the lab. Supported by National Science Foundation Career Grant EAR9702643 to Bierman and Instrumentation Grant EAR9724190 to Bierman and Lini.

References

- Ambers, R.K., 2001. Using the sediment record in a western Oregon flood-control reservoir to assess the influence of storm history and logging on sediment yield. Journal of Hydrology 244 (3-4), 181-200.
- Bierman, P.R., Lini, A., Zehfuss, P., Church, A., Davis, P.T., Southon, J.R., Baldwin, L., 1997. Postglacial ponds and alluvial fans: Recorders of Holocene landscape history. GSA Today 7 (10), 1–8.
- Bond, G.C., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore,
 P., Cullen, H., Hajdas, I., Bonani, G., 1997. A Pervasive Millennial-Scale Cycle
 in North Atlantic Holocene and Glacial Climates. Science 278 (5341), 1257-1266.
- Bosley, A.C., Bierman, P.R., Noren, A.J., Galster, J.C., 2001. Identification of paleoclimatic cycles during the Holocene using grain size analysis of sediments cored from Lake Morey in Fairlee, VT. GSA Abstracts with Programs (Regional) 33 (1), 15.
- Broomhead, D.S., King, G.P., 1986. Extracting qualitative dynamics from experimental data. Physica D 20, 217–236.
- Brown, S.L., Bierman, P.R., Lini, A., Davis, P.T., Southon, J.R., in press. Lake cores as archives of Holocene watershed erosion events. Journal of Paleolimnology.
- Brown, S.L., Bierman, P.R., Lini, A., Southon, J.R., 2000. 10,000 yr record of extreme hydrologic events. Geology 28 (4), 335–338.
- Cadwell, D.H., 1990. Surficial Geologic Map of New York State. New York State Geological Survey, Albany.
- Collins, E.S., Scott, D.B., Gayes, P.T., 1999. Hurricane records on the South Carolina coast: Can they be detected in the sediment record? Quaternary International 56, 15–26.

- Conkey, L.E., 1986. Red spruce tree-ring widths and densities in eastern North America as indicators of past climate. Quaternary Research 26, 232–243.
- Conlan, A.M., 2001. Spatial extent of sediment pulses in Lake Morey, Fairlee, VT. Vermont Geological Society Spring Meeting, Norwich University, Norwich, VT.
- Cronin, T., Willard, D., Karlsen, A., Ishman, S., Verardo, S., McGeehin, J., Kerhin,
 R., Holmes, C., Colman, S., Zimmerman, A., 2000. Climatic variability in the
 eastern United States over the past millennium from Chesapeake Bay sediments.
 Geology 28 (1), 3–6.
- Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, C.U., Oeschger, H., 1984. North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Hansen, J.E., Takahashi, T. (Eds.). Climate processes and climate sensitivity. American Geophysical Union, Washington, DC, pp. 288–306.
- Delcourt, P.A., Delcourt, H.R., 1984. Late Quaternary paleoclimates and biotic responses in eastern North America and the western North Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 263–284.
- Doll, C.G., Cady, W.M., Thompson Jr., J.B., Billings, M.P., 1961. Centennial Geologic Map of Vermont.
- Doll, C.G., Stewart, D.P., MacClintock, P., 1970. Surficial Geologic Map of Vermont. Williams and Heintz Map Corporation, Washington, DC.
- Donnelly, J.P., Bryant, S.S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby,
 P.E., Shuman, B.N., Stern, J., Westover, K., Webb III, T., 2001a. 700 yr
 sedimentary record of intense hurricane landfalls in southern New England.
 Geological Society of America Bulletin 113 (6), 714–727.

- Donnelly, J.P., Roll, S., Wengren, M., Butler, J., Lederer, R., Webb III, T., 2001b.
 Sedimentary evidence of intense hurricane strikes from New Jersey. Geology 29 (7), 615–618.
- Dunne, T.B., and Leopold, L.B., 1978. Water in Environmental Planning. W.H. Freeman, San Francisco, 818 p.
- Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., 2000. Climate Extremes: Observations, Modeling, and Impacts. Science 289 (5487), 2068–2074.
- Eden, D.N., Page, M.J., 1998. Palaeoclimatic implications of a storm erosion record from late Holocene lake sediments, North Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 139, 37–58.
- Fisher, D.W., Isachsen, Y.W., Rickard, L.V., 1970. Geologic Map of New York State. New York State Geological Survey, Albany.
- Gran, S.E., Bierman, P.R., Nichols, K.K., 1999. Teaching winter geohydrology using frozen lakes and snowy mountains. Journal of Geoscience Education 47 (5), 420–447.
- Gremillion, P.T., Rodbell, D.T., 1998. Overturn history of an iron-rich meromictic lake as an indicator of extreme meteorological events. GSA Abstracts with Programs 30 (7), 114.
- Grove, J.M., 1988. The Little Ice Age. Methuen, London, 498 pp.
- Hayne, M., Chappell, J., 2001. Cyclone frequency during the last 5000 years at Curacoa Island, north Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 168 (3-4), 207-219.
- IPCC Working Group I, 2001. Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change, Geneva, Switzerland.

- Jackson, S.T., Whitehead, D.R., 1991. Holocene vegetation patterns in the Adirondack Mountains. Ecology 72 (2), 641–653.
- Jennings, K.L., Bierman, P.R., Southon, J.R., in review. Timing and style of deposition on humid-temperate fans, Vermont, USA. Geological Society of America Bulletin.
- Keim, B., Mayewski, P.A., Zielinski, G.A., Wake, C., Carpenter, K., Cox, J., Souney, J., Sanborn, P., Rodgers, M., 1998. New England's Changing Climate, Weather and Air Quality. University of New Hampshire, Durham, 48 pp.
- Knox, J.C., 1999. Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews 19, 439–457.
- Kochel, R.C., Baker, V.R., 1982. Paleoflood Hydrology. Science 215 (4531), 353–361.
- Kutzbach, J.E., 1987. Model simulations of the climatic patterns during the deglaciation of North America. In: Ruddiman, W.F., Wright, H.E. (Eds.). North America and adjacent oceans during the last deglaciation. Geographical Society of America, Boulder, Colorado, pp. 425–446.
- Lamoureux, S.F., 2000. Five centuries of interannual sediment yield and rainfall-induced erosion in the Canadian High Arctic recorded in lacustrine varves. Water Resources Research 36, 309–318.
- Lamoureux, S.F., England, J.H., Sharp, M.J., Bush, A.B.G., 2001. A varve record of increased 'Little Ice Age' rainfall associated with volcanic activity, Arctic Archipelago, Canada. The Holocene 11 (2), 243-249.
- Lin, L., 1996. Environmental changes inferred from pollen analysis and ¹⁴C ages of pond sediments, Green Mountains, Vermont. Master's Thesis, University of Vermont, Burlington, 125 pp.
- Liu, K., Fearn, M.L., 1993. Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology 21, 793–796.

- Liu, K., Fearn, M.L., 2000. Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records. Quaternary Research 54, 238–245.
- Ludlum, D., 1996. The Vermont Weather Book. Vermont Historical Society, Montpelier, 302 pp.
- Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409–445.
- Meeks, H.A., 1986. Vermont's land and resources. New England Press, Shelburne, Vermont, 332 pp.
- Mullins, H.T., 1998. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology 26 (5), 443–446.
- NOAA/NCDC (National Oceanic and Atmospheric Administration/National Climatic Data Center), 2001. Climate of 1999: Annual, U.S. Regional and Statewide Analyses. Retrieved October 13, 2001, from http://lwf.ncdc.noaa.gov/oa/climate/research/ 1999/ann/us_regional.html
- Nesje, A., Dahl, S.O., Matthews, J.A., Berrisford, M.S., 2001. A ~4500-yr record of river floods obtained from a sediment core in Lake Atnsjøen, eastern Norway. Journal of Paleolimnology 25 (3), 329–342.
- Newby, P.E., Killoran, P., Waldorf, M.R., Shuman, B.N., Webb, R.S., Webb III, T., 2000. 14,000 years of sediment, vegetation, and water-level changes at the Makepeace Cedar Swamp, southeastern Massachusetts. Quaternary Research 53, 352–368.
- Noren, A.J., Bierman, P.R., Steig, E.J., Lini, A., Southon, J.R., in review. A Holocene millennial-scale storm cycle in the northeastern United States. Nature.
- Nott, J., Hayne, M., 2001. High frequency of 'super-cyclones' along the Great Barrier Reef over the past 5,000 years. Nature 413, 508-512.

- Ouellet, M., 1997. Lake sediments and Holocene seismic hazard assessment within the St. Lawrence Valley, Quebec. Geological Society of America Bulletin 109, 631–642.
- Page, M.J., Trustrum, N.A., DeRose, R.C., 1994. A high-resolution record of storminduced erosion from lake sediments, New Zealand. Journal of Paleolimnology 11, 333–348.
- Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Transactions, American Geophysical Union 77, 379.
- Parris, A.S., Bosley, A.C., Bierman, P.R., Lini, A., Noren, A.J., Lord, A.M., Conlan, A.M., Morgan, L., 2001. Grain by grain: Holocene storms and hillslope erosion in New England. GSA Abstracts with Programs, 314.
- Reasoner, M.A., 1993. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. Journal of Paleolimnology 8, 273–281.
- Ridge, J.C., Besonen, M.R., Brochu, M., Brown, S.L., Callahan, J.W., Cook, G.J., Nicholson, R.S., Toll, N.J., 1999. Varve, paleomagnetic, and ¹⁴C chronologies for late Pleistocene events in New Hampshire and Vermont (U.S.A.). Géographie physique et Quaternaire 53 (1), 79-106.
- Robbins, J.A., Edgington, D.N., 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta 39, 289-304.
- Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., 1999. An ~15,000-year record of El Niño-Driven alluviation in southwestern Ecuador. Science 283 (5401), 516–520.
- Spear, R., Davis, M.B., Shane, L.C., 1994. Late Quaternary history of low- and midelevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 64, 85–109.

- Stuiver, M., Braziunas, T.F., 1993. Sun, ocean, climate and atmospheric ¹⁴CO₂: an evaluation of causal and spectral relationships. The Holocene 3 (4), 289–305.
- Stuiver, M., Reimer, P.J., 1993. Extended ¹⁴C Data Base and Revised CALIB 3.0 ¹⁴C Age Calibration Program. Radiocarbon 35, 215–230.
- Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40 (3), 1041–1083.
- Thompson, L.G., Yao, T., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Lin, P.N., 2000. A High-Resolution Millennial Record of the South Asian Monsoon from Himalayan Ice Cores. Science 289 (5486), 1916-1919.
- Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055-1096.
- Thorndycraft, V., Hu, Y., Oldfield, F., Crooks, P.R.J., Appleby, P.G., 1998. Individual flood events detected in the recent sediments of the Petit Lac d'Annecy, eastern France. The Holocene 8 (6), 741–746.
- Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., Shimmield, G.B., 2001. Variability in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle. Science 291 (5508), 1511-1517.
- Vautard, R., Ghil, M., 1989. Singular spectrum analysis in non-linear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424.
- Webb III, T., Bartlein, P.J., Harrison, S.P., Anderson, K.J., 1993. Vegetation, lake levels, and climate in eastern North America for the past 18,000 years. In: Wright, H.E., Kutzbach, J.E., Street-Perrot, F.A., Bartlein, P.J., Ruddiman, W.F., Webb, T. (Eds.). Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, pp. 415–467.

Winkler, M.G., 1985. A 12,000-year history of vegetation and climate for Cape Cod, Massachusetts. Quaternary Research 23, 301–312.

Figure Captions

Figure 1. Topographic map of area surrounding Chapel Pond, showing steep catchment and major inflowing stream channels (highlighted). Contour interval: 6 m. Universal Transverse Mercator (UTM) Zone 18 coordinates shown. Modified from United States Geological Survey Keene Valley and Elizabethtown 1:25,000 topographic maps.

Figure 2. Maps showing location of study area in the northeastern United States (inset, shaded) and lakes from which we collected and analyzed sediment cores. A = Amherst Lake, Plymouth, VT; B = Echo Lake, Plymouth, VT; C = Lake Elligo, Greensboro, VT; D = Lake Dunmore, Salisbury, VT; E = Emerald Lake, Dorset, VT; F = Beebe Pond, Hubbardton, VT; G = Vail Pond, Sutton, VT; H = Thirteenth Lake, North River, NY; I = Richmond Pond, Richmond, VT (from Gran et al., 1999); J = Ritterbush Pond, Eden, VT (from Brown et al., 2000 and in press); K = Chapel Pond, Saint Huberts, NY; L = Lake Morey, Fairlee, VT; M = Duck Pond, Sutton, VT.

Figure 3. Bathymetric map of Vail Pond, showing depth measurements and coring location. Positions of inflowing and outflowing streams indicated by arrows.

Figure 4. Whole-core magnetic susceptibility values (SI units); method integrates values over ~5 cm of core. Values have been natural log-transformed. Core ID letters correspond to lakes in Table 1 and Fig. 2.

Figure 5. Sample photograph of 20-cm core section (from Chapel Pond), showing distinct 8-cm terrigenous layer (157 to 164 cm) composed of sand and terrestrial plant

macrofossils. X-radiograph and values of LOI and MS of same core section shown for comparison, with location of terrigenous layer shaded.

Figure 6. Whole-core percent mass loss-on-ignition values (1 cm sample interval). Core ID letters correspond to lakes in Table 1 and Fig. 2. Core L1 data from Conlan (2001).

Figure 7. Comparison of whole-core datasets from one core (Lake Dunmore). Light bands (and dark bands on LOI column) indicate the location of terrigenous layers identified by each analytical technique. Light and dark bands differentiate significant LOI troughs and peaks, respectively. Raw data for LOI and MS shown for comparison with inferred location of terrigenous deposits. Time series filter shown superimposed on LOI curve: heavy black line = raw LOI data; thin black line = background LOI level determined by SSA filtering; light gray lines = 1 filter for significance. COMP = Composite sediment record, determined by comparing the results of the individual lab analyses.

Figure 8. Comparison of results of high-resolution, whole-core grain size (GS) analysis for cores Morey 1 (Conlan, 2001) and Morey 2 (Bosley et al., 2001) with composite sediment record for each core. Significant variability in GS and thus the location of terrigenous layers (light bands) was determined with the time series filter described in the text; 1 filter for significance (light line) shown superimposed on raw data (only peaks in GS—not troughs—are considered significant).

Figure 9. Individual storm chronologies, time series of regional storminess variability, and local storm records for the northeastern United States. (**A**) Individual event chronologies from study lakes, with median 1 calibrated ¹⁴C age uncertainty of \pm 100 years shown for each event. (**B**) Histogram of events (100 yr bins), weighted by the

inverse of the number of core records covering each interval. Values above the superimposed linear regression are shaded. (**C**) Histogram showing average thickness of terrigenous layers recovered in cores, with 100 yr bins (thick line). This plot may reflect event magnitude over time. 11-point running average superimposed (thin line). (**D**) Depositional events on alluvial fans in Vermont (Bierman et al., 1997; Jennings et al., in review), separated vertically to show age uncertainties greater than 200 years (no vertical scale implied).

Figure 10. Multitaper spectral analysis (3 tapers) of time series of average terrigenous layer thickness, interpolated with a 100-year interval and with linear trend removed (Thomson, 1982). The harmonic spectrum represents the estimated significant periodic component of the storminess raw spectrum, as measured by the Thomson variance ratio test for periodic signals (F-test). CI = confidence interval. Confidence level is relative to red noise estimated from lag-1 autocorrelation with a median averaging filter, following Mann and Lees (1996).

Table 1. Study lake characteristics and coring location coordinates.	
--	--

					Max.	Basin	Basin	Relief	Coring Location	
			Elev.	Area	Depth	Area	Relief	Ratio	UTM Zone 18	UTM Zone 18
ID*	Lake	Location	(m)	(km²)	(m)	(km²)	(m)	(m/km²)	Easting (m)	Northing (m)
А	Amherst	Plymouth, VT	326	0.33	27.4	49.4	675	14	685666	4817426
В	Echo	Plymouth, VT	323	0.42	27.7	68.1	678	10	686006	4815627
		•							685941 §	4816217 §
С	Elligo	Greensboro, VT	269	0.70	30.5	13.1	259	20	709864	4941066
									709788 §	4942359 §
D	Dunmore	Salisbury, VT	173	3.99	32.0	52.9	812	15	654830	4863362
Е	Emerald	Dorset, VT	217	0.13	13.0	14.7	713	48	111180 **	86202 **
F	Beebe	Hubbardton, VT	188	0.45	13.1	7.5	215	29	646418	4843932
G	Vail	Sutton, VT	455	0.06	14.0	2.0	354	177	731912	4954135
н	Thirteenth	North River, NY	510	1.33	14.9	28.5	536	19	570352	4839573
	Richmond [†]	Richmond, VT	223	0.10	2.8	2.2	273	125	464332 **	213050 **
J	Ritterbush‡	Eden, VT	317	0.05	14.0	2.2	293	133	N/A	N/A
K	Chapel	Saint Huberts, NY	485	0.07	23.8	4.6	925	202	600237	4887879
L	Morey	Fairlee, VT	127	2.22	13.1	20.7	414	20	728301	4866700
	2								728186 §	4866599 §
Μ	Duck	Sutton, VT	520	0.03	13.1	0.7	290	414	732336	4954558

*ID letters correspond to lakes in other Figs. †From Gran et al. (1999). ‡From Brown et al. (2000). §Second core recovered from same lake. **Vermont State Plane coordinates. Datum for all UTM coordinates is NAD 1927 Eastern US.

Core	Magnetic Susceptibility	X- Radiography	Visual Log	Loss-On- Ignition	Composite
Amherst	9	4	4	24	16
Echo 1	18	21	26	29	28
Echo 2	19	33	23	35	37
Elligo 1	14	18	12	52	31
Elligo 2	12	15	*	*	*
Dunmore	17	20	26	24	27
Emerald	3	4	3	8	6
Beebe	14	20	23	35	23
Vail	19	39	21	55	46
Thirteenth	19	25	20	52	26
Chapel	21	22	47	31	50
Morey 1	8	7	5	6	11
Morey 2	9	11	11	9	13
Duck	14	7	15	37	37

Table 2. Number of terrigenous layers identified.

*Not analyzed.

CAMS #	Lake	Core	Depth (cm)	Radiocarbon Age	Calibrated Age*	1 age range
62298	Amherst	1	108	450 ± 40	500	479 - 525
62299†	Amherst	1	141	2150 ± 40	2160	2061 - 2299
67834	Amherst	1	224	920 ± 50	850	789 - 913
62452	Amherst	1	397	1570 ± 50	1470	1412 - 1519
62300†	Amherst	1	426	1330 ± 180	1230	1015 - 1408
67835	Amherst	1	542	2060 ± 60	2030	1949 - 2112
57711	Duck	1	48	220 ± 110	210	1 - 428
57712	Duck	1	192	2510 ± 50	2590	2473 - 2737
57713	Duck	1	311	4040 ± 40	4490	4424 - 4568
57784	Duck	1	480	7530 ± 50	8330	8214 - 8390
57714	Duck	1	522	8790 ± 50	9810	9703 - 10104
57715	Duck	1	529	8790 ± 50	9810	9703 - 10104
57715	Duck	1	558	10900 ± 50	12960	12858 - 13114
57717	Duck	1	567	10980 ± 50	13020	12924 - 13131
62301†	Duck	1	578	10930 ± 40	12980	12882 - 13119
52942	Echo	1	165	360 ± 30	400	324 - 473
52943	Echo	1	307.5	1150 ± 50	1050	974 - 1168
52941	Echo	1	417	2070 ± 140	2050	1876 - 2300
62302†	Echo	2	62	5010 ± 40	5740	5660 - 5859
57718†	Echo	2	68	3850 ± 40	4250	4153 - 4351
57719	Echo	2	215	1270 ± 50	1220	1149 - 1274
57720	Echo	2	345	2480 ± 40	2590	2470 - 2710
62303	Elligo	1	56	200 ± 40	180	3 - 294
577217	Elligo	1	5/	1280 ± 40	1220	1176 - 1262
57722	Elligo	1	217	1260 ± 40	1210	1149 - 1263
57724	Elligo	1	320	1830 ± 50	1760	1700 - 1850
57724	Elligo	1	404	2450 ± 40	2520	2300 - 2707
67950	Enigo	1	244	3230 ± 30	3470	2067 2201
67851	Emerald	1	244	2100 ± 40 3260 ± 50	2190	2007 - 2301
62304	Emerald	1	583	3200 ± 30 7740 ± 40	8500	8/33 - 8585
57744	Morey	2	16	180 ± 50	170	2 - 293
57745	Morey	2	124	1870 ± 60	1800	1731 - 1870
57746	Morey	2	221	3070 ± 40	3290	3214 - 3344
57747	Morey	2	305	4300 + 40	4860	4829 - 4954
57748	Morey	2	381	5720 + 50	6510	6412 - 6617
62305	Morey	2	419	7840 ± 40	8610	8542 - 8695
62306	Morey	2	431	9450 ± 520	10720	9916 - 11551
57749	Morey	2	454	10230 ± 50	11940	11705 - 12285
57750	Morey	2	468	10270 ± 110	12040	11699 - 12333
57751	Morey	2	501	10370 ± 50	12320	11975 - 12606
57752†	Morey	2	519	10180 ± 100	11840	11446 - 12265
67866	Vail	1	99	320 ± 40	380	312 - 435
57753	Vail	1	202	2230 ± 90	2240	2147 - 2337
57754	Vail	1	252	2590 ± 50	2700	2519 - 2773
57755	Vail	1	313	3150 ± 50	3380	3272 - 3444
57756	Vail	1	410	4500 ± 40	5180	5053 - 5285
57757	Vail	1	475	5800 ± 50	6600	6505 - 6663
57758	Vail	1	549	7520 ± 120	8300	8192 - 8399
57759	Vail	1	583	8350 ± 50	9380	9297 - 9467
67862	Beebe	1	48	1990 ± 50	1940	1889 - 1989
67836	Beebe	1	131	3810 ± 40	4190	4095 - 4253
67837	Beebe	1	205	5090 ± 50	5820	5753 - 5905
67838	Beebe	1	309	6930 ± 50	7740	7686 - 7788
65337	Beebe	1	347	7820 ± 30	8590	8546 - 8630

Table 3. Radiocarbon dates of terrestrial plant macrofossils.

*Radiocarbon ages calibrated according to Stuiver et al. (1993), Stuiver et al. (1998), and weighting procedure described in text. †Not used in age model.

Table 3 (continued).

CAMS #	Lake	Core	Depth (cm)	Radiocarbon Age	Calibrated Age*	1 age range
67839	Chapel	1	32	Modern		
67840†	Chapel	1	100	200 ± 40	180	9 - 294
67841	Chapel	1	159	110 ± 40	130	29 - 261
67842	Chapel	1	273	1890 ± 60	1820	1736 - 1888
67843	Chapel	1	327	3750 ± 50	4090	3989 - 4224
67844	Chapel	1	404	8360 ± 60	9390	9298 - 9469
67845	Chapel	1	459	9380 ± 50	10600	10508 - 10684
67846	Chapel	1	484	9640 ± 60	10980	10793 - 11163
67847	Chapel	1	498	9970 ± 50	11400	11253 - 11550
65338†	Chapel	1	523	220 ± 40	200	8 - 304
67863	Dunmore	1	196	3060 ± 50	3280	3213 - 3344
67848	Dunmore	1	237	3440 ± 40	3700	3638 - 3811
67849	Dunmore	1	354	4690 ± 40	5390	5326 - 5467
65339	Dunmore	1	465	5470 ± 40	6250	6204 - 6296
67852	Thirteenth	1	102	1250 ± 40	1200	1140 - 1259
67853	Thirteenth	1	183	2050 ± 50	2010	1946 - 2096
67854	Thirteenth	1	303	2910 ± 40	3030	2959 - 3137
67855†	Thirteenth	1	403	7440 ± 40	8260	8191 - 8327
67874	Thirteenth	1	498	4680 ± 50	5390	5323 - 5465
67875	Thirteenth	1	580	5990 ± 40	6810	6752 - 6869
65340†	Thirteenth	1	584	2190 ± 30	2230	2146 - 2302
65341	Thirteenth	2	45	5800 ± 40	6610	6553 - 6660
67864	Thirteenth	2	53	5920 ± 50	6730	6670 - 6790
67865	Thirteenth	2	94	7800 ± 60	8550	8459 - 8632
65342	Thirteenth	2	148	8920 ± 260	9930	9564 - 10354

*Radiocarbon ages calibrated according to Stuiver et al. (1993), Stuiver et al. (1998), and weighting procedure described in text. †Not used in age model.

Noren et al., Figure 1

Noren et al., Figure 2

Noren et al., Figure 3

Noren et al., Figure 7

Noren et al., Figure 8

Noren et al., Figure 9

Noren et al., Figure 10

CHAPTER 4: SUMMARY OF FINDINGS

The analysis and comparison of sedimentary archives from multiple lakes in the northeastern United States reveals an unprecedented and unique perspective on the past. This approach to paleotempestology shows the variability in the character and number of sedimentary terrigenous layers in different lakes, and reveals regional storm patterns not identifiable from single lake records. In particular, I conclude the following regarding storm-related terrigenous sedimentary layers in lakes of the northeastern United States:

- Terrigenous layers commonly appear anomalously light or dark compared to the surrounding gyttja in sediment cores—often light brown or tan, or less commonly very dark brown, gray, or black. Such layers usually have a speckled appearance due to the presence of both dark and light minerals and an increased abundance of terrestrial plant macrofossils, which appear much darker than most of the core sediment. Terrigenous layers thus vary in composition from nearly pure sand, silt, gravel, or clay to a mixture of these inorganic materials and macrofossils of terrestrial plants. The texture of these layers is universally coarser than the surrounding gyttja; sand grains are usually visible, and thicker (>1 cm) terrigenous layers often appear to be graded. Some of these terrigenous layers contain gravel clasts up to ~3 cm diameter.
- 2. The recovery of terrigenous material in sediment cores is controlled by lake characteristics and coring location. Lakes most likely to preserve sedimentary storm layers have steep surrounding hillslopes, a large volume of erodible sediment in the uplands, and competent, high-gradient inflowing streams with deltas composed of sand and gravel. Coring locations adjacent to the center of the delta foreslope usually yield cores with the greatest numbers and thickness of sedimentary terrigenous layers.

- 3. Comparison of the storm chronologies, augmented with the results from two previous local studies (Brown et al., 2000; Gran et al. 1999), reveals disparate ages for most storm layers in individual cores. This result suggests that localized but intense summer rainstorms formed by free convection may locally cause as much flooding and erosion as hurricanes, nor'easters, or other large-scale storms.
- 4. Combining the chronologies reveals the frequency and possibly the magnitude of storms through the Holocene. Event magnitude, as estimated by average terrigenous layer thickness, was greatest at 11,800, 10,800, and 1,200 years before present, when New England climate was cool and moist. Storm magnitude varies in cycles of ~510 years, which may reflect the influence of oceanic thermohaline circulation.
- 5. Storm frequency varied in regular millennial-scale cycles of ~3,000 years and quasi-regular centennial-scale cycles of ~230 and 390 years. While the centennial-scale variability may reflect changes in solar irradiance, the millennial-scale oscillation is similar to variability in other storm and flood records from several locations around the North Atlantic. Evidently, conditions favorable for the generation of severe storms followed similar pacing across this broad region during the Holocene. Storminess reached variable maxima lasting ~1,500 years, centered at approximately 2,600, 5,800, 9,100, and 11,900 years ago, and appears to be presently increasing toward another peak.
- 6. The relationship of the millennial-scale storm cycle to other paleoclimate records from around the North Atlantic is consistent with long-term modulation of Arctic Oscillation, which causes similar climatic relationships in modern records of climate. This finding underscores the potential for modulation of this dominant atmospheric mode to account for a significant portion of Holocene North Atlantic climate variability.

7. Independent storm records in this region exhibit good correlation with my data, suggesting that hillslopes across this region have responded to storms under similar climate forcing since deglaciation. However, storm frequency and magnitude both varied in cycles of much shorter duration than the average Holocene climate of this region. Thus, minor climatic changes that do not significantly affect regional vegetation assemblages may have caused disproportionate increases or decreases in storminess.

CHAPTER 5: SUGGESTIONS FOR FUTURE RESEARCH

Several possibilities exist for improving this work, and for furthering the goal of understanding when and where intense storms affected landscapes in the past. Some of these ideas are more easily implemented than others, but most of them have the potential to reveal new information about the geomorphic processes I describe and/or the patterns of past storms. In particular, I recommend:

1. High-resolution grain size analysis as the primary lab method. The composition of terrigenous layers (the specific proportion of inorganic material and terrestrial plant macrofossils) may make them difficult to recognize in visual logs and x-radiographs, and may cause storm layers to exhibit a range of LOI and MS values. The sole unifying feature of all terrigenous layers I documented was a coarser texture than the surrounding gyttja. The high-resolution, whole-core grain size analysis performed by Bosley et al. (2001) and Conlan (2001) confirmed the existence of terrigenous sedimentary layers that remained questionable after analysis by the four techniques I used. Their analyses also revealed many additional layers that were not detected by any of the less-sensitive techniques.

I strongly recommend the use of grain size analysis—which is more sensitive, objective, and robust than the other techniques—as the primary lab method for future core investigations. The time invested in sample preparation and the analysis itself should be balanced by not needing to invest time performing or (much more significantly) interpreting X-radiographic and LOI analyses, or creating composite records from the individual analyses. Interpretation of grain size curves, by contrast, is straightforward; and the relationship between sediment grain size and the energy of depositional environment may allow further inferences regarding event magnitude. The sensitivity of grain size analysis may also allow the determination of storm records from sediment cores from many additional lakes that do not possess all of the usual desirable characteristics.

I further recommend the re-examination with grain size analysis of most or all cores collected to date. Evidence of many additional storms may be revealed, which would provide more data for spectral analyses and comparison between cores.

2. High-resolution, whole-core charcoal analysis. Although pollen studies have demonstrated that hillslopes were never completely devoid of vegetation across this entire region during the Holocene, we cannot be certain that localized wildfires did not remove vegetation from individual hillslopes. Such fires would make the hillslopes more sensitive to the erosive effects of rainfall. Centimeter-by-centimeter charcoal analysis using the Winkler method (Winkler, 1985b) of one or more cores would reveal whether fires had affected any portion of the specific drainage basin in question (Laird and Campbell, 2000), and by inference, if fires are likely to have influenced other catchments—at any specific times determined by the preliminary analyses, and in general. Toward that end, I would recommend choosing a core with a long timespan for the first such analysis.

3. Lead-210 and/or cesium-137 dating. Using these techniques to date core tops (or—if the sedimentation rate of the lake in question is low—to date surface cores recovered with a gravity corer) may allow comparison of the dates of terrigenous sediment delivery to local written or instrumental records of historic rainfall. This comparison could further validate this proxy for storms, and may allow the determination of specific intensity/duration thresholds for erosion-producing storms. Similarly, a relationship between terrigenous layer thickness and rainfall intensity/duration—like the relationship established by Page et al. (1994)—may be established for this region. In conjunction with this analysis, written records of historic rainfall from locations close to the cored lakes must also be investigated.

4. Determine the spatial extent of sediment pulses. While Brown et al. (2000) determined that terrigenous sediment layers were deposited basin-wide in Ritterbush Pond, my results from larger lakes suggests that these most sediment pulses do not travel farther than a few hundred meters across flat-bottomed lakes. Retrieving and analyzing multiple cores from several locations around stream deltas that have prograded into such lakes (e.g. Morey, Beebe, Dunmore, Elligo [2nd coring location], etc.) would reveal the distance that these sediment pulses travel, both away from the delta, and around the delta. The effect, if any, of stream channel avulsion on the fan/delta surface could be evaluated, and optimal coring locations could be determined.

5. Evolutionary spectral analysis. This variety of spectral analysis would determine whether significant cycles in storminess have changed with time: whether, for example, the observed millennial- or centennial-scale cycles were more pronounced at certain times during the Holocene (or if they are progressively strengthening or weakening). Changes in the periods of these cycles would also be revealed by this analysis.

6. Spatial analysis/correlation. Investigating the geographical distribution of terrigenous layer deposition during the Holocene has the potential to reveal meaningful spatial patterns. These patterns may, for example, reflect individual or average storm tracks; they could demonstrate the influence of regional topography on storm variability; and they may reveal the signatures of exceptionally intense individual hurricanes or other large storms.

7. Investigate archives with better age control. Spectral analysis, comparisons between storm records from individual lakes, and comparisons with historical records are critically dependent on the accuracy of the ages determined for the storm events. While undoubtedly rare, any lakes with varved sediment should be a high priority for additional coring. Paleostorm studies from meromictic lakes (Gremillion and Rodbell, 1998) and other lakes with varved sediment (Lamoureux, 1999) demonstrate the great potential for these records to be compared with other climate records.

8. Split, sample, and analyze core Elligo 2. Given its likely short timespan and lack of significant variability in MS and XR analyses, core Elligo 2 was never further analyzed. If grain size analysis is employed, this core may yet reveal a reasonable record of storms. This record could also be compared to the results of core Elligo 1 to further assess local variability of terrigenous sediment delivery to a single lake.

9. Get radiocarbon dates for cores Morey 1 and Ritterbush 5. Dating Morey 1 would allow comparison to the results of core Morey 2, which would reveal information about both the spatial extent of individual terrigenous sediment pulses. Dating Ritterbush 5 would complete the Ritterbush record from deglaciation to present, adding 2,000 to 3,000 years and many storm layers to the chronology.

REFERENCES CITED

- Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 25 (6), 483-486.
- Ambers, R.K., 2001. Using the sediment record in a western Oregon flood-control reservoir to assess the influence of storm history and logging on sediment yield. Journal of Hydrology 244 (3-4), 181-200.
- Andrews, J.T., Ives, J.D., 1972. Late and post-glacial events (<10,000 BP) in eastern Canadian Arctic with particular reference to the Cockburn moraines and the breakup of the Laurentide Ice Sheet. In: Vasari, Y., Hyvärinen, H., Hicks, S. (Eds.). Climate Changes in Arctic Areas During the Last Ten-Thousand Years. University of Oulu, Oulu, Finland, pp. 149-176.
- Bierman, P.R., Lini, A., Zehfuss, P., Church, A., Davis, P.T., Southon, J.R., Baldwin, L., 1997. Postglacial ponds and alluvial fans: Recorders of Holocene landscape history. GSA Today 7 (10), 1-8.
- Bond, G.C., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., 1997. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 278 (5341), 1257-1266.
- Bosley, A.C., Bierman, P.R., Noren, A.J., Galster, J.C., 2001. Identification of paleoclimatic cycles during the Holocene using grain size analysis of sediments cored from Lake Morey in Fairlee, VT. GSA Abstracts with Programs (Regional) 33 (1), 15.
- Broomhead, D.S., King, G.P., 1986. Extracting qualitative dynamics from experimental data. Physica D 20, 217-236.
- Brown, P., Kennett, J.P., Ingram, B.L., 1999. Marine evidence for episodic Holocene megafloods in North America and the northern Gulf of Mexico. Paleoceanography 14 (4), 498-510.
- Brown, S.L., Bierman, P.R., Lini, A., Davis, P.T., Southon, J.R., 2001. Lake cores as archives of Holocene watershed erosion events. Journal of Paleolimnology, in press.
- Brown, S.L., Bierman, P.R., Lini, A., Southon, J.R., 2000. 10,000 yr record of extreme hydrologic events. Geology 28 (4), 335-338.
- Cadwell, D.H., 1990. Surficial Geologic Map of New York State. New York State Geological Survey, Albany.
- Collins, E.S., Scott, D.B., Gayes, P.T., 1999. Hurricane records on the South Carolina coast: Can they be detected in the sediment record? Quaternary International 56, 15-26.

- Conkey, L.E., 1986. Red spruce tree-ring widths and densities in eastern North America as indicators of past climate. Quaternary Research 26, 232-243.
- Conlan, A.M., 2001. Spatial extent of sediment pulses in Lake Morey, Fairlee, VT. Vermont Geological Society Spring Meeting, Norwich University, Norwich, VT.
- Cronin, T., Willard, D., Karlsen, A., Ishman, S., Verardo, S., McGeehin, J., Kerhin, R., Holmes, C., Colman, S., Zimmerman, A., 2000. Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments. Geology 28 (1), 3-6.
- Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, C.U., Oeschger, H., 1984. North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Hansen, J.E., Takahashi, T. (Eds.). Climate processes and climate sensitivity. American Geophysical Union, Washington, DC, pp. 288-306.
- Delcourt, P.A., Delcourt, H.R., 1984. Late Quaternary paleoclimates and biotic responses in eastern North America and the western North Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 263-284.
- Denton, G.H., Karlén, W., 1973. Holocene climatic variations; their pattern and possible cause. Quaternary Research 3 (2), 155-205.
- Doll, C.G., Cady, W.M., Thompson Jr., J.B., Billings, M.P., 1961. Centennial Geologic Map of Vermont.
- Doll, C.G., Stewart, D.P., MacClintock, P., 1970. Surficial Geologic Map of Vermont. Williams and Heintz Map Corporation, Washington, DC.
- Donnelly, J.P., Bryant, S.S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P.E., Shuman, B.N., Stern, J., Westover, K., Webb III, T., 2001a. 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geological Society of America Bulletin 113 (6), 714-727.
- Donnelly, J.P., Roll, S., Wengren, M., Butler, J., Lederer, R., Webb III, T., 2001b. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology 29 (7), 615-618.
- Dunne, T.B., and Leopold, L.B., 1978. Water in Environmental Planning. W.H. Freeman, San Francisco, 818 p.
- Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., 2000. Climate Extremes: Observations, Modeling, and Impacts. Science 289 (5487), 2068-2074.
- Eden, D.N., Page, M.J., 1998. Palaeoclimatic implications of a storm erosion record from late Holocene lake sediments, North Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 139, 37-58.
- Fisher, D.W., Isachsen, Y.W., Rickard, L.V., 1970. Geologic Map of New York State. New York State Geological Survey, Albany.

- Gran, S.E., Bierman, P.R., Nichols, K.K., 1999. Teaching winter geohydrology using frozen lakes and snowy mountains. Journal of Geoscience Education 47 (5), 420-447.
- Gremillion, P.T., Rodbell, D.T., 1998. Overturn history of an iron-rich meromictic lake as an indicator of extreme meteorological events. GSA Abstracts with Programs 30 (7), 114.
- Grove, J.M., 1988. The Little Ice Age. Methuen, London, 498 pp.
- Hass, H.C., 1993. Depositional processes under changing climate: upper Subatlantic granulometric records from the Skagerrak (NE-North Sea). Marine Geology 111, 361-378.
- Hayne, M., Chappell, J., 2001. Cyclone frequency during the last 5000 years at Curacoa Island, north Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 168 (3-4), 207-219.
- Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T., 2001. Solar Forcing of Drought Frequency in the Maya Lowlands. Science 292 (5520), 1367-1370.
- IPCC Working Group I, 2001. Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change, Geneva, Switzerland.
- Jackson, S.T., Whitehead, D.R., 1991. Holocene vegetation patterns in the Adirondack Mountains. Ecology 72 (2), 641-653.
- Jennings, K.L., Bierman, P.R., Southon, J.R., 2001. Timing and style of deposition on humid-temperate fans, Vermont, USA. Geological Society of America Bulletin, in review.
- Keigwin, L.D., Boyle, E.A., 2000. Detecting Holocene changes in thermohaline circulation. Proceedings of the National Academy of Sciences 97, 1343-1346.
- Keim, B., Mayewski, P.A., Zielinski, G.A., Wake, C., Carpenter, K., Cox, J., Souney, J., Sanborn, P., Rodgers, M., 1998. New England's Changing Climate, Weather and Air Quality. University of New Hampshire, Durham, 48 pp.
- Knox, J.C., 1999. Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews 19, 439-457.
- Kochel, R.C., Baker, V.R., 1982. Paleoflood Hydrology. Science 215 (4531), 353-361.
- Kutzbach, J.E., 1987. Model simulations of the climatic patterns during the deglaciation of North America. In: Ruddiman, W.F., Wright, H.E. (Eds.). North America and adjacent oceans during the last deglaciation. Geographical Society of America, Boulder, Colorado, pp. 425-446.
- Laird, L.D., Campbell, I.D., 2000. High resolution palaeofire signals from Christina Lake, Alberta: a comparison of the charcoal signals extracted by two different methods. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 111-123.

- Lamb, H.H., 1979. Variation and changes in the wind and ocean circulation: the Little Ice Age in the northeast Atlantic. Quaternary Research 11, 1-20.
- Lamoureux, S.F., 2000. Five centuries of interannual sediment yield and rainfall-induced erosion in the Canadian High Arctic recorded in lacustrine varves. Water Resources Research 36, 309-318.
- Lamoureux, S.F., England, J.H., Sharp, M.J., Bush, A.B.G., 2001. A varve record of increased 'Little Ice Age' rainfall associated with volcanic activity, Arctic Archipelago, Canada. The Holocene 11 (2), 243-249.
- Landscheidt, T., 1987. Long-Range Forecasts of Solar Cycles and Climate Change. In: Rampino, M.R., et al. (Eds.). Climate: History, Periodicity, and Predictability. Van Nostrand Reinhold, New York, pp. 428-445.
- Lin, L., 1996. Environmental changes inferred from pollen analysis and ¹⁴C ages of pond sediments, Green Mountains, Vermont. Master's Thesis, University of Vermont, Burlington, 125 pp.
- Liu, K., Fearn, M.L., 1993. Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology 21, 793-796.
- Liu, K., Fearn, M.L., 2000. Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records. Quaternary Research 54, 238-245.
- Ludlum, D., 1996. The Vermont Weather Book. Vermont Historical Society, Montpelier, 302 pp.
- Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409-445.
- Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., Yang, Q., Lyons, W.B., Prentice, M., 1997. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical Research 102 (C12), 26345-26366.
- Mayewski, P.A., Meeker, L.D., Whitlow, S.I., Twickler, M.S., Morrison, M.C., Bloomfield, P., Bond, G.C., Alley, R.B., Gow, A.J., Grootes, P.M., Meese, D.A., Ram, M., Taylor, K.C., Wumkes, W., 1994. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263 (5154), 1747-1751.
- Meeks, H.A., 1986. Vermont's land and resources. New England Press, Shelburne, Vermont, 332 pp.
- Mullins, H.T., 1998. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology 26 (5), 443-446.
- Nesje, A., Dahl, S.O., Matthews, J.A., Berrisford, M.S., 2001. A ~4500-yr record of river floods obtained from a sediment core in Lake Atnsjøen, eastern Norway. Journal of Paleolimnology 25 (3), 329-342.

- Newby, P.E., Killoran, P., Waldorf, M.R., Shuman, B.N., Webb, R.S., Webb III, T., 2000. 14,000 years of sediment, vegetation, and water-level changes at the Makepeace Cedar Swamp, southeastern Massachusetts. Quaternary Research 53, 352-368.
- NOAA/NCDC (National Oceanic and Atmospheric Administration/National Climatic Data Center), 2001. Climate of 1999: Annual, U.S. Regional and Statewide Analyses. Retrieved October 13, 2001, from http://lwf.ncdc.noaa.gov/oa/climate/research/ 1999/ann/us_regional.html
- Noren, A.J., Bierman, P.R., Steig, E.J., Lini, A., Southon, J.R., 2001. A Holocene millennial-scale storm cycle in the northeastern United States. Nature, in review.
- Nott, J., Hayne, M., 2001. High frequency of 'super-cyclones' along the Great Barrier Reef over the past 5,000 years. Nature 413, 508-512.
- O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., Whitlow, S.I., 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, 1962-1964.
- Ouellet, M., 1997. Lake sediments and Holocene seismic hazard assessment within the St. Lawrence Valley, Quebec. Geological Society of America Bulletin 109, 631-642.
- Page, M.J., Trustrum, N.A., DeRose, R.C., 1994. A high-resolution record of storminduced erosion from lake sediments, New Zealand. Journal of Paleolimnology 11, 333-348.
- Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Transactions, American Geophysical Union 77, 379.
- Parris, A.S., Bosley, A.C., Bierman, P.R., Lini, A., Noren, A.J., Lord, A.M., Conlan, A.M., Morgan, L., 2001. Grain by grain: Holocene storms and hillslope erosion in New England. GSA Abstracts with Programs, 314.
- Raisbeck, G.M., Yiou, F., Jouzel, J., Petit, J.R., 1990. ¹⁰Be and ²H in polar ice cores as a probe of the solar variability's influence on climate. Philosophical Transactions of the Royal Society of London 330 (1615), 463-469.
- Reasoner, M.A., 1993. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. Journal of Paleolimnology 8, 273-281.
- Ridge, J.C., Besonen, M.R., Brochu, M., Brown, S.L., Callahan, J.W., Cook, G.J., Nicholson, R.S., Toll, N.J., 1999. Varve, paleomagnetic, and ¹⁴C chronologies for late Pleistocene events in New Hampshire and Vermont (U.S.A.). Géographie physique et Quaternaire 53 (1), 79-106.
- Robbins, J.A., Edgington, D.N., 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta 39, 289-304.

- Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., 1999. An ~15,000-year record of El Niño-Driven alluviation in southwestern Ecuador. Science 283 (5401), 516-520.
- Spear, R., Davis, M.B., Shane, L.C., 1994. Late Quaternary history of low- and midelevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 64, 85-109.
- Stuiver, M., Braziunas, T.F., 1993. Sun, ocean, climate and atmospheric ¹⁴CO₂: an evaluation of causal and spectral relationships. The Holocene 3 (4), 289-305.
- Stuiver, M., Reimer, P.J., 1993. Extended ¹⁴C Data Base and Revised CALIB 3.0 ¹⁴C Age Calibration Program. Radiocarbon 35, 215-230.
- Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40 (3), 1041-1083.
- Thompson, D.W.J., Wallace, J.M., 2001. Regional Climate Impacts of the Northern Hemisphere Annular Mode. Science 293 (5527), 85-89.
- Thompson, L.G., Yao, T., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Lin, P.N., 2000. A High-Resolution Millennial Record of the South Asian Monsoon from Himalayan Ice Cores. Science 289 (5486), 1916-1919.
- Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055-1096.
- Thorndycraft, V., Hu, Y., Oldfield, F., Crooks, P.R.J., Appleby, P.G., 1998. Individual flood events detected in the recent sediments of the Petit Lac d'Annecy, eastern France. The Holocene 8 (6), 741-746.
- Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., Shimmield, G.B., 2001. Variability in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle. Science 291 (5508), 1511-1517.
- Vautard, R., Ghil, M., 1989. Singular spectrum analysis in non-linear dynamics, with applications to paleoclimatic time series. Physica D 35, 395-424.
- Webb, T., Bartlein, P.J., Harrison, S.P., Anderson, K.J., 1993. Vegetation, lake levels, and climate in eastern North America for the past 18,000 years. In: Wright, H.E., Kutzbach, J.E., Street-Perrot, F.A., Bartlein, P.J., Ruddiman, W.F., Webb, T. (Eds.). Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, pp. 415-467.
- Winkler, M.G., 1985a. A 12,000-year history of vegetation and climate for Cape Cod, Massachusetts. Quaternary Research 23, 301-312.
- Winkler, M.G., 1985b. Charcoal analysis for paleoenvironmental interpretation: a chemical assay. Quaternary Research 23, 313-326.

Zong, Y., Tooley, M.J., 1999. Evidence of mid-Holocene storm-surge deposits from Morecambe Bay, northwest England: A biostratigraphical approach. Quaternary International 55, 43-50.

APPENDIX A: BATHYMETRIC SURVEY DATA

Amherst Lake, Duck Pond, Echo Lake, Vail Pond:

Universal Transverse Mercator Zone 18N Datum: NAD 1927 Eastern US

Equipment: Trimble Pathfinder ProXRS Differential GPS

Emerald Lake

Vermont State Plane Datum: ?

Equipment: Trimble Pathfinder ProXRS Differential GPS; Pentax Total Station

Depth Precision: ~ ± 0.1 m

C = coring location; P = lake perimeter as determined by digitizing USGS 1:24,000

topographic maps or aerial photographs

				Depth	Filtered		Horizontal
Lake	Point	Easting (m)	Northing (m)	(m)	Positions	StDev	Precision (m)
Amherst	1	685724 092	4816686 456	0.3	10	0.031671	0.413
Amboret	2	685730 768	1816680 665	0.0	10	0.028705	0.113
Amhoret	2	685742.053	4916706 920	0.2	10	0.020703	0.413
Amheret	3	005742.955	4010700.039	0.2	10	0.020074	0.413
Amnerst	4	005712.200	4010710.703	1.5	10	0.073982	0.413
Amnerst	5	685733.911	4816728.395	5.9	10	0.037683	0.413
Amherst	6	685760.988	4816740.870	6.5	10	0.028843	0.413
Amherst	7	685788.980	4816752.823	6.0	10	0.033577	0.371
Amherst	8	685812.622	4816761.221	10.5	10	0.025673	0.371
Amherst	9	685837.490	4816776.331	11.9	11	0.053677	0.370
Amherst	10	685866.376	4816787.119	8.7	10	0.060677	0.370
Amherst	11	685867.960	4816811.973	11.1	11	0.050540	0.369
Amherst	12	685831.685	4816811.411	16.0	10	0.033112	0.369
Amherst	13	685804.592	4816804.565	17.1	10	0.091008	0.369
Amherst	14	685779 868	4816800 116	14.9	10	0 112676	0.369
Amherst	15	685752 169	4816794 473	9.0	10	0.043626	0.369
Amboret	16	685708 440	4816785 215	4.5	10	0.120373	0.000
Amhoret	10	685605.053	4010703.213	4. 5	10	0.129575	0.419
Amhorot	17	695724 262	4010019.037	12.5	10	0.100301	0.410
Amnerst	10	005724.202	4810833.201	12.5	10	0.136239	0.369
Amnerst	19	685773.847	4816849.880	19.5	10	0.059122	0.369
Amherst	20	685823.674	4816865.717	19.0	10	0.036814	0.369
Amherst	21	685857.859	4816880.886	14.6	10	0.085777	0.369
Amherst	22	685811.626	4816917.540	15.9	10	0.052606	0.369
Amherst	23	685777.049	4816909.412	18.1	10	0.018369	0.369
Amherst	24	685739.273	4816895.564	18.2	10	0.093886	0.369
Amherst	25	685686.798	4816879.595	8.0	10	0.091212	0.439
Amherst	26	685667.551	4816928.955	6.6	11	0.050423	0.438
Amherst	27	685701.706	4816938.955	13.0	10	0.057808	0.372
Amherst	28	685740.088	4816956 593	13.7	10	0.054635	0.659
Amherst	29	685739.653	4816983 791	9.8	10	0.067401	0.659
Amherst	30	685713 513	4816977 588	12.5	10	0.052594	0.000
Amboret	31	685746 553	4917040 262	7.9	10	0.002004	0.670
Amhorot	20	695690 900	4017040.203	14.5	10	0.209207	0.039
Amherst	32	000009.000	4017009.943	14.3	10	0.030252	0.377
Amnerst	33	005047.347	4017000.000	10.7	17	0.042065	0.372
Amnerst	34	685604.225	4817091.559	7.5	11	0.146811	0.486
Amnerst	35	685629.487	4817159.161	14.4	10	0.066358	0.384
Amherst	36	685674.389	4817189.861	18.0	13	0.087448	0.382
Amherst	37	685725.734	4817223.044	8.3	10	0.115860	0.664
Amherst	38	685754.112	4817343.624	10.5	10	0.113507	0.667
Amherst	39	685644.966	4817326.382	27.3	10	0.064122	0.396
Amherst	40	685594.326	4817322.559	22.4	10	0.062628	0.396
Amherst	41	685495.219	4817391.540	5.4	10	0.084169	0.410
Amherst	42	685546.330	4817407.904	12.7	10	0.119244	0.410
Amherst	43	685598.050	4817424.223	21.8	10	0.058100	0.410
Amherst	44	685654 025	4817440 676	26.4	10	0 108234	0.410
Amherst	45	685742 725	4817455 477	18.7	10	0.092990	0.680
Amboret	46	685703 583	/817553 012	10.7	10	0.132805	0.684
Amhoret	40	685754 756	4017533.312	15.5	10	0.132003	0.004
Amhorot	47	605710 222	401751002	13.3	10	0.107079	0.004
Ammerst	40	000710.200	4017520.425	22.1	10	0.100002	0.004
Amnerst	49	685685.385	4817517.331	24.3	10	0.165917	0.684
Amnerst	50	685632.903	4817496.801	22.1	10	0.160518	0.608
Amherst	51	685581.918	4817480.651	16.5	10	0.120953	0.615
Amherst	52	685531.815	4817464.165	8.3	10	0.099280	0.688
Amherst	53	685482.920	4817450.629	4.5	10	0.154824	0.688
Amherst	54	685527.932	4817508.066	11.9	10	0.057945	0.690
Amherst	55	685480.734	4817534.155	8.7	20	0.213055	0.653
Amherst	56	685550.388	4817554.814	14.0	10	0.127846	0.664
Amherst	57	685626.617	4817538.872	21.2	10	0.078628	0.664
Amherst	58	685657.258	4817597.447	20.2	10	0.062128	0.664

l ako	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Amherst	59	685680 762	4817682 556	10.7	10	0.099750	0.664
Amherst	60	685612 321	4817651 480	13.8	10	0.235006	0.662
Amherst	61	685540 148	4817621 106	11.1	10	0.138946	0.662
Amherst	62	685475.530	4817594.925	9.7	10	0.114480	0.662
Amherst	63	685377.268	4817699.394	1.1	11	0.049451	0.661
Amherst	64	685443.591	4817710.000	4.6	10	0.086651	0.662
Amherst	65	685520.218	4817725.281	7.9	12	0.068113	0.660
Amherst	66	685589.657	4817730.998	1.7	10	0.053785	0.662
Amherst	67	685652.065	4817736.814	4.0	10	0.047199	0.662
Amherst	68	685711.084	4817612.324	18.3	12	0.070661	0.660
Amherst	69	685723.657	4817572.217	20.2	11	0.053808	0.661
Amherst	70	685750.849	4817581.455	14.6	10	0.091985	0.595
Amherst	71	685740.186	4817622.157	13.0	11	0.312058	0.569
Amherst	72	685485.769	4817833.510	0.3	13	0.046688	0.541
Amherst	73	685443.225	4817819.060	0.7	10	0.099256	0.543
Amherst	74	685371.802	4817792.852	0.7	11	0.033077	0.532
Amherst	75	685383.919	4817855.911	0.4	10	0.073641	0.520
Amherst	76	685399.094	4817882.042	0.3	10	0.089845	0.478
Amherst	77	685442.339	4817867.069	0.7	10	0.110668	0.468
Amherst	78	685661.011	4817411.549	27.7	11	0.076487	0.336
Amherst	79	685676.315	4817417.499	27.4	10	0.045987	0.335
Amherst	80	685649.735	4817424.396	27.2	11	0.096655	0.334
Amherst	81	685654.354	4817440.791	26.5	10	0.092331	0.335
Amherst	82	685672.743	481/441.362	26.7	10	0.057376	0.334
Amnerst	83	685675.200	4817466.089	25.8	10	0.088710	0.334
Amnerst	84	685663.511	4817467.174	25.5	10	0.046434	0.334
Amnerst	85	685662.774	4817452.970	26.1	10	0.096018	0.334
Amnerst		695906.007	401/420.411	27.3	17	0.210031	0.333
Amherst	F D	695905 657	4010019.090	0.0			
Amhorst	P P	685804.007	4010021.190	0.0			
Amberst	P	685802.847	4816633 100	0.0			
Amhorst	P	685801 /67	4816630 100	0.0			
Amherst	P	685892 597	4816641 690	0.0			
Amherst	P	685892.407	4816649 190	0.0			
Amherst	P	685892.287	4816654 190	0.0			
Amherst	P	685893 287	4816662 690	0.0			
Amherst	P	685892.787	4816679.690	0.0			
Amherst	P	685893.527	4816698.190	0.0			
Amherst	P	685894.717	4816700.690	0.0			
Amherst	Р	685894.657	4816702.190	0.0			
Amherst	Р	685893.287	4816706.690	0.0			
Amherst	Р	685892.027	4816708.190	0.0			
Amherst	Р	685890.467	4816720.190	0.0			
Amherst	P	685889.157	4816723.690	0.0			
Amherst	P	685888.787	4816737.190	0.0			
Amherst	P	685888.657	4816742.190	0.0			
Amherst	P	685888.467	4816748.690	0.0			
Amherst	P	685888.287	4816757.190	0.0			
Amherst	P	685889.347	4816763.190	0.0			
Amherst	P	685890.347	4816771.690	0.0			
Amherst	Р	685890.157	4816776.690	0.0			
Amnerst	P	685892.217	4816791.690	0.0			
Amnerst	P	685893.467	4816792.690	0.0			
Amnerst	P	685894.467	4816800.190	0.0			
Amnerst	P	000090.407	4010000.090	0.0			
Amnerst	P	695906 467	4010014.090	0.0			
Amhorst	P P	685807.467	4010010.190	0.0			
Amborst	P	685800.467	4010020.190	0.0			
Amberst	P	685800 3/7	4816847 190	0.0			
Amherst	P	685899.097	4816856 690	0.0			
Amherst	P	685898 907	4816862 690	0.0			
Amherst	P	685897 527	4816869 190	0.0			
Amherst	P.	685897.467	4816871.190	0.0			
Amherst	P	685897.347	4816876.190	0.0			
Amherst	P	685896.967	4816889.690	0.0			
Amherst	Р	685895.597	4816894.690	0.0			
Amherst	Р	685895.597	4816895.690	0.0			
Amherst	Р	685889.287	4816901.690	0.0			
Amherst	Р	685884.287	4816904.190	0.0			
Amherst	Р	685883.027	4816905.190	0.0			
Amherst	P	685875.467	4816911.190	0.0			
Amherst	Р	685862.787	4816926.690	0.0			
Amherst	P	685857.717	4816931.690	0.0			
Amherst	P	685847 787	4816934 690	0.0			

Laka	Point	Easting (m)	Northing (m)	Depth	Filtered	StDev	Horizontal Precision (m)
Lake		605047 717	4916026 100	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 03100113	OLDEV	
Amherst	P D	695940.217	4010930.190	0.0			
Amborst	P P	695940.217	4816940.090	0.0			
Amberst	Р	685833.067	4816942.190	0.0			
Amherst	P	685831 527	4816944 190	0.0			
Amherst	P	685829.097	4816944 190	0.0			
Amherst	P	685824 157	4816945 190	0.0			
Amherst	P	685813.027	4816946.190	0.0			
Amherst	P	685811.787	4816947.190	0.0			
Amherst	P	685810.527	4816947.190	0.0			
Amherst	P	685800.717	4816946.690	0.0			
Amherst	Р	685799.527	4816945.690	0.0			
Amherst	Р	685798.287	4816945.690	0.0			
Amherst	Р	685795.847	4816945.690	0.0			
Amherst	Р	685794.597	4816945.690	0.0			
Amherst	Р	685783.407	4816950.190	0.0			
Amherst	Р	685779.657	4816952.190	0.0			
Amherst	Р	685778.407	4816953.690	0.0			
Amherst	Р	685774.527	4816959.690	0.0			
Amherst	Р	685769.467	4816964.190	0.0			
Amherst	Р	685768.217	4816965.690	0.0			
Amherst	Р	685765.717	4816967.690	0.0			
Amherst	P	685764.467	4816969.190	0.0			
Amherst	Р	685763.097	4816972.690	0.0			
Amherst	P	685761.657	4816981.190	0.0			
Amherst	P	685759.027	4816987.190	0.0			
Amherst	P	685758.717	4816998.190	0.0			
Amherst	P	685759.787	4817005.690	0.0			
Amherst	P	685759.467	4817015.690	0.0			
Amherst	P	685758.967	4817033.690	0.0			
Amherst	P	685758.787	4817041.190	0.0			
Amherst	Р	685759.407	4817064.690	0.0			
Amherst	P	685759.347	4817065.690	0.0			
Amherst	Р	685759.097	4817075.690	0.0			
Amherst	Р	685758.467	4817097.690	0.0			
Amherst	Р	685759.467	481/106.190	0.0			
Amnerst	Р	685759.407	4817110.190	0.0			
Amnerst	P	685756.847	4817113.690	0.0			
Amnerst	P	685755.347	4817123.190	0.0			
Amherst	P	000/03./0/ 605754 717	4017135.090	0.0			
Amherst	P	695755 507	4017140.190	0.0			
Amborst	P D	695756 157	4017150.090	0.0			
Amberst	Р	685758 287	4817104.090	0.0			
Amherst	P	685764 847	4817226 600	0.0			
Amherst	P	685767 097	4817234 190	0.0			
Amherst	P	685767 787	4817255 190	0.0			
Amherst	P	685773 027	4817287 190	0.0			
Amherst	P	685775 217	4817297 190	0.0			
Amherst	P	685779.657	4817315.690	0.0			
Amherst	P	685780.847	4817316.690	0.0			
Amherst	P	685781.967	4817321.690	0.0			
Amherst	P	685784.027	4817335.190	0.0			
Amherst	Р	685784.967	4817346.190	0.0			
Amherst	Р	685788.217	4817363.690	0.0			
Amherst	Р	685790.467	4817369.690	0.0			1
Amherst	Р	685791.097	4817393.190	0.0			
Amherst	Р	685792.217	4817398.190	0.0			
Amherst	Р	685790.657	4817409.190	0.0			
Amherst	Р	685787.847	4817421.190	0.0			
Amherst	Р	685784.847	4817442.190	0.0			
Amherst	P	685785.967	4817445.690	0.0			
Amherst	P	685787.157	4817447.190	0.0			
Amherst	P	685795.407	4817462.190	0.0			
Amherst	P	685795.157	4817470.690	0.0			
Amherst	P	685798.407	4817486.690	0.0			
Amherst	P	685802.967	4817499.190	0.0			
Amherst	P	685805.287	4817504.190	0.0			
Amherst	P	685807.217	4817525.190	0.0			
Amnerst	۲ P	685808.407	481/526.190	0.0			
Amnerst	۲ 2	685808.347	481/52/.690	0.0			
Amnerst	۲ P	685803.287	481/533.690	0.0			
Amnerst	۲ P	005000.057	4817540.690	0.0			
Amborot	P P	695701 207	401/041.090	0.0			
Amborot	Р В	695700.007	401/000.090	0.0			
Annerst	۲ <u>۲</u>	100.90190.907	401/5/8.690	0.0			

Laka	Point	Easting (m)	Northing (m)	Depth	Filtered	StDov	Horizontal Brecision (m)
Lake	FUIIL		4047500 600	(11)	FUSICIONS	SIDEV	Frecision (III)
Amnerst	P	685790.907	4817580.690	0.0			
Amhoret	P D	695795 407	4017599.190	0.0			
Amherst	Р	685778 527	4817630 690	0.0			
Amherst	P	685777 157	4817634 690	0.0			
Amherst	P	685769.467	4817646.690	0.0			
Amherst	P	685766.907	4817650.190	0.0			
Amherst	P	685756.717	4817664.690	0.0			
Amherst	Р	685753.967	4817674.190	0.0			
Amherst	Р	685745.027	4817686.190	0.0			
Amherst	Р	685735.907	4817704.190	0.0			
Amherst	Р	685726.847	4817722.190	0.0			
Amherst	P	685715.217	4817741.690	0.0			
Amherst	P	685713.967	4817742.690	0.0			
Amherst	P	685712.657	4817745.190	0.0			
Amherst	Р	685712.657	4817746.690	0.0			
Amnerst	Р	685710.157	4817748.690	0.0			
Amnerst	P	685701.157	4817762.190	0.0			
Amherst	P	685685 847	4617793 600	0.0			
Amhoret	P D	685684 507	4017703.090	0.0			
Amberst	Р	685683 347	4817784 690	0.0			
Amherst	P	685678 287	4817789 690	0.0			
Amherst	P	685669 527	4817795 690	0.0			
Amherst	P	685658.157	4817806.190	0.0			
Amherst	P	685651.787	4817813.190	0.0			
Amherst	Р	685650.287	4817823.190	0.0			
Amherst	Р	685648.967	4817827.690	0.0			
Amherst	Р	685648.597	4817841.190	0.0			
Amherst	Р	685648.407	4817847.690	0.0			
Amherst	P	685647.157	4817848.690	0.0			
Amherst	P	685635.347	4817876.690	0.0			
Amherst	P	685630.157	4817886.190	0.0			
Amherst	Р	685626.097	4817900.690	0.0			
Amnerst	P	685622.097	4817910.690	0.0			
Amherst	P	685620.847	4817912.090	0.0			
Amherst	Р	685612.467	4817902 690	0.0			
Amherst	P	685607.657	4817900 190	0.0			
Amherst	P	685598.097	4817890.190	0.0			
Amherst	P	685587.287	4817880.190	0.0			
Amherst	Р	685578.787	4817874.690	0.0			
Amherst	Р	685569.027	4817872.190	0.0			
Amherst	Р	685561.717	4817869.190	0.0			
Amherst	P	685560.467	4817869.190	0.0			
Amherst	P	685556.787	4817869.190	0.0			
Amherst	P	685554.347	4817869.190	0.0			
Amherst	Р	685551.847	4817870.190	0.0			
Amnerst	P	685545.657	4817871.190	0.0			
Amherst	P	000043.107 605541.717	4017001 100	0.0			
Amberst	P P	6855/1 657	4017001.190	0.0			
Amherst	P	685541.657	4817884 690	0.0			
Amherst	P	685541 597	4817885 690	0.0			
Amherst	P	685535.407	4817888.190	0.0			
Amherst	Р	685534.097	4817889.190	0.0			
Amherst	Р	685529.157	4817890.190	0.0			
Amherst	P	685527.907	4817891.690	0.0			
Amherst	P	685529.157	4817891.690	0.0			
Amherst	P	685526.847	4817885.190	0.0			
Amherst	P	685526.967	4817881.690	0.0			
Amnerst	<u>Ч</u>	685524.597	481/876.690	0.0			
Amnerst		685523.467	481/8/3.190	0.0			
Amberst	P	000024.047	401/009.190	0.0			
Amheret	P	685528 007	4817856 100	0.0			
Amherst	P	685529 097	4817848 690	0.0			
Amherst	P	685529.097	4817847.190	0.0			
Amherst	P	685527.907	4817847.190	0.0			
Amherst	Р	685519.287	4817847.190	0.0			
Amherst	Р	685516.787	4817849.690	0.0			
Amherst	P	685514.027	4817859.190	0.0			
Amherst	Р	685513.907	4817862.690	0.0			
Amherst	P	685511.347	4817867.690	0.0			
Amherst	P	685508.847	4817870.190	0.0			
Amnerst	Р	685508.717	481/872.690	0.0			

Laka	Point	Fasting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Amboret		685507 347	4917979 600	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 03100113	OLDEV	Treelsion (III)
Amherst	P D	685507.347	4017070.090	0.0			
Amborst	P P	685507.207	4017002.190	0.0			
Amberst	Р	685506.967	4017804.090	0.0			
Amherst	P	685487.347	4817890 190	0.0			
Amherst	P	685476 287	4817889 690	0.0			
Amherst	P	685473 717	4817893 690	0.0			
Amherst	P	685472.347	4817899.690	0.0			
Amherst	P	685452.027	4817923.690	0.0			
Amherst	P	685448.157	4817929.690	0.0			
Amherst	Р	685443.097	4817934.190	0.0			
Amherst	Р	685434.157	4817946.190	0.0			
Amherst	Р	685430.407	4817949.690	0.0			
Amherst	Р	685429.157	4817949.690	0.0			
Amherst	Р	685425.467	4817950.690	0.0			
Amherst	Р	685421.717	4817952.190	0.0			
Amherst	P	685416.907	4817949.190	0.0			
Amherst	P	685407.287	4817940.690	0.0			
Amherst	P	685398.847	4817934.190	0.0			
Amherst	P	685389.287	4817922.690	0.0			
Amherst	P	685386.907	4817920.190	0.0			
Amherst	P	685375.097	4817902.690	0.0			
Amherst	P	685370.527	4817890.190	0.0			
Amherst	P	685361.027	4817877.690	0.0			
Amherst	Р	685358.847	4817867.690	0.0			
Amherst	Р	685355.467	4817854.190	0.0			
Amherst	Р	685352.027	4817846.690	0.0			
Amnerst	P	685349.847	4817835.690	0.0			
Amnerst	P	685345.407	4817818.190	0.0			
Amnerst	P	685343.097	4817812.190	0.0			
Amborst	P D	685320.067	4017000.190	0.0			
Amborst	P P	695229.307	4817790.090	0.0			
Amberst	Р	685325 347	4817786 690	0.0			
Amherst	P	685323 157	4817777 190	0.0			
Amherst	P	685323 527	4817762 190	0.0			
Amherst	P	685323 907	4817748 690	0.0			
Amherst	P	685326.907	4817728.190	0.0			
Amherst	P	685329.787	4817713.690	0.0			
Amherst	P	685332.527	4817702.690	0.0			
Amherst	Р	685335.347	4817689.190	0.0			
Amherst	Р	685340.657	4817675.690	0.0			
Amherst	Р	685351.407	4817641.690	0.0			
Amherst	Р	685355.407	4817630.690	0.0			
Amherst	Р	685359.347	4817619.690	0.0			
Amherst	Р	685370.097	4817588.190	0.0			
Amherst	P	685372.787	4817579.690	0.0			
Amherst	P	685381.787	4817565.190	0.0			
Amherst	P	685392.157	4817544.690	0.0			
Amherst	P	685402.407	4817529.190	0.0			
Amherst	P	685415.347	4817506.190	0.0			
Amherst	Р	685421.657	4817500.190	0.0			
Amnerst	Р	685430.467	4817492.190	0.0			
Amnerst	P	685445.657	4817477.690	0.0			
Amnerst	P	685451.907	4817473.190	0.0			
Amherst	Г	695465 527	4017433.090	0.0			
Amberst	Р	685466 847	4817424.090	0.0			
Amherst	P	685469 717	4817405 190	0.0			
Amherst	P	685475 027	4817391 690	0.0			
Amherst	P	685475.657	4817367 190	0.0			
Amherst	P	685475.967	4817356 190	0.0			
Amherst	P	685484.027	4817331.690	0.0			
Amherst	P	685485.717	4817314.690	0.0			
Amherst	Р	685488.347	4817307.690	0.0			
Amherst	Р	685491.097	4817297.690	0.0			1
Amherst	Р	685495.347	4817277.190	0.0			
Amherst	Р	685496.717	4817272.190	0.0			
Amherst	P	685497.967	4817269.690	0.0			
Amherst	P	685499.407	4817263.690	0.0			
Amherst	Р	685503.287	4817256.190	0.0			
Amherst	P	685509.717	4817245.690	0.0			
Amherst	P	685517.347	4817237.190	0.0			
Amherst	P	685530.097	4817219.190	0.0			
Amherst	P	685532.717	4817213.190	0.0			
Amherst	P	685536.657	4817205.690	0.0			

				Depth	Filtered		Horizontal
Lake	Point	Easting (m)	Northing (m)	(m)	Positions	StDev	Precision (m)
Amherst	P	685544.347	4817192.690	0.0			
Amherst	P	685554.657	4817175.690	0.0			
Amherst	P	685564.907	4817161.190	0.0			
Amherst	P	685567.467	4817157.690	0.0			
Amherst	P	685580.157	4817142.190	0.0			
Amherst	P	685585.347	4817133.690	0.0			
Amherst	P	685589.287	4817123.190	0.0			
Amherst	P	685595.787	4817110.690	0.0			
Amherst	P	685597.287	4817099.690	0.0			
Amherst	P	685604.157	4817074.190	0.0			
Amherst	P	685605.787	4817058.690	0.0			
Amherst	Р	685608.657	4817043.690	0.0			
Amherst	P	685612.907	4817023.190	0.0			
Amherst	Р	685617.027	4817007.190	0.0			
Amherst	Р	685623.597	4816992.690	0.0			
Amherst	Р	685630.217	4816974.690	0.0			
Amherst	Р	685635.407	4816964.690	0.0			
Amherst	Р	685642.097	4816945.690	0.0			
Amherst	Р	685645.967	4816937.190	0.0			
Amherst	Р	685658.967	4816911.690	0.0			
Amherst	Р	685661.717	4816902.190	0.0			
Amherst	Р	685672.217	4816876.690	0.0			
Amherst	Р	685676.157	4816866.690	0.0			
Amherst	P	685678 967	4816855 690	0.0			
Amherst	P	685684 467	4816832 690	0.0			
Amherst	P	685688 597	4816818 190	0.0			
Amberst	P	685602 3/7	4816814 600	0.0			
Amberst	P	685603.067	4816801 100	0.0			
Amberst	P	68569/ 157	4816793 600	0.0			
Amhorst	P I	685607 217	40107 33.030	0.0			
Amherst	P P	695704 157	4010770.090	0.0			
Amherst	F D	695704.157	4010741.190	0.0			
Amherst	F D	605709.407	4010729.190	0.0			
Amnerst	P	685709.847	4816714.690	0.0			
Amnerst	P	685710.027	4816707.190	0.0			
Amnerst	P	685710.217	4816699.690	0.0			
Amnerst	P	685711.657	4816691.190	0.0			
Amnerst	Р	685/15.65/	4816681.690	0.0			
Amherst	Р	685718.157	4816679.190	0.0			
Amherst	P	685719.467	4816675.690	0.0			
Amherst	P	685720.787	4816673.190	0.0			
Amherst	P	685729.467	4816671.190	0.0			
Amherst	P	685741.787	4816670.190	0.0			
Amherst	P	685751.527	4816672.690	0.0			
Amherst	P	685762.467	4816678.190	0.0			
Amherst	P	685772.157	4816684.690	0.0			
Amherst	P	685773.157	4816693.190	0.0			
Amherst	P	685776.527	4816703.190	0.0			
Amherst	P	685779.967	4816713.190	0.0			
Amherst	P	685785.907	4816721.690	0.0			
Amherst	P	685800.347	4816732.190	0.0			
Amherst	Р	685817.527	4816733.690	0.0			
Amherst	Р	685832.287	4816734.190	0.0			
Amherst	Р	685839.657	4816735.690	0.0			
Amherst	Р	685844.527	4816736.190	0.0			
Amherst	Р	685848.347	4816732.690	0.0			
Amherst	P	685854.717	4816724.190	0.0			
Amherst	Р	685857.217	4816722.690	0.0			
Amherst	Р	685858.527	4816718.190	0.0			
Amherst	Р	685862.467	4816710.690	0.0			
Amherst	P	685863 787	4816707 190	0.0			
Amherst	P	685866 467	4816698 690	0.0			
Amherst	P	685870.347	4816691 190	0.0			
Amherst	P	685873 027	4816682 600	0.0			
Amherst	P	685874 597	4816671 690	0.0			
Amherst	P	685874 717	4816665 690	0.0			
Amheret		685877 507	4816651 100	0.0			
Amheret	D F	685870 027	48166/3 600	0.0			
Amberst	F D	685970 207	4816625 100	0.0			
Amborat		605070.007	4010033.190	0.0			
Amborat		695077.047	4010020.090	0.0			
Amherst	P	0000/1.21/	4010019.190	0.0			
Annerst	Р	0008/4.96/	4010010.090	0.0			
Duale		700404 000	405 4 400, 000		10	0.000570	0.407
Duck	1	732404.362	4954433.899	2.2	12	0.098579	0.467
Duck	2	732418.407	4954443.405	2.8	12	0.058611	0.465
Duck	3	732430.092	4954452.167	2.9	14	0.083760	0.463
DUCK	4	(32432.55/	4954475.142	4.5	11	0.14/336	0.383

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Duck	5	732420.279	4954468.975	5.1	12	0.107792	0.464
Duck	6	732406.497	4954459.271	4.7	11	0.062043	0.383
Duck	7	732395.515	4954451.158	3.7	11	0.102479	0.383
Duck	8	732388.019	4954439.858	2.5	12	0.075254	0.382
Duck	9	732368.683	4954446.644	2.8	12	0.192437	0.431
Duck	10	732380.946	4954457.170	3.5	11	0.046266	0.382
Duck	11	732392.947	4954409.119	5.2	49	0.059028	0.360
Duck	12	732400.002	4954487 723	6.0	15	0.1414006	0.300
Duck	10	732435 849	4954496.064	5.0	12	0.055550	0.384
Duck	15	732434.722	4954514.890	5.2	14	0.101252	0.336
Duck	16	732420.341	4954505.162	6.5	13	0.106401	0.337
Duck	17	732407.401	4954497.203	7.0	19	0.570492	0.355
Duck	18	732389.782	4954485.436	6.5	18	0.085891	0.376
Duck	19	732381.143	4954480.463	6.0	20	0.073781	0.375
Duck	20	732373.392	4954469.774	5.1	16	0.058598	0.378
Duck	21	732357.667	4954459.757	3.7	11	0.074226	0.381
Duck	22	732357.168	4954474.332	5.6	13	0.072370	0.426
Duck	23	732364.161	4954482.335	6.5 7.1	10	0.086673	0.427
Duck	24	732317.044	4954495.756	7.1	14	0.075055	0.376
Duck	25	732404 886	4954516 245	7.0	17	0.034112	0.327
Duck	20	732419 581	4954526 424	6.5	15	0.070442	0.327
Duck	28	732405.407	4954534.378	7.5	18	0.044848	0.325
Duck	29	732388.539	4954523.065	8.3	19	0.048801	0.325
Duck	30	732375.012	4954512.171	7.8	15	0.045469	0.327
Duck	31	732359.756	4954500.009	8.1	21	0.056251	0.419
Duck	32	732342.351	4954487.019	6.6	12	0.064077	0.425
Duck	33	732325.230	4954492.773	6.1	17	0.069997	0.421
Duck	34	732342.528	4954506.918	8.7	16	0.054109	0.422
Duck	35	732355.818	4954519.537	10.5	26	1.261297	0.350
Duck	30	732370.862	4954531.620	10.7	27	1.793481	0.350
Duck	37	732300.420	4954543.220	0.0	20	0.300479	0.352
Duck	30	732396 728	4954550.330	5.8	14	0.079343	0.325
Duck	40	732381 812	4954560 239	8.4	16	0.109981	0.352
Duck	41	732368.034	4954549.415	11.4	23	0.124492	0.348
Duck	42	732353.666	4954539.779	12.2	25	0.069540	0.347
Duck	43	732336.380	4954526.363	11.5	25	0.046862	0.347
Duck	44	732320.975	4954515.419	8.5	15	0.077336	0.431
Duck	45	732302.878	4954524.099	7.5	17	0.082373	0.430
Duck	46	732317.994	4954533.988	11.0	19	0.108126	0.396
Duck	47	732335.143	4954545.536	12.8	22	0.069345	0.344
Duck	40	732353.490	4954557.751	12.7	24	0.100030	0.343
Duck	50	732385 434	4954578 746	7 1	14	0.037737	0.348
Duck	51	732384.011	4954597.486	5.9	14	0.035727	0.348
Duck	52	732368.527	4954586.237	9.1	16	0.041836	0.347
Duck	53	732353.682	4954575.284	12.1	24	0.076469	0.342
Duck	54	732337.077	4954563.664	13.1	29	0.140224	0.340
Duck	55	732320.600	4954553.207	12.4	23	0.031627	0.343
Duck	56	732303.091	4954543.210	9.4	21	0.102395	0.345
Duck	57	732286.972	4954553.488	6.8	18	0.109332	0.453
Duck	58	732304.278	4954563.450	10.4	21	0.117461	0.346
Duck	59	732320.631	4954574.469	12.2	18	0.045476	0.348
Duck	60	720252 115	4904080.002	11.7	21	0.001094	0.340
Duck	62	732305.115	4954595.500	9.0	20	0.065880	0.347
Duck	63	732364 069	4954618 362	5.4	13	0.136147	0.356
Duck	64	732346 294	4954615 698	5.9	14	0.107460	0.356
Duck	65	732330.899	4954605.909	8.1	17	0.109581	0.354
Duck	66	732314.735	4954594.934	8.7	16	0.065694	0.355
Duck	67	732300.225	4954584.485	8.2	17	0.053441	0.357
Duck	68	732284.424	4954573.113	6.4	16	0.083358	0.359
Duck	69	732282.103	4954591.625	5.3	14	0.084925	0.360
Duck	70	732298.263	4954601.866	6.3	16	0.081685	0.378
Duck	71	732315.509	4954612.098	5.9	14	0.110749	0.362
Duck	72	/32332.858	4954622.237	3.0	12	0.059641	0.364
Duck	/3	732341.346	4954556.546	13.1	16	0.063239	0.437
	74	132329.530	4954559.241	13.0	19	0.105635	0.434
Duck	15	732212 000	4904071.029	12.9	2/	0.091000	0.430
Duck	70	732347 260	4954554 274	12.9	23	2 115207	0.446
Duck	78	732339.450	4954555.156	13.0	19	0.220685	0.448
Duck	79	732345.318	4954545.651	12.6	22	0.177699	0.446
Duck	80	732333 863	4954549 296	12.8	21	0 168073	0.447

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Duck	81	732332.270	4954554.926	13.0	29	0.177012	0.442
Duck	82	732343.987	4954561.273	13.0	22	0.097592	0.446
Duck	83	732343.251	4954568.565	12.9	22	0.068256	0.446
Duck	84	732337.945	4954564.279	13.0	26	0.084098	0.444
Duck	85	732329.456	4954560.270	13.0	21	0.059877	0.447
Duck	80	732332.309	4954568.711	12.9	47	0.149672	0.430
Duck	C 07	732336 234	4954575.052	13.1	23	0.156682	0.445
Duck	P	732312 895	4954625 991	0.0	12	0.091091	0.439
Duck	P	732432.784	4954558.928	0.0	11	0.083647	0.429
Duck	Р	732305.092	4954479.589	0.0	14	0.123220	0.421
Duck	P	732350.760	4954429.395	0.0	10	0.039990	0.424
Duck	P	732432.438	4954428.176	0.0	11	0.033615	0.423
Duck	P	732432.514	4954428.059	0.0	10	0.026165	0.390
Duck	Р	732303.690	4954480.000	0.0			
Duck	P	732303.620	4954481.000	0.0			
Duck	P	732301.440	4954464.000	0.0			
Duck	P	732299 250	4954486 500	0.0			
Duck	P	732298.120	4954488.500	0.0			
Duck	Р	732295.880	4954492.500	0.0			
Duck	P	732294.810	4954493.500	0.0			
Duck	P	732293.690	4954495.500	0.0			
Duck	P	732291.380	4954500.500	0.0			
Duck	P	732290.310	4954501.500	0.0			
Duck	P	732289.000	4954506.500	0.0			
Duck	P	732288.880	4954509.500	0.0			
Duck	P	732285 500	4954512.000	0.0			
Duck	P	732282 190	4954520,000	0.0			
Duck	P	732281.120	4954520.000	0.0			
Duck	Р	732278.940	4954524.000	0.0			
Duck	Р	732277.810	4954526.000	0.0			
Duck	P	732275.500	4954531.000	0.0			
Duck	P	732274.440	4954532.000	0.0			
Duck	Р	732273.060	4954538.000	0.0			
Duck	P	732271.810	4954542.500	0.0			
Duck	P	732270.730	4954545.500	0.0			
Duck	P	732269 500	4954547 500	0.0			
Duck	P	732268.380	4954549.500	0.0			
Duck	P	732266.190	4954552.500	0.0			
Duck	P	732266.060	4954555.500	0.0			
Duck	P	732262.810	4954558.500	0.0			
Duck	P	732259.620	4954561.500	0.0			
Duck	P	732258.310	4954566.000	0.0			
Duck	F D	732257.120	4954509.000	0.0			
Duck	P	732256 810	4954576 000	0.0			
Duck	P	732256.750	4954577.000	0.0			
Duck	P	732256.690	4954578.000	0.0			
Duck	P	732256.620	4954579.500	0.0			
Duck	P	732256.440	4954583.500	0.0			
Duck	P	732257.380	4954584.500	0.0			
Duck	Р	732259.190	4954589.500	0.0			
Duck	P	732260.120	4954591.500	0.0			
Duck	P	732261.940	4954595.500	0.0			
Duck	P	732264 880	4954598 000	0.0			
Duck	P	732265.880	4954599.000	0.0			
Duck	P	732269.810	4954602.000	0.0			
Duck	Р	732270.750	4954603.000	0.0			
Duck	P	732272.750	4954604.500	0.0			
Duck	P	732274.690	4954606.500	0.0			
Duck	P	/32275.690	4954607.500	0.0			
Duck	P	732282.620	4954611.000	0.0			
Duck	P	732287 620	4904012.000	0.0			
Duck	P	732289 620	4954614 000	0.0			
Duck	P	732293.750	4954614.500	0.0			
Duck	P	732298.810	4954614.500	0.0			
Duck	P	732302.690	4954619.000	0.0			
Duck	P	732303.690	4954620.000	0.0			
Duck	P	732309.620	4954624.500	0.0			
Duck	P	/32310.500	4954626.500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Duck	P	732316.380	4954631.500	0.0			
Duck	P	732323.310	4954636.000	0.0			
Duck	P	732324.310	4954637.000	0.0			
Duck	P	732329.380	4954637.500	0.0			
Duck	P	732331.440	4954637.500	0.0			
Duck	P	732335.500	4954637.500	0.0			
Duck	P	732341.730	4954636.000	0.0			
Duck	P	732343.010	4954635.000	0.0			
Duck	P	732353 000	4954635.500	0.0			
Duck	P	732355 120	4954634 500	0.0			
Duck	P	732358.250	4954634.000	0.0			
Duck	P	732366.560	4954631.500	0.0			
Duck	P	732367.620	4954630.500	0.0			
Duck	P	732370.750	4954629.500	0.0			
Duck	P	732373.940	4954626.500	0.0			
Duck	P	732376.120	4954624.500	0.0			
Duck	P	732378.310	4954622.000	0.0			
Duck	P	732381.440	4954620.000	0.0			
Duck	Р	732384.750	4954616.000	0.0			
Duck	P	732386.880	4954614.000	0.0			
Duck	P	732309.000	4954611.500	0.0			
Duck		732391.230	4954606.500	0.0			
Duck	P	732395.090	4954600.500	0.0			
Duck	P	732397.940	4954597.500	0.0			
Duck	P	732402.380	4954592.000	0.0			
Duck	P	732406.620	4954588.000	0.0			
Duck	P	732406.690	4954587.000	0.0			
Duck	P	732408.810	4954585.000	0.0			
Duck	P	732413.120	4954581.000	0.0			
Duck	P	732418.500	4954576.500	0.0			
Duck	P	732419.500	4954576.500	0.0			
Duck	P	732422.810	4954571.500	0.0			
Duck	Р	732422.940	4954569.500	0.0			
Duck	P	732425.060	4954568.000	0.0			
Duck	P	732427.230	49545664.000	0.0			
Duck	P	732429.300	4954562 000	0.0			
Duck	P	732432 750	4954558 000	0.0			
Duck	P	732434.940	4954555.000	0.0			
Duck	P	732437.310	4954548.000	0.0			
Duck	P	732439.440	4954547.500	0.0			
Duck	P	732439.620	4954543.500	0.0			
Duck	P	732440.880	4954539.500	0.0			
Duck	P	732442.120	4954534.500	0.0			
Duck	P	732443.310	4954531.500	0.0			
Duck	P	732443.500	4954527.500	0.0			
Duck	P	732445.750	4954523.500	0.0			
Duck	P	732447.000	4954516.500	0.0			
Duck	P	732447.120	4954516.500	0.0			
Duck	P	732447 620	4954507 500	0.0			
Duck	P	732448 810	4954503 500	0.0			
Duck	P	732449.120	4954498.500	0.0			
Duck	P	732449.310	4954494.500	0.0			
Duck	P	732449.500	4954490.500	0.0			
Duck	P	732449.620	4954488.500	0.0			
Duck	P	732449.690	4954486.500	0.0			
Duck	P	732449.880	4954483.500	0.0			
Duck	P	732451.120	4954479.500	0.0			
Duck	P	732451.120	4954478.500	0.0			
Duck	Р	732451.250	4954476.500	0.0			
Duck	P	732451.380	4954473.500	0.0			
Duck	P	722451.090	4904400.000	0.0			
Duck	P	732452 000	4304400.000	0.0			
Duck	P	732451 380	4954454 000	0.0			
Duck	P	732450 440	4954452 000	0.0			
Duck	P	732450.620	4954449.000	0.0			
Duck	P	732450.690	4954447.000	0.0			
Duck	P	732449.880	4954443.000	0.0			
Duck	P	732448.940	4954441.000	0.0			
Duck	P	732449.000	4954440.000	0.0			
Duck	P	732448.190	4954436.000	0.0			
Duck	P	732446 250	1051131 000	0.0	1		

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Duck	P	732445.310	4954432.500	0.0			
Duck	P	732444.310	4954431.500	0.0			
Duck	P	732441.310	4954430.500	0.0			
Duck	Р	732437.250	4954430.500	0.0			
Duck	Р	732435.190	4954430.000	0.0			
Duck	P	732430.250	4954427.000	0.0			
Duck	P	732429.250	4954426.000	0.0			
Duck	P	732427.310	4954423.500	0.0			
Duck	P	732425.310	4954422.500	0.0			
Duck	P	732419.300	4954419.500	0.0			
Duck	P	732410.010	4954420.000	0.0			
Duck	P	732401 940	4954420 500	0.0			
Duck	P	732399.880	4954420.500	0.0			
Duck	Р	732394.810	4954419.000	0.0			
Duck	Р	732390.750	4954419.000	0.0			
Duck	P	732384.690	4954416.500	0.0			
Duck	Р	732380.560	4954417.500	0.0			
Duck	Р	732373.250	4954420.000	0.0			
Duck	P	732368.000	4954422.500	0.0			
Duck	P	732361.810	4954424.500	0.0			
Duck	P	732359.690	4954425.500	0.0			
Duck	P	732354.560	4954426.000	0.0			
Duck	P	732353.500	4954427.000	0.0			
Duck	P	732352.310	4954430.000	0.0			
Duck	Р	732352.250	4954431.000	0.0			
Duck	Р	732352.060	4954434.000	0.0			
Duck	P	732351.940	4954437.000	0.0			
Duck	P	732351.810	4954439.000	0.0			
Duck	P	732350.560	4954444.000	0.0			
Duck	P D	732340.230	4954449.000	0.0			
Duck	P	732347.000	4954452.000	0.0			
Duck	P	732344.000	4954459.000	0.0			
Duck	P	732341 500	4954460 500	0.0			
Duck	P	732339 310	4954463 500	0.0			
Duck	P	732336.120	4954465.500	0.0			
Duck	P	732334.060	4954466.500	0.0			
Duck	Р	732329.940	4954467.000	0.0			
Duck	Р	732327.810	4954468.000	0.0			
Duck	P	732322.620	4954469.500	0.0			
Duck	P	732319.500	4954470.500	0.0			
Duck	P	732318.500	4954470.500	0.0			
Duck	P	732314.380	4954471.500	0.0			
Duck	Р	732312.250	4954472.000	0.0			
Duck	Р	732307.060	4954474.000	0.0			
Duck	P	732303.880	4954476.000	0.0			
Duck	P	732302.880	4954476.000	0.0			
Duck	P	732303.600	4954475.500	0.0			
DUCK	F	732303.090	4934400.000	0.0			
Echo	1	685873 560	4815581 000	0.0	26	0 117430	0 390
Echo	2	685814 098	4815633 733	0.5	21	0.055911	0.399
Echo	3	685834.669	4815631.730	1.0	13	0.074800	0.388
Echo	4	685847.974	4815632.018	0.8	12	0.127764	0.388
Echo	5	685889.483	4815626.655	2.3	11	0.100355	0.407
Echo	6	685909.067	4815623.872	7.2	11	0.095654	0.405
Echo	7	685928.582	4815622.431	9.4	14	0.045478	0.329
Echo	8	685948.404	4815620.849	11.1	11	0.032710	0.331
Echo	9	685974.004	4815619.544	13.4	14	0.066118	0.329
Echo	10	686003.891	4815616.838	14.5	14	0.162906	0.329
Echo	11	686033.307	4815611.495	14.1	14	0.060881	0.329
Echo	12	686062.032	4815607.820	11.5	15	0.115164	0.333
Echo	13	686087.784	4815604.824	6.9	11	0.053858	0.540
Echo	14	686109.528	4815602.053	2.5	11	0.038814	0.521
Echo	15	685957.343	4814898.844	2.0	18	0.056848	0.426
Echo	16	685972.970	4814917.202	4.1	13	0.069595	0.429
ECNO	17	685953.478	4814928.077	4.3	15	0.130521	0.428
Echo	18	685951.029	4814951.230	4.9	11	0.083667	0.431
Echo	19	686011 512	4014908.0//	5.4	14	0.1200/5	0.429
Echo	20	685004 247	4014970.090	4.9	10	0.203040	0.422
Echo	21	685071 164	4014907.230	7.5	10	0.004933	0.421
Echo	22	685948 408	4814004 517	6.4	10	0.142014	0.422
Echo	23	685917 759	4815007 695	۰.4 4 ۹	14	0 160493	0.420
Echo	25	685894 193	4814996 987	3.3	11	0.115952	0.422
	20	000004.190	.51 1000.007	0.0		0.110002	0.122

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	26	685913.817	4815030.215	6.5	10	0.069753	0.422
Echo	27	685946.382	4815026.427	10.0	11	0.103874	0.422
Echo	28	685976.493	4815025.699	12.6	12	0.084779	0.421
Echo	29	686011.298	4815020.798	11.0	10	0.089309	0.422
Echo	30	686025.692	4815047.810	11.0	10	0.112181	0.422
Echo	31	685975.080	4815056.526	15.4	11	0.042625	0.422
Echo	32	685947.050	4815055.803	14.9	10	0.070710	0.422
Echo	33	685922.695	4815053.611	7.3	10	0.052387	0.422
Echo	34	685899.918	4815051.003	5.7	10	0.062986	0.422
Echo	30	695093.532	4015079.904	0.9 16.5	10	0.043527	0.454
Echo	37	685952 617	4815005.048	18.2	13	0.120112	0.455
Echo	38	685917 679	4815093.943	12.9	14	0.200370	0.450
Echo	39	685900 519	4815137 638	9.8	12	0.000004	0.468
Echo	40	685939.534	4815141.588	17.5	10	0.118534	0.470
Echo	41	685973.292	4815148.654	16.7	10	0.108603	0.470
Echo	42	686033.003	4815183.851	2.6	16	0.097499	0.466
Echo	43	685991.378	4815188.585	11.0	10	0.077386	0.470
Echo	44	685951.797	4815193.500	15.6	10	0.099982	0.470
Echo	45	685922.975	4815195.958	14.5	10	0.138634	0.470
Echo	46	685888.021	4815197.866	9.1	12	0.045212	0.468
Echo	47	685883.367	4815225.680	8.9	11	0.050624	0.469
Echo	48	685940.156	4815237.338	13.0	13	0.072164	0.497
Echo	49	685972.168	4815237.776	9.1	17	0.127793	0.494
Echo	50	686009.696	4815238.603	3.4	16	0.067407	0.495
Echo	51	000992.017	4015209.031	3.0	10	0.090178	0.494
Echo	53	685020 584	4015275.150	10.9	12	0.114421	0.498
Echo	54	685893 579	4815287 252	10.9	11	0.193936	0.499
Echo	55	685865 535	4815301 168	5.0	12	0.163450	0.498
Echo	56	685894.036	4815317.217	6.4	13	0.141094	0.498
Echo	57	685926.731	4815331.369	6.5	16	0.126221	0.495
Echo	58	685964.316	4815338.805	5.6	18	0.165766	0.441
Echo	59	685988.317	4815484.564	8.2	28	0.132184	0.425
Echo	60	685994.991	4815509.667	11.6	25	0.120937	0.407
Echo	61	686002.142	4815537.065	13.0	12	0.088443	0.408
Echo	62	685970.060	4815537.632	13.2	11	0.082809	0.406
Echo	63	685936.252	4815540.707	11.2	11	0.044214	0.403
Echo	64	685890.304	4815547.718	5.8	12	0.104880	0.400
ECNO	60	085853.988	4815547.799	1.0	15	0.146583	0.396
Echo	60	695002 644	4010003.330	0.4	10	0.105146	0.392
Echo	68	685922.044	4815583 583	9.4	11	0.049237	0.390
Echo	69	685956 622	4815585.063	12.1	13	0.000101	0.389
Echo	70	685987.202	4815580.196	13.7	11	0.142474	0.389
Echo	71	686017.831	4815577.926	13.7	11	0.059722	0.386
Echo	72	686045.897	4815576.490	11.8	10	0.101056	0.385
Echo	73	686076.295	4815575.596	7.2	10	0.103603	0.559
Echo	74	686099.227	4815576.564	3.0	11	0.113873	0.558
Echo	75	685984.218	4815368.172	2.9	15	0.097841	0.369
Echo	76	685945.780	4815373.810	5.4	10	0.137319	0.371
Echo	77	685903.518	4815379.541	1.4	14	0.105499	0.367
Echo	78	685865.331	4815387.842	0.9	14	0.120684	0.366
Echo	79	685825.657	4815396.061	0.7	13	0.048097	0.364
Echo	80	695965 920	4010420.022	0.6	10	0.053523	0.305
Echo	82	685003 363	4815440 644	1.0	10	0.002400	0.304
Echo	83	685940 020	4815446 138	8.1	10	0.070010	0.355
Echo	84	685975 875	4815449 747	6.1	11	0.057104	0.000
Echo	85	685965 522	4815486 521	10.5	23	0 105338	0.443
Echo	86	685939.904	4815490.942	10.9	12	0.100911	0.451
Echo	87	685911.347	4815493.484	8.9	10	0.191048	0.452
Echo	88	685882.822	4815497.958	5.1	10	0.092788	0.452
Echo	89	685854.725	4815497.890	1.2	12	0.052646	0.451
Echo	90	685915.772	4815669.814	8.3	10	0.044265	0.308
Echo	91	685936.902	4815664.976	10.5	11	0.059434	0.307
Echo	92	685962.570	4815660.774	12.8	14	0.073041	0.305
Echo	93	685993.593	4815653.453	14.8	10	0.056557	0.306
Echo	94	686021.768	4815651.645	15.1	10	0.051010	0.305
Echo	95	686096 242	4815647.414	14.0	10	0.028/11	0.304
Echo	96	0000000.312	4010039.827	ö./	10	0.028958	0.304
Echo	9/	686060.392	40100/4.900	1.4	10	0.000900	0.312
Echo	90	686110 130	4815655 530	1 7	11	0.040410	0.302
Echo	100	685834 161	4815738 70/	20	12	0.071588	0.346
Echo	100	685858 800	4815747 287	2.J 5.3	10	0.053156	0.333

				Depth	Filtered		Horizontal
Lake	Point	Easting (m)	Northing (m)	(m)	Positions	StDev	Precision (m)
Echo	102	685890.659	4815755.828	7.1	10	0.036717	0.332
Echo	103	685926.933	4815766.276	11.0	10	0.040887	0.332
Echo	104	685960.659	4815773.703	12.5	10	0.037835	0.332
Echo	105	685989.343	4815777.810	11.2	10	0.049874	0.332
Echo	106	686024.005	4815785.305	6.6	10	0.034054	0.332
Echo	107	686016.873	4815834.425	0.6	10	0.036059	0.331
Echo	108	685987.815	4815827.638	9.7	10	0.034417	0.331
Echo	109	685949.962	4815819.099	12.5	10	0.051299	0.331
Echo	110	685933.527	4815816.273	12.1	10	0.050356	0.331
Echo	111	685906.515	4815811.817	10.5	10	0.084682	0.331
Echo	112	685881.157	4815808.066	8.3	11	0.039156	0.331
Echo	113	685858.760	4815804.399	5.8	10	0.056502	0.359
Echo	114	685833.434	4815801.760	1.6	11	0.072701	0.360
Echo	115	686011.044	4815901.522	2.2	10	0.085064	0.333
Echo	116	685800.386	4816016.247	2.9	10	0.026640	0.384
Echo	117	685812.246	4816017.405	6.5	10	0.059392	0.385
Echo	118	685844.915	4816016.020	14.2	10	0.049935	0.337
Echo	119	685883.322	4816022.473	17.9	10	0.056863	0.337
Echo	120	685914.612	4816023.411	18.4	10	0.079454	0.337
Echo	121	685952.456	4816023.980	15.7	10	0.104799	0.337
Echo	122	685969.936	4816023.248	12.5	10	0.104728	0.338
Echo	123	686001.031	4816024.867	4.2	10	0.118769	0.338
Echo	124	686018.859	4816026.015	0.5	10	0.102523	0.421
Echo	125	686067.322	4816175.588	0.3	10	0.068039	0.338
Echo	126	686100.520	4816209.720	0.3	10	0.066911	0.339
Echo	127	686231.224	4816280.513	0.5	10	0.064540	0.408
Echo	128	686218.434	4816308.554	5.0	10	0.059968	0.407
Echo	129	686209.048	4816329.990	5.7	10	0.098422	0.407
Echo	130	686198.540	4816353.157	4.1	10	0.085865	0.407
Echo	131	686185.052	4816374.349	2.0	10	0.079728	0.407
Echo	132	686177.663	4816399.038	0.5	10	0.029485	0.399
Echo	133	686266.802	4816381.275	0.5	10	0.065737	0.399
Echo	134	686269.997	4816359.232	1.3	10	0.019376	0.399
Echo	135	686273.631	4816334.422	2.5	10	0.061102	0.399
Echo	136	686276.731	4816314.102	0.3	11	0.036469	0.396
Echo	137	686042.303	4816371.487	0.7	10	0.024396	0.388
Echo	138	686052.805	4816340.835	4.5	10	0.037194	0.388
Echo	139	686059.586	4816318.244	6.1	10	0.120250	0.388
Echo	140	686068,416	4816293.626	7.5	10	0.075546	0.388
Echo	141	686080.279	4816263.707	6.3	10	0.061281	0.388
Echo	142	686089.177	4816233.606	2.0	10	0.111794	0.388
Echo	143	686024.386	4816184.503	13.3	10	0.031426	0.388
Echo	144	685988.792	4816192.091	23.7	10	0.038882	0.381
Echo	145	685947.948	4816201.193	25.7	10	0.072272	0.381
Echo	146	685900.678	4816212.166	25.8	10	0.030459	0.429
Echo	147	685858.630	4816219.724	26.0	10	0.038315	0.429
Echo	148	685825,406	4816227.236	25.3	10	0.048239	0.429
Echo	149	685795.391	4816234.533	22.4	10	0.043895	0.429
Echo	150	685765.774	4816242.675	17.2	10	0.076961	0.429
Echo	151	685726.619	4816250.981	5.1	10	0.170762	0.429
Echo	152	685769.888	4816071.552	3.4	10	0.065243	0.449
Echo	153	685767.151	4816099.118	5.1	11	0.046879	0.435
Echo	154	685765.045	4816130.694	6.4	16	0.088580	0.376
Echo	155	685764.667	4816156.674	8.5	12	0.100228	0.352
Echo	156	685762.553	4816193.752	12.6	12	0.110653	0.352
Echo	157	685763.650	4816230.836	15.9	13	0.046196	0.284
Echo	158	685763.557	4816257.965	17.9	10	0.063379	0.286
Echo	159	685765.023	4816294.955	13.6	10	0.107510	0.341
Echo	160	685786.271	4816324.621	12.3	10	0.165235	0.438
Echo	161	685786.736	4816295.302	18.3	10	0.060391	0.303
Echo	162	685788.147	4816260.923	20.6	10	0.057358	0.303
Echo	163	685789.650	4816229.172	21.5	10	0.052624	0.303
Echo	164	685789.186	4816197.768	20.1	10	0.037256	0.262
Echo	165	685790.174	4816169.168	18.1	10	1.048106	0.263
Echo	166	685789.115	4816134.276	13.4	10	0.054845	0.262
Echo	167	685790.195	4816102.813	10.8	14	0.135945	0.261
Echo	168	685793.143	4816077.697	7.6	10	0.096802	0.262
Echo	169	685796.423	4816053.383	6.7	11	0.100952	0.262
Echo	170	685812.145	4816054.430	9.4	10	0.054644	0.262
Echo	171	685811.597	4816092.048	14.2	10	0.051158	0.263
Echo	172	685814.196	4816126.191	18.3	10	0.101251	0.263
Echo	173	685819.018	4816159 188	22.5	10	0.061251	0.263
Echo	174	685823 171	4816196 886	25.3	10	0.140256	0.265
Echo	175	685825.276	4816236.883	24.9	10	0.061984	0,265
Echo	176	685826 793	4816270 599	24.3	10	0.105853	0.265
Echo	177	685827 428	4816303 000	22.1	10	0.045513	0.265
Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
--------------	-------	-------------	--------------	--------------	-----------------------	----------	-----------------------------
Echo	178	685813.772	4816343.687	13.8	10	0.091373	0.266
Echo	179	685837.005	4816366.802	11.9	10	0.026977	0.328
Echo	180	685844.344	4816335.483	19.7	10	0.052887	0.266
Echo	181	685849.265	4816305.177	23.8	12	0.052648	0.266
Echo	182	685850.654	4816272.532	25.3	10	0.071019	0.305
Echo	183	685851.298	4816239.626	25.9	10	0.055181	0.267
Echo	184	685854.202	4816201.616	25.9	10	0.077833	0.267
Echo	185	685858.066	4816167.444	24.8	12	0.049195	0.267
Echo	186	685862.646	4816123.275	22.9	10	0.068051	0.268
Echo	107	695973 079	4010000.044	20.0	10	0.090731	0.268
Echo	180	685010 360	4816058 133	10.7	10	0.053003	0.200
Echo	109	685909 085	4816095 473	21.7	10	0.036391	0.209
Echo	191	685908.331	4816140.054	24.3	11	0.053797	0.307
Echo	192	685907.586	4816178.476	25.5	10	0.127062	0.322
Echo	193	685903.186	4816218.017	26.2	10	0.083336	0.279
Echo	194	685899.998	4816252.294	26.6	10	0.051800	0.324
Echo	195	685893.670	4816282.876	26.5	10	0.120760	0.324
Echo	196	685922.172	4816288.842	26.6	10	0.099064	0.327
Echo	197	685933.137	4816258.699	24.8	10	0.077943	0.327
Echo	198	685939.688	4816217.293	26.2	10	0.063566	0.327
Echo	199	685944.077	4816178.464	25.2	10	0.052404	0.331
Echo	200	685947.442	4816145.282	24.6	10	0.124173	0.331
Echo	201	685947.793	4816107.279	22.2	10	0.036504	0.332
Echo	202	685947.490	4816055.786	18.3	10	0.034615	0.332
Echo	203	6950904.010	4010009.237	15.4	10	0.001090	0.332
Echo	204	685978 350	4010107.300	20.4	10	0.031792	0.332
Echo	205	685973 224	4816178 617	23.3	10	0.099664	0.332
Echo	200	685970 923	4816214 335	25.3	10	0.038366	0.332
Echo	208	685966.064	4816262.267	25.7	10	0.043552	0.405
Echo	209	685960.072	4816297.564	24.2	10	0.128337	0.331
Echo	210	685958.040	4816334.442	17.8	10	0.073092	0.331
Echo	211	685921.071	4816328.211	22.9	10	0.034408	0.331
Echo	212	685917.654	4816368.848	14.0	10	0.067070	0.409
Echo	213	685955.136	4816372.809	9.0	10	0.114579	0.409
Echo	214	685993.693	4816357.312	10.8	10	0.110878	0.417
Echo	215	686001.608	4816309.979	15.6	10	0.052849	0.417
Echo	216	686008.462	4816266.959	18.4	10	0.067718	0.417
ECNO	217	686010.779	4816219.800	19.4	10	0.097623	0.329
Echo	210	696015 624	4010101.413	17.2	10	0.077342	0.449
Echo	219	686041 189	4816170 501	4.1	10	0.072010	0.329
Echo	220	686044 147	4816212 248	5.8	10	0.370747	0.404
Echo	222	686041.376	4816260.048	12.0	11	0.137984	0.512
Echo	223	685972.135	4815965.295	6.0	10	0.060275	0.464
Echo	224	685923.181	4815964.013	14.4	10	0.071330	0.470
Echo	225	685883.187	4815964.301	14.7	11	0.176410	0.469
Echo	226	685840.924	4815964.608	13.4	10	0.071461	0.505
Echo	227	685840.937	4815932.730	12.4	10	0.057130	0.505
Echo	228	685880.779	4815929.431	14.8	10	0.142570	0.505
Echo	229	685917.561	4815925.698	13.8	10	0.110591	0.474
Echo	230	685963.336	4815930.175	12.2	10	0.170873	0.474
Echo	231	685965.111	4815875.149	9.7	10	0.148921	0.473
Echo	232	695996 915	4010070.770	13.7	10	0.162763	0.473
Echo	233	6858/8 522	4015007.520	7.8	10	0.040734	0.524
Echo	234	685818 490	4815879 093	7.0	10	0.103002	0.524
Echo	236	685890 421	4815690 114	3.3	10	0.099561	0.524
Echo	237	685902 136	4815689 090	5.8	10	0 148608	0.524
Echo	238	685912.377	4815688.346	7.0	11	0.141545	0.469
Echo	239	685924.324	4815689.833	8.3	10	0.063059	0.530
Echo	240	685930.216	4815708.865	7.7	11	0.065010	0.529
Echo	241	685955.873	4815719.428	10.2	10	0.171525	0.529
Echo	242	685976.735	4815735.422	10.7	14	0.065766	0.525
Echo	243	685998.123	4815749.976	8.9	10	0.101493	0.528
Echo	244	685942.154	4816199.510	25.4	10	0.064115	0.270
Echo	245	685955.707	4816220.500	25.7	10	0.029966	0.293
Echo	246	685947.925	4816233.989	25.7	10	0.035346	0.294
ECNO Echo	247	685924.073	4816231.527	25.7	10	0.044913	0.294
Echo	248	685005 445	4816209.045	26.2	11	0.064810	0.270
Echo	C2	6850/1 /65	4010031.092	14.0	10	0.030720	0.311
Echo	C3	685040 033	4816210 766	20.2	13	0.004041	0.202
Echo	C4	686005 800	4815626 795	14.8	13	0 112002	0.384
Echo	P	685852 060	4814920 500	0.0	10	0.112002	0.004

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	P	685853.310	4814920.500	0.0			1
Echo	Р	685859.560	4814918.000	0.0			
Echo	P	685860.750	4814918.500	0.0			
Echo	P	685861.940	4814919.500	0.0			
Echo	Р	685865.440	4814927.000	0.0			
Echo	P	685870.250	4814931.000	0.0			
Echo	Р	685872.500	4814938.500	0.0			
Echo	Р	685874.940	4814939.500	0.0			
Echo	P	685878.440	4814946.000	0.0			
Echo	P	685884.500	4814949.500	0.0			
Echo	P	685888.060	4814954.500	0.0			
Echo	P	685890.500	4814956.000	0.0			
Echo	Р	685896.440	4814962.500	0.0			
Echo	P	685902.620	4814962.500	0.0			
Echo	P	685905.060	4814964.000	0.0			
Echo	P	685911.190	4814964.000	0.0			
Echo	P	685917.380	4814962.000	0.0			
Echo	P	685922.310	4814962.000	0.0			
Echo	P	685922.310	4814960.500	0.0			
Echo	P	685929.880	4814956.000	0.0			
Echo	P	685932.310	4814955.000	0.0			
Echo	P	685934.880	4814952.500	0.0			
Echo	P	685938.750	4814945.500	0.0			
Echo	P	685941.250	4814943.000	0.0			
Echo	P	685942.750	4814933.000	0.0			
Echo	P	685944.060	4814930.500	0.0			
Echo	P	685945.560	4814921.000	0.0			
Echo	P	685945.690	4814917.500	0.0			
Echo	P	685947.000	4814913.500	0.0			
Echo	P	685947.120	4814908.500	0.0			
Echo	P	685948.620	4814899.000	0.0			
Echo	P	685948.690	4814895.500	0.0			
Echo	P	685951.380	4814887.000	0.0			
Echo	P	685952.690	4814885.500	0.0			
Echo	P	685954.000	4814882.000	0.0			
Echo	P	685954.000	4814880.500	0.0			
Echo	P	685955.310	4814879.500	0.0			
Echo	P	685957.880	4814876.000	0.0			
Echo	P	685959.120	4814875.000	0.0			
Echo	P	685965.310	4814873.500	0.0			
Echo	P	685966.500	4814874.000	0.0			
Echo	P	685973.750	4814879.000	0.0			
Echo	P	685974.940	4814881.500	0.0			
Echo	P	685984.560	4814889.000	0.0			
Echo	P	685988.120	4814893.000	0.0			
Echo	P	685990.440	4814899.000	0.0			
Echo	P	685998.750	4814909.000	0.0			
Echo	P	685999.940	4814910.500	0.0			
Echo	P	686001.120	4814913.000	0.0			
Echo	P	686003.440	4814919.000	0.0			
Echo	P	686009.380	4814925.500	0.0			
Echo	P	686012.940	4814930.500	0.0			
Echo	P	686016.380	4814939.000	0.0			
Echo	P	686021.060	4814949.000	0.0			
Echo	P	686023.380	4814954.000	0.0			
Echo	P	686026.810	4814964.000	0.0			
Echo	P	686027.880	4814969.000	0.0			
Echo	P	686031.310	4814979.000	0.0			
Echo	P	686031.310	4814980.000	0.0			
Echo	P	686040.750	4814995.000	0.0			
Echo	P	686040.690	4814996.500	0.0			
Echo	P	686045.250	4815009.000	0.0			
Echo	P	686047.690	4815011.500	0.0			
Echo	P	686048.690	4815020.000	0.0			
Echo	P	686052.190	4815025.000	0.0			
Echo	P	686058.120	4815034.000	0.0			
Echo	P	686059.380	4815034.000	0.0			
Echo	P	686062.750	4815043.500	0.0			
Echo	P	686065.190	4815046.500	0.0			
Echo	P	686066.310	4815048.500	0.0			
Echo	P	686068.620	4815055.000	0.0			
Echo	P	686070.940	4815060.000	0.0			
Echo	P	686072.060	4815065.000	0.0			
Echo	Р	686074.380	4815070.000	0.0			
Echo	P	686074.310	4815072.500	0.0			
Echo	P	686074.000	4815084.500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	P	686071.440	4815087.000	0.0			
Echo	Р	686071.250	4815094.500	0.0			
Echo	P	686071.060	4815101.500	0.0			
Echo	Р	686069.380	4815117.500	0.0			
Echo	P	686068.190	4815117.500	0.0			
Echo	P	686065.310	4815131.000	0.0			
Echo	P	686064.060	4815132.000	0.0			
Echo	P	686062.560	4815142.000	0.0			
Echo	P	686060.000	4815146.500	0.0			
Echo	P	686058.750	4815148.000	0.0			
Echo	Р	686058.690	4815149.000	0.0			
Echo	P	686053.560	4815156.500	0.0			
Echo	Р	686053.560	4815157.500	0.0			
Echo	P	686053.500	4815159.000	0.0			
Echo	P	686050.940	4815163.500	0.0			
Echo	P	686050.600	4015100.000	0.0			
Echo	P	686050.090	4013172.000	0.0			
Echo	P	686050.300	4815181.000	0.0			
Echo	P	686052 880	4815182 000	0.0			
Echo	P	686055.310	4815183 500	0.0			
Echo	P	686057 810	4815182 000	0.0			
Echo	P	686062.560	4815187.500	0.0			
Echo	P	686063.560	4815196.000	0.0			
Echo	P	686064.620	4815202.000	0.0			
Echo	Р	686067.060	4815203.500	0.0			
Echo	P	686070.690	4815206.000	0.0			
Echo	P	686075.500	4815210.000	0.0			
Echo	Р	686077.810	4815216.000	0.0			
Echo	P	686078.940	4815219.500	0.0			
Echo	P	686078.880	4815222.000	0.0			
Echo	P	686076.310	4815225.500	0.0			
Echo	P	686075.060	4815227.000	0.0			
Echo	P	686068.690	4815235.500	0.0			
Echo	P	686053.440	4815252.000	0.0			
Echo	P	686052.190	4815253.000	0.0			
Echo	Р	686050.940	4815254.500	0.0			
Echo	P	686048.310	4815259.000	0.0			
Echo	P	686039.560	4815266.500	0.0			
Echo	P	686039.300	4815267.500	0.0			
Echo	P	686037.000	4015200.500	0.0			
Echo	P	686033 120	4815276.000	0.0			
Echo	P	686033.060	4815277 000	0.0			
Echo	P	686031 750	4815282 000	0.0			
Echo	P	686031.690	4815284.500	0.0			
Echo	P	686025.380	4815290.500	0.0			
Echo	Р	686022.880	4815291.500	0.0			
Echo	P	686021.620	4815292.500	0.0			
Echo	Р	686019.060	4815296.500	0.0			
Echo	Р	686017.750	4815298.500	0.0			
Echo	Р	686016.250	4815309.500	0.0			
Echo	P	686014.940	4815312.000	0.0			
Echo	P	686015.940	4815319.500	0.0			
Echo	P	686017.120	4815321.000	0.0			
Echo	P	686018.440	4815319.500	0.0			
Echo	P	686018.560	4815313.500	0.0			
Echo	P	686019.810	4815312.500	0.0			
Echo	Р	686019.810	4815313.500	0.0			
Echo	Р	686019.620	4815319.500	0.0			
Echo	P	686020.750	4815323.500	0.0			
Echo	P	696024.120	4010000	0.0			
Echo	P	686026 500	4015555.500	0.0			
Echo	P	686026.300	4010000.000	0.0			
Echo	P	686026 120	4815353 000	0.0			
Echo	P	686026.060	4815354 000	0.0			
Echo	P	686026.000	4815355 500	0.0			
Echo	P	686023 310	4815365 000	0.0			
Echo	P	686022.060	4815366.500	0.0			
Echo	Р	686015.560	4815378.500	0.0			
Echo	P	686014.310	4815379.500	0.0			
Echo	P	686014.120	4815387.000	0.0			
Echo	P	686014.120	4815388.000	0.0			
Echo	P	686015.310	4815389.500	0.0			
Echo	P	686015.190	4815394.500	0.0			

Echa P 688014 250 481540 200 0.0	Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo P 686014 690 4451541.500 0.0 Echo P 686014 620 481541.200 0.0 Echo P 686010 530 481542.000 0.0 Echo P 686010 530 481542.000 0.0 Echo P 686010 530 441542.000 0.0 Echo P 686000 540 441542.500 0.0 Echo P 686007.940 441542.500 0.0 Echo P 686007.940 441543.500 0.0 Echo P 686007.840 441543.500 0.0 Echo P 686007.840 4415442.500 0.0 Echo P 686007.840 4415442.500 0.0 Echo P 686007.840 4415445.500 0.0 Echo P 686027.830 441547.500 0.0 Echo P 686027.840 441547.500 0.0 Echo P 686007.850 441547.500 0.0<	Echo	P	686014.750	4815409.000	0.0			_
Echo P 686014.690 44/54/2.500 0.0 Echo P 686012.000 44/54/2.000 0.0 Echo P 686017.500 44/54/2.000 0.0 Echo P 686007.340 44/54/2.500 0.0 Echo P 686007.340 44/54/3.500 0.0 Echo P 686007.340 44/54/3.500 0.0 Echo P 686040.530 44/54/7.500 0.0 Echo P 686047.560 44/54/7.500 0.0 Echo P 68607.860 44/54/7.500 0.0 Echo P 68607.860 44/54/7.500 0.0 Echo P 68607.860 44/54/7.500	Echo	P	686014.690	4815411.500	0.0			
Echo P 686014 620 441542.000 0.0 Echo P 686017 500 441542.000 0.0 Echo P 686017 500 441542.000 0.0 Echo P 686003 380 441542.000 0.0 Echo P 686007 340 441542.000 0.0 Echo P 686007 540 441543.500 0.0 Echo P 686007 540 441543.500 0.0 Echo P 686013 440 441543.500 0.0 Echo P 686013 440 441543.500 0.0 Echo P 686021 1.20 4415443.500 0.0 Echo P 686023 840 441543.500 0.0 Echo P 686024 750 441543.500 0.0 Echo P 686025 380 4415477.000 0.0 Echo P 686027 280 4415482.00 0.0 Echo P 686027 2804 4415482.00 0.0<	Echo	Р	686014.690	4815412.500	0.0			
Eho P 686012.000 445422.000 0.0 Echo P 686007.360 445422.000 0.0 Echo P 686007.360 445422.000 0.0 Echo P 686007.360 445432.000 0.0 Echo P 686012.12.0 445432.500 0.0 Echo P 686012.12.0 4454432.500 0.0 Echo P 686014.200 4454542.000 0.0 Echo P 686042.300 4454542.000 0.0 Echo P 686054.340 4454542.000 0.0 Echo P 686054.340 4454542.000 0.0 Echo P 686074.260 4454542.000 0.0 Echo P 686074.260 4454642.000	Echo	Р	686014.620	4815414.000	0.0			
Eho P 680017.50 4415421.000 0.0 Echo P 680003.80 4415422.500 0.0 Echo P 680007.840 4415422.500 0.0 Echo P 688007.940 4415422.500 0.0 Echo P 688007.840 4415432.500 0.0 Echo P 688007.840 4415432.500 0.0 Echo P 688007.840 4415432.500 0.0 Echo P 688021.120 4415445.000 0.0 Echo P 688021.820 4415445.000 0.0 Echo P 688054.840 441547.500 0.0 Echo P 688058.380 441547.000 0.0 Echo P 688057.550 431547.500 0.0 Echo P 688058.2380 4415482.000 0.0 Echo P 688065.756 4415477.000 0.0 Echo P 688065.2380 4415482.000 <	Echo	P	686012.000	4815420.000	0.0			
Eho P 686003 380 4415425.000 0.0 Echo P 686003 380 4415427.500 0.0 Echo P 686007.840 4415433.500 0.0 Echo P 686007.840 4415433.500 0.0 Echo P 686007.840 4415433.500 0.0 Echo P 686007.810 4415433.500 0.0 Echo P 686007.810 4415433.500 0.0 Echo P 686003.380 4415435.500 0.0 Echo P 686003.380 4415445.500 0.0 Echo P 686007.120 4415445.500 0.0 Echo P 686007.800 441547.500 0.0 Echo P 686007.800 441547.500 0.0 Echo P 68607.800 4415472.500 0.0 Echo P 68607.800 4415485.000 0.0 Echo P 686077.800 4415482.500 <t< td=""><td>Echo</td><td>P</td><td>686010.750</td><td>4815421.000</td><td>0.0</td><td></td><td></td><td></td></t<>	Echo	P	686010.750	4815421.000	0.0			
Echo P 668000.800 4415427.500 0.0 Echo P 668000.800 4415423.500 0.0 Echo P 868007.940 4415433.500 0.0 Echo P 868007.940 4415437.000 0.0 Echo P 688007.940 4415437.000 0.0 Echo P 688007.120 4415443.000 0.0 Echo P 688004.050 4415443.000 0.0 Echo P 688004.750 4415443.000 0.0 Echo P 688004.750 4415443.000 0.0 Echo P 688004.750 4415443.000 0.0 Echo P 688007.500 4415443.000 0.0 Echo P 688007.580 4415447.00 0.0 Echo P 688007.580 4415447.00 0.0 Echo P 688007.580 4415447.00 0.0 Echo P 688007.580 4415447.500	Echo	P	686009.380	4815426.000	0.0			
Echo P 6680001 4415428.500 0.0 Echo P 668007.340 4415434.500 0.0 Echo P 688007.340 4415434.500 0.0 Echo P 688007.840 4415434.500 0.0 Echo P 688007.830 4415431.500 0.0 Echo P 688007.830 4415431.500 0.0 Echo P 688007.830 4415431.500 0.0 Echo P 688007.500 4415473.000 0.0 Echo P 688007.500 4415473.000 0.0 Echo P 688007.850 4415473.000 0.0 Echo P 688007.850 441542.000 0.0 Echo P 688007.850 441542.000 0.0 Echo P 688007.850 441542.000 0.0 Echo P 688007.850 441542.500 0.0 Echo P 688000.620 441542.500 0	Echo	P	686009.380	4815427.500	0.0			
Echo P 686007.340 4451643.500 0.0 Echo P 686007.340 4451647.000 0.0 Echo P 686007.340 4451647.000 0.0 Echo P 686007.340 4451647.300 0.0 Echo P 686007.340 4451647.300 0.0 Echo P 686004.050 4451647.300 0.0 Echo P 686004.750 4451647.000 0.0 Echo P 686004.500 4451647.000 0.0 Echo P 686005.560 4451647.000 0.0 Echo P 686007.680 4451647.000 0.0 Echo P 686007.880 4451647.00 0.0 Echo P 686007.880 4451647.200 <	Echo	P	686008.060	4815428.500	0.0			
Erho P 686007.90 44815435.00 0.0 Erho P 686003.06 44815437.00 0.0 Erho P 686013.01 44815435.00 0.0 Erho P 686012.12 44815445.00 0.0 Erho P 686021.12 44815445.00 0.0 Erho P 686047.50 4481543.00 0.0 Erho P 686055.60 481547.200 0.0 Erho P 686055.80 481547.200 0.0 Erho P 686055.76 4815477.00 0.0 Erho P 686057.50 4815472.00 0.0 Erho P 686071.82 4815482.00 0.0 Erho P 686072.80 4815492.00 0.0	Echo	P	686007.940	4815433.500	0.0			
Erho P 686003 44815437.000 0.0 Erho P 686013.940 4815435.00 0.0 Erho P 886021.120 4815445.00 0.0 Erho P 886027.800 4815451.000 0.0 Erho P 886027.800 4815457.1000 0.0 Erho P 686027.800 4815457.000 0.0 Erho P 686067.800 4815477.000 0.0 Erho P 686067.500 4815479.000 0.0 Erho P 686067.500 4815479.500 0.0 Erho P 686067.260 4815489.00 0.0 Erho P 686077.860 4815499.00 0.0 Erho P 686077.860 4815499.00 0.0 Erho P 686077.860 4815499.00 0.0 Erho P 686078.800 4815479.00 0.0 Erho P 686077.860 4815479.00 0.0	Echo	P	686007.940	4815434.500	0.0			
Echo P 68601310 441543500 0.0 Echo P 686021120 4415444500 0.0 Echo P 686021120 4415445100 0.0 Echo P 686021300 441545100 0.0 Echo P 686021300 441545100 0.0 Echo P 686021750 4415463000 0.0 Echo P 686021760 441547500 0.0 Echo P 68607500 441547500 0.0 Echo P 68607500 441548200 0.0 Echo P 68607580 441549300 0.0 Echo P 68607280 44154900 0.0 Echo P 686072800 44154900 0.0 Echo<	Echo	P	686009.060	4815437.000	0.0			
Echo P 688011.20 4815446.300 0.0 Echo P 688021.120 4815446.300 0.0 Echo P 688024.300 4815457.500 0.0 Echo P 688024.300 4815457.500 0.0 Echo P 688024.500 4815457.500 0.0 Echo P 688057.500 481547.700 0.0 Echo P 688057.500 4815487.500 0.0 Echo P 688057.500 4815487.500 0.0 Echo P 688077.500 4815487.500 0.0 Echo P 688072.800 4815487.500 0.0 Echo P 688072.800 4815487.000 0.0 Echo P 688072.800 4815487.000 0.0 Echo P 688077.560 4815487.000 0.0 Echo P 688072.800 4815487.000 0.0 Echo P 688103.800 481547.500	Echo	P	686013.940	4815439.500	0.0			
Erho P 688021.30 4815451.000 0.0 Echo P 688024.300 4815451.000 0.0 Echo P 688047.750 4815451.000 0.0 Echo P 688047.750 4815457.000 0.0 Echo P 6880047.80 4815457.000 0.0 Echo P 688007.830 4815477.000 0.0 Echo P 688007.830 4815497.000 0.0 Echo P 68807.0500 4815494.500 0.0 Echo P 68807.1620 4815494.500 0.0 Echo P 68807.580 4815494.500 0.0 Echo P 68807.580 4815497.500 0.0 Echo P 68808.20 4815497.500 0.0 Echo P 68809.4820 4815497.500 0.0 Echo P 68810.3940 4815497.500 0.0 Echo P 68810.3940 4815547.500 <t< td=""><td>Echo</td><td>P</td><td>686016.310</td><td>4815443.500</td><td>0.0</td><td></td><td></td><td></td></t<>	Echo	P	686016.310	4815443.500	0.0			
Echo P 688004.500 4815457.500 0.0 Echo P 688004.500 4815457.500 0.0 Echo P 688004.500 4815457.500 0.0 Echo P 688005.380 4815477.000 0.0 Echo P 688005.380 4815477.000 0.0 Echo P 688007.580 4815477.000 0.0 Echo P 688007.580 4815487.200 0.0 Echo P 688077.580 4815487.200 0.0 Echo P 688077.880 4815487.000 0.0 Echo P 688078.620 4815487.000 0.0 Echo P 688078.620 481555.00 0.0 Echo P 688172.830 481555.50 <	Echo	P	686021.120	4815446.000	0.0			
Echo P 686047.500 4815463.000 0.0 Echo P 686054.340 4815463.000 0.0 Echo P 686058.560 4815473.000 0.0 Echo P 686057.550 4815473.000 0.0 Echo P 686065.750 4815474.200 0.0 Echo P 686067.550 4815484.200 0.0 Echo P 686070.550 4815484.500 0.0 Echo P 686077.560 4815484.500 0.0 Echo P 686077.580 4815484.500 0.0 Echo P 686077.860 4815485.00 0.0 Echo P 68608.810 4815483.00 0.0 Echo P 68610.840 4815483.00 0.0 Echo P 68610.840 481552.500 0.0 Echo P 686112.830 481552.500 0.0 Echo P 686112.830 4815547.500 0	Echo	P	686028.380	4815451.000	0.0			
Echo P 686047,750 4815468.000 0.0 Echo P 686054.940 4815467.000 0.0 Echo P 686053.80 4815477.000 0.0 Echo P 686053.80 4815477.000 0.0 Echo P 686007.500 4815482.000 0.0 Echo P 68607.800 4815489.000 0.0 Echo P 68607.800 4815487.000 0.0 Echo P 68607.800 48155437.00 0.0 Echo P 68607.800 48155537.00 0.0 Echo P 68612.8340 4815557.00 0.0 Echo P 68612.8340 4815557.00 0.0 </td <td>Echo</td> <td>P</td> <td>686040.500</td> <td>4815457.500</td> <td>0.0</td> <td></td> <td></td> <td></td>	Echo	P	686040.500	4815457.500	0.0			
Echo P 668055.80 4415473.000 0.0 Echo P 668055.80 4415477.000 0.0 Echo P 668055.80 4415477.000 0.0 Echo P 668057.50 0.0 1 Echo P 668057.50 0.0 1 Echo P 668075.80 4415445.00 0.0 Echo P 686077.50 4415448.000 0.0 Echo P 686077.80 4415480.000 0.0 Echo P 686077.80 4415480.000 0.0 Echo P 686077.80 4415487.500 0.0 Echo P 686078.50 0.0 1 Echo P 686103.504 4415512.500 0.0 Echo P 686113.504 441552.500 0.0 Echo P 686128.804 4415557.500 0.0 Echo P 686128.810 4415552.500 0.0	Echo	P	686047.750	4815463.000	0.0			
Echa P 688005.80 4415477.000 0.0 Echa P 688005.750 4415479.500 0.0 Echa P 688005.750 4415479.500 0.0 Echa P 688007.500 4415445.500 0.0 Echa P 688077.500 4415449.500 0.0 Echa P 688077.800 4415449.500 0.0 Echa P 688077.800 4415449.500 0.0 Echa P 688009.60.00 4415497.500 0.0 Echa P 688009.820 4415497.500 0.0 Echa P 688009.820 441552.500 0.0 Echa P 688009.820 441552.500 0.0 Echa P 688113.500 441552.500 0.0 Echa P 688128.810 441552.500 0.0 Echa P 688128.810 441552.500 0.0 Echa P 688128.810 4415585.500 <	Echo	P	686054.940	4815469.000	0.0			
Echo P 668005.380 4415477.000 0.0 Echo P 668005.75 4415442.000 0.0 Echo P 668007.500 4415445.00 0.0 Echo P 668077.620 4415449.500 0.0 Echo P 668077.630 4415449.500 0.0 Echo P 668077.560 4415499.500 0.0 Echo P 668077.560 4415497.500 0.0 Echo P 6680268.622 4415592.500 0.0 Echo P 6680268.622 4415592.500 0.0 Echo P 6680268.622 4415592.500 0.0 Echo P 6686128.264 4415592.500 0.0 Echo P 6686129.563 0.0 0 Echo P 6686129.563 0.0 0 Echo P 6686129.563 0.0 0 Echo P 6686129.550 0.0 0	Echo	P	686058.560	4815473.000	0.0			
Echo P 668005.750 4415479.500 0.0 Echo P 668007.500 4415445.500 0.0 Echo P 668007.500 4415445.500 0.0 Echo P 668077.800 4415449.500 0.0 Echo P 668077.800 4415498.000 0.0 Echo P 668077.500 4415498.000 0.0 Echo P 668078.800 4415497.500 0.0 Echo P 668079.620 4415497.500 0.0 Echo P 668079.620 441552.500 0.0 Echo P 668079.620 441552.500 0.0 Echo P 668173.800 441552.500 0.0 Echo P 668173.800 441552.500 0.0 Echo P 668123.810 441552.500 0.0 Echo P 668123.810 441552.500 0.0 Echo P 668123.810 441552.500	Echo	P	686063.380	4815477.000	0.0			
Echo P 6686075.00 4415442.000 0.0 Echo P 6686077.620 4415449.500 0.0 Echo P 6686077.620 4415499.500 0.0 Echo P 6686077.880 4415498.000 0.0 Echo P 6686075.800 4415498.000 0.0 Echo P 668608.620 4415497.000 0.0 Echo P 668608.620 4415592.500 0.0 Echo P 668609.8610 4415592.500 0.0 Echo P 6686112.30 4415592.500 0.0 Echo P 6686112.30 4415592.500 0.0 Echo P 668612.50 0.0 0 Ech	Echo	P	686065.750	4815479.500	0.0			
Echo P 686071.500 4815494.500 0.0 Echo P 686071.620 4815495.500 0.0 Echo P 686073.800 4815498.000 0.0 Echo P 686073.800 4815498.000 0.0 Echo P 686073.800 4815497.000 0.0 Echo P 686094.620 4815502.500 0.0 Echo P 686094.620 4815532.500 0.0 Echo P 686103.404 4815532.500 0.0 Echo P 686112.380 4815533.500 0.0 Echo P 686112.380 4815533.500 0.0 Echo P 686128.40 4815557.500 0.0 Echo P 686128.40 4815557.500 0.0 Echo P 686128.40 4815657.500 0.0 Echo P 686129.260 4816683.500 0.0 Echo P 686129.260 4816684.000	Echo	P	686068.120	4815482.000	0.0			
Echo P 686071.620 4815495.500 0.0 Echo P 686072.680 4815498.000 0.0 Echo P 686073.880 4815498.000 0.0 Echo P 686075.680 4815498.000 0.0 Echo P 686088.620 4815497.500 0.0 Echo P 686094.620 4815497.500 0.0 Echo P 686094.620 4815497.500 0.0 Echo P 686103.940 4815530.000 0.0 Echo P 686112.350 4815547.500 0.0 Echo P 686112.360 4815533.500 0.0 Echo P 686122.810 4815535.500 0.0 Echo P 686122.810 4815535.500 0.0 Echo P 686122.310 4815547.500 0.0 Echo P 686122.310 4815655.500 0.0 Echo P 686122.310 4815665.500	Echo	P	686070.500	4815484.500	0.0			
Echo P 686072.680 4815495.500 0.0 Echo P 686077.560 4815498.000 0.0 Echo P 686080.000 4815497.000 0.0 Echo P 686094.202 4815497.500 0.0 Echo P 686094.202 4815502.500 0.0 Echo P 686094.202 4815532.500 0.0 Echo P 686103.340 4815532.500 0.0 Echo P 686112.380 4815532.500 0.0 Echo P 686112.380 4815533.500 0.0 Echo P 686128.40 4815552.500 0.0 Echo P 686128.40 4815555.500 0.0 Echo P 686128.40 4815655.500 0.0 Echo P 686128.40 4815655.500 0.0 Echo P 686128.40 4815655.500 0.0 Echo P 686128.40 4815685.500 <th< td=""><td>Echo</td><td>P</td><td>686071.620</td><td>4815490.500</td><td>0.0</td><td></td><td></td><td></td></th<>	Echo	P	686071.620	4815490.500	0.0			
Echo P 686077.880 4815498.000 0.0 Echo P 686077.560 4815497.000 0.0 Echo P 686088.200 4815497.500 0.0 Echo P 686098.420 4815497.500 0.0 Echo P 686098.420 481552.500 0.0 Echo P 686094.420 4815532.500 0.0 Echo P 686113.500 4815533.500 0.0 Echo P 686112.500 0.0 1000 Echo P 686125.500 0.0 1000 Echo P 686123.800 4815547.500 0.0 Echo P 686123.800 4815547.500 0.0 Echo P 686123.800 4815547.500 0.0 Echo P 686123.800 4815655.500 0.0 Echo P 686123.200 4815655.500 0.0 Echo P 686123.200 4815655.500 0.0	Echo	P	686072.690	4815495.500	0.0			
Echo P 6880077.560 4815497.000 0.0 Echo P 686008.620 4815497.000 0.0 Echo P 686009.620 481552.500 0.0 Echo P 686009.6310 4815512.500 0.0 Echo P 686113.300 481553.300 0.0 Echo P 686112.380 481553.500 0.0 Echo P 686112.380 4815547.500 0.0 Echo P 686125.500 4815547.500 0.0 Echo P 686123.810 4815547.500 0.0 Echo P 686123.810 4815547.500 0.0 Echo P 686123.810 4815647.500 0.0 Echo P 686123.810 4815647.500 0.0 Echo P 686123.840 4815657.500 0.0 Echo P 686128.440 4815657.500 0.0 Echo P 686128.440 4815687.500	Echo	P	686073.880	4815498.000	0.0			
Echo P 688088.00 4815497.500 0.0 Echo P 688098.620 4815497.500 0.0 Echo P 688098.620 481552.500 0.0 Echo P 688098.610.340 481552.500 0.0 Echo P 688113.500 481553.500 0.0 Echo P 688112.800 481553.500 0.0 Echo P 688128.800 4815547.500 0.0 Echo P 688128.400 4815547.500 0.0 Echo P 688129.560 4815547.500 0.0 Echo P 688129.560 4815547.500 0.0 Echo P 688129.250 481563.500 0.0 Echo P 688129.250 481563.500 0.0 Echo P 688129.250 481563.000 0.0 Echo P 688129.260 481563.000 0.0 Echo P 688129.260 4815681.000 <t< td=""><td>Echo</td><td>P</td><td>686077.560</td><td>4815498.000</td><td>0.0</td><td></td><td></td><td></td></t<>	Echo	P	686077.560	4815498.000	0.0			
Echo P 688098.620 4815497.500 0.0 Echo P 688094.620 481552.500 0.0 Echo P 686103.440 4815532.500 0.0 Echo P 686112.380 4815533.500 0.0 Echo P 686113.500 4815533.500 0.0 Echo P 686173.800 4815547.500 0.0 Echo P 686128.340 4815552.500 0.0 Echo P 686128.400 4815552.500 0.0 Echo P 686128.400 4815552.500 0.0 Echo P 686128.400 4815655.500 0.0 Echo P 686128.400 481568.300 0.0 Echo P 686128.400 481568.400	Echo	P	686080.000	4815497.000	0.0			
Echo P 688094.620 4815502.500 0.0 Echo P 686013.940 4815523.500 0.0 Echo P 686113.500 4815533.500 0.0 Echo P 686112.500 4815533.500 0.0 Echo P 686127.880 4815533.500 0.0 Echo P 686128.940 481552.500 0.0 Echo P 686128.940 4815567.500 0.0 Echo P 686129.810 4815574.500 0.0 Echo P 686129.820 4815574.500 0.0 Echo P 686129.250 481563.500 0.0 Echo P 686129.250 481565.500 0.0 Echo P 686129.820 481565.500 0.0 Echo P 686129.820 4815685.200 0.0 Echo P 686128.820 4815685.200 0.0 Echo P 686128.820 4815685.200 <	Echo	P	686088.620	4815497.500	0.0			
Echo P 6880096.810 4815512.500 0.0 Echo P 688112.380 4815532.500 0.0 Echo P 686112.380 4815533.500 0.0 Echo P 686112.380 4815544.000 0.0 Echo P 686128.940 4815547.500 0.0 Echo P 686128.840 4815574.500 0.0 Echo P 686128.940 4815574.500 0.0 Echo P 686129.310 4815587.500 0.0 Echo P 686129.310 4815587.500 0.0 Echo P 686129.320 481563.500 0.0 Echo P 686129.250 481563.500 0.0 Echo P 686129.250 481565.500 0.0 Echo P 686129.250 4815685.500 0.0 Echo P 686129.400 4815685.500 0.0 Echo P 686129.400 4815685.500	Echo	P	686094.620	4815502.500	0.0			
Echo P 688103.940 4815523.500 0.0 Echo P 688113.500 4815533.500 0.0 Echo P 686125.800 4815533.500 0.0 Echo P 686127.800 4815547.500 0.0 Echo P 686128.940 481552.500 0.0 Echo P 686129.500 4815574.500 0.0 Echo P 686129.500 4815574.500 0.0 Echo P 686129.250 481553.500 0.0 Echo P 686129.250 481563.500 0.0 Echo P 686129.250 481563.500 0.0 Echo P 686129.250 481565.500 0.0 Echo P 686128.40 481565.500 0.0 Echo P 686128.40 4815684.000 0.0 Echo P 686128.40 4815684.000 0.0 Echo P 686128.60 4815692.500 0.0	Echo	P	686096.810	4815512.500	0.0			
Echo P 688112.380 4815530.000 0.0 Echo P 6881125.500 4815533.500 0.0 Echo P 688125.500 4815547.500 0.0 Echo P 688128.940 4815552.500 0.0 Echo P 688128.940 4815574.500 0.0 Echo P 688129.910 4815574.500 0.0 Echo P 688129.310 4815574.500 0.0 Echo P 688129.220 4815533.500 0.0 Echo P 688128.404 4815693.000 0.0 Echo P 688128.000 4815633.500 0.0 Echo P 688128.404 4815683.500 0.0 Echo P 688128.404 4815684.000 0.0 Echo P 688128.404 4815685.500 0.0 Echo P 688128.404 4815685.500 0.0 Echo P 686107.310 4815692.500	Echo	Р	686103.940	4815523.500	0.0			
Echo P 688113.500 4815533.500 0.0 Echo P 688127.880 4815547.500 0.0 Echo P 688129.840 4815525.500 0.0 Echo P 688129.840 4815574.500 0.0 Echo P 688129.810 4815574.500 0.0 Echo P 688129.310 4815585.500 0.0 Echo P 688127.440 4815685.500 0.0 Echo P 688127.440 4815683.500 0.0 Echo P 688128.400 4815683.500 0.0 Echo P 688128.40 4815683.500 0.0 Echo P 688128.40 4815684.000 0.0 Echo P 688128.40 4815682.00 0.0 Echo P 688128.40 4815682.00 0.0 Echo P 688128.40 4815682.00 0.0 Echo P 688113.690 4815782.500 0	Echo	P	686112.380	4815530.000	0.0			
Echo P 688125.500 4815547.500 0.0 Echo P 688128.940 4815525.200 0.0 Echo P 688129.940 4815525.200 0.0 Echo P 688129.910 4815574.500 0.0 Echo P 688129.910 4815574.500 0.0 Echo P 688129.310 4815585.500 0.0 Echo P 688128.000 4815633.500 0.0 Echo P 688128.250 4815655.500 0.0 Echo P 688128.440 4815655.500 0.0 Echo P 688128.440 4815655.500 0.0 Echo P 688128.440 4815681.000 0.0 Echo P 688128.440 4815682.500 0.0 Echo P 688128.440 4815682.500 0.0 Echo P 688128.440 4815682.500 0.0 Echo P 688128.400 4815782.500	Echo	Р	686113.500	4815533.500	0.0			
Echo P 686127.880 4415547.500 0.0 Echo P 686128.400 4415567.500 0.0 Echo P 686129.810 4415567.500 0.0 Echo P 686129.810 4415567.500 0.0 Echo P 686129.300 4815585.500 0.0 Echo P 686128.000 4815633.500 0.0 Echo P 686128.000 4815633.500 0.0 Echo P 686128.400 4815683.500 0.0 Echo P 686128.400 4815683.000 0.0 Echo P 686127.880 4815684.000 0.0 Echo P 686127.800 4815684.000 0.0 Echo P 686126.620 4815684.000 0.0 Echo P 68612.8400 4815705.00 0.0 Echo P 68613.600 4815702.00 0.0 Echo P 68613.600 4815727.000 <	Echo	P	686125.500	4815544.000	0.0			
Echo P 686123.940 443552.300 0.0 Echo P 686129.810 441557.500 0.0 Echo P 686129.800 441557.4500 0.0 Echo P 686129.200 4415573.500 0.0 Echo P 686129.200 4415633.500 0.0 Echo P 686129.200 4415633.500 0.0 Echo P 686130.250 4415633.500 0.0 Echo P 686129.200 4415683.300 0.0 Echo P 686128.40 4415683.000 0.0 Echo P 686126.620 4415683.000 0.0 Echo P 686126.620 4415683.000 0.0 Echo P 686128.600 4415683.000 0.0 Echo P 686128.600 4415683.000 0.0 Echo P 686128.600 4415692.500 0.0 Echo P 686113.600 4415727.00 <	Echo	Р	686127.880	4815547.500	0.0			
Echo P 686129.810 4435365.300 0.0 Echo P 686129.310 4815585.500 0.0 Echo P 686129.310 4815585.500 0.0 Echo P 686128.000 4815633.500 0.0 Echo P 686128.000 4815633.500 0.0 Echo P 686128.200 4815685.500 0.0 Echo P 686128.400 4815685.500 0.0 Echo P 686127.880 4815684.000 0.0 Echo P 686127.880 4815681.000 0.0 Echo P 686127.880 4815681.000 0.0 Echo P 686128.400 4815681.000 0.0 Echo P 686128.400 4815681.000 0.0 Echo P 686128.400 4815705.00 0.0 Echo P 68613.500 4815705.00 0.0 Echo P 68613.500 4815721.500 <	Echo	P	686128.940	4815552.500	0.0			
Echo P 686129.300 4431534.300 0.0 Echo P 686127.440 44315585.500 0.0 Echo P 686128.250 44315585.500 0.0 Echo P 686129.250 4431653.500 0.0 Echo P 686129.250 44316563.500 0.0 Echo P 686129.250 44316642.000 0.0 Echo P 686128.440 4816655.500 0.0 Echo P 686128.440 4816655.500 0.0 Echo P 686128.440 4816655.500 0.0 Echo P 686124.000 4815685.00 0.0 Echo P 686124.000 4815705.00 0.0 Echo P 68613.600 4815705.50 0.0 Echo P 68613.600 4815721.000 0.0 Echo P 686101.000 4815727.000 0.0 Echo P 686081.190 4815727.500	Echo	Р	686129.810	4815567.500	0.0			
Echo P 086129.310 44315803.000 0.0 Echo P 686127.440 44315603.000 0.0 Echo P 686128.000 44315603.000 0.0 Echo P 686128.000 44315633.500 0.0 Echo P 686128.200 44315643.000 0.0 Echo P 686128.440 44315663.000 0.0 Echo P 686128.440 44315663.000 0.0 Echo P 686128.440 44315663.000 0.0 Echo P 686128.400 44315663.000 0.0 Echo P 686128.400 44315692.500 0.0 Echo P 686123.940 44315692.500 0.0 Echo P 686123.940 44315702.000 0.0 Echo P 68617.310 44315722.000 0.0 Echo P 686101.900 44315727.500 0.0 Echo P 6866051.190 44315727	Echo	P	686129.560	4815574.500	0.0			
Echo P 686127.440 4815633.500 0.0 Echo P 686129.250 4815633.500 0.0 Echo P 686129.250 4815633.500 0.0 Echo P 686129.250 4815655.500 0.0 Echo P 686128.440 4815685.500 0.0 Echo P 686128.440 4815685.000 0.0 Echo P 686127.880 4815685.000 0.0 Echo P 686124.000 4815685.000 0.0 Echo P 686112.340 4815685.000 0.0 Echo P 686113.690 4815705.00 0.0 Echo P 686103.500 481572.000 0.0 Echo P 686101.000 481572.000 0.0 Echo P 686091.060 481572.500 0.0 Echo P 686091.190 481572.500 0.0 Echo P 686058.620 481573.500 <th< td=""><td>Echo</td><td>P</td><td>686129.310</td><td>4815585.500</td><td>0.0</td><td></td><td></td><td></td></th<>	Echo	P	686129.310	4815585.500	0.0			
Echo P 686122.000 4815633.500 0.0 Echo P 686130.250 4815633.500 0.0 Echo P 686130.250 4815635.00 0.0 Echo P 686128.440 4815663.000 0.0 Echo P 686128.440 4815683.000 0.0 Echo P 686128.440 4815683.000 0.0 Echo P 686126.620 4815685.000 0.0 Echo P 686123.340 4815692.500 0.0 Echo P 686130.350 4815705.500 0.0 Echo P 686130.350 481572.500 0.0 Echo P 686107.310 481572.500 0.0 Echo P 686013.500 481572.500 0.0 Echo P 686014.000 481572.500 0.0 Echo P 686081.190 481572.500 0.0 Echo P 686058.690 481573.500	Echo	P	686127.440	4815609.000	0.0			
Echo P 686130.250 4815642.000 0.0 Echo P 686129.880 481565.500 0.0 Echo P 686129.880 4815684.000 0.0 Echo P 686127.880 4815684.000 0.0 Echo P 686127.880 4815684.000 0.0 Echo P 686126.620 4815684.000 0.0 Echo P 686126.620 4815691.000 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686113.690 481572.00 0.0 Echo P 686107.310 481572.200 0.0 Echo P 686011.000 481572.500 0.0 Echo P 686081.190 481572.500 0.0 Echo P 686081.190 481572.500 0.0 Echo P 686081.190 481572.500 0.0 Echo P 686053.600 4815757.500 0	Echo	P	696120.000	4010033.000	0.0			
Echo P 688130.230 4413042.000 0.0 Echo P 688128.440 4815655.500 0.0 Echo P 688128.440 4815655.500 0.0 Echo P 688128.440 4815685.500 0.0 Echo P 688128.440 4815685.000 0.0 Echo P 688128.440 4815692.500 0.0 Echo P 688115.000 4815692.500 0.0 Echo P 688115.000 4815705.500 0.0 Echo P 688103.300 4815721.000 0.0 Echo P 688103.500 4815727.000 0.0 Echo P 688081.100 4815727.000 0.0 Echo P 688088.10 4815727.500 0.0 Echo P 688058.620 4815737.500 0.0 Echo P 688058.620 4815735.500 0.0 Echo P 688058.620 4815735.500	Echo		696120.250	40100000	0.0			
Echo P 666123.800 4431303.300 0.0 Echo P 686128.440 4815683.000 0.0 Echo P 686127.880 4815683.000 0.0 Echo P 686126.600 4815683.000 0.0 Echo P 686124.000 4815691.000 0.0 Echo P 686123.940 4815705.500 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686107.310 481572.000 0.0 Echo P 686101.000 4815722.000 0.0 Echo P 686013.600 4815722.000 0.0 Echo P 686081.190 4815727.000 0.0 Echo P 686081.190 4815732.500 0.0 Echo P 686058.620 4815732.500 0.0 Echo P 686058.620 4815732.500 0.0 Echo P 686058.620 4815749.000	Echo		696120.230	4013042.000	0.0			
Lcho P 000123-440 4431503-000 0.0 Echo P 686127.880 48315684.000 0.0 Echo P 686126.620 48315684.000 0.0 Echo P 686123.940 48315692.500 0.0 Echo P 686113.690 48315705.500 0.0 Echo P 686107.310 48315705.500 0.0 Echo P 686107.310 48315721.000 0.0 Echo P 686103.00 48315727.000 0.0 Echo P 686011.000 48315727.500 0.0 Echo P 686083.810 48315727.500 0.0 Echo P 686081.190 48315732.500 0.0 Echo P 686053.310 4831573.500 0.0 Echo P 686053.310 4831573.500 0.0 Echo P 686053.310 4831575.500 0.0 Echo P 686052.060 4831577.500 </td <td>Echo</td> <td>P</td> <td>696129.000</td> <td>4015055.500</td> <td>0.0</td> <td></td> <td></td> <td></td>	Echo	P	696129.000	4015055.500	0.0			
Echo P 686126.620 4415045.000 0.0 Echo P 686126.620 4415685.000 0.0 Echo P 686123.940 4815691.000 0.0 Echo P 686115.000 4815705.500 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686101.000 4815721.000 0.0 Echo P 686101.000 4815722.000 0.0 Echo P 686091.060 4815727.000 0.0 Echo P 686091.060 4815727.000 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686058.620 4815739.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686053.310 4815765.500 0.0 Echo P 686054.750 4815785.500	Echo	P	696127,990	4815684 000	0.0			
Cho P 608124.00 4415031.000 0.0 Echo P 688123.940 4815691.000 0.0 Echo P 688113.600 4415705.500 0.0 Echo P 688113.600 4415708.000 0.0 Echo P 688107.310 4815708.000 0.0 Echo P 688107.00 4815722.000 0.0 Echo P 686101.000 4815727.500 0.0 Echo P 686091.060 4815727.500 0.0 Echo P 686091.080 4815727.500 0.0 Echo P 686091.190 4815727.500 0.0 Echo P 686051.190 4815732.500 0.0 Echo P 686058.620 4815739.500 0.0 Echo P 686058.620 4815739.500 0.0 Echo P 686053.310 481578.500 0.0 Echo P 686053.000 481578.500 <t< td=""><td>Echo</td><td>P</td><td>686126 620</td><td>4815685 000</td><td>0.0</td><td></td><td></td><td></td></t<>	Echo	P	686126 620	4815685 000	0.0			
Chio P 686123.940 491509.100 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686107.310 4815716.500 0.0 Echo P 686103.500 4815721.000 0.0 Echo P 686103.500 4815722.000 0.0 Echo P 686091.060 4815725.500 0.0 Echo P 686091.060 4815727.500 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686058.620 4815739.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.200 4815768.500 0.0 Echo P 686052.020 4815778.500	Echo	P	686124.000	4815691 000	0.0			
Cho P 686115.000 4815032.300 0.0 Echo P 686113.690 4815705.500 0.0 Echo P 686107.310 4815705.500 0.0 Echo P 686103.500 4815725.500 0.0 Echo P 686101.000 4815725.500 0.0 Echo P 686091.060 4815727.000 0.0 Echo P 686081.190 4815727.000 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686081.190 4815725.500 0.0 Echo P 686058.690 4815739.500 0.0 Echo P 686054.750 4815749.000 0.0 Echo P 686052.060 4815755.500 0.0 Echo P 686052.060 4815755.500 0.0 Echo P 686052.060 4815765.500 0.0 Echo P 686052.020 4815770.00	Echo	P	686123 0/0	4815692 500	0.0			
Echo P 636113.690 4815708.000 0.0 Echo P 686113.890 4815716.500 0.0 Echo P 686103.500 4815721.000 0.0 Echo P 686101.000 4815722.000 0.0 Echo P 686091.060 4815725.500 0.0 Echo P 686091.060 4815727.500 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686058.690 4815727.500 0.0 Echo P 686058.690 4815727.500 0.0 Echo P 686058.620 4815739.500 0.0 Echo P 686053.310 481574.500 0.0 Echo P 686052.060 4815775.500 0.0 Echo P 686053.000 4815776.500 0.0 Echo P 686051.250 481578.500	Echo	P	686115.000	4815705 500	0.0			
Echo P 686107.310 4815716.500 0.0 Echo P 686101.000 4815722.000 0.0 Echo P 686101.000 4815725.500 0.0 Echo P 686091.060 4815725.500 0.0 Echo P 686089.810 4815727.500 0.0 Echo P 686089.810 4815727.500 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686058.620 4815732.500 0.0 Echo P 686058.620 4815739.500 0.0 Echo P 686054.750 4815749.000 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686052.060 4815778.500 0.0 Echo P 686052.020 481578.500 0.0 Echo P 686052.620 481578.500 0.0 Echo P 686052.620 481578.500	Echo	P	686113.600	4815708.000	0.0			
Echo P 686101.510 481571.000 0.0 Echo P 686101.000 481572.000 0.0 Echo P 686091.060 481572.500 0.0 Echo P 686091.060 481572.500 0.0 Echo P 686089.810 4815727.000 0.0 Echo P 686071.190 4815727.500 0.0 Echo P 686071.190 4815732.500 0.0 Echo P 686058.690 4815739.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686058.620 481575.500 0.0 Echo P 686053.310 481575.500 0.0 Echo P 686053.000 481578.500 0.0 Echo P 686053.000 481578.500 0.0 Echo P 686051.190 481578.500 0.0 Echo P 686051.250 481578.500 0.0	Echo	P	686107 310	4815716 500	0.0			
Echo P 686101.000 481572.000 0.0 Echo P 686091.060 4815725.000 0.0 Echo P 686089.810 4815727.000 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686071.190 4815732.500 0.0 Echo P 686058.690 4815732.500 0.0 Echo P 686058.690 4815739.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.000 4815757.500 0.0 Echo P 686053.000 4815785.500 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.250 481579.500	Echo	P	686103 500	4815721 000	0.0			
Echo P 686091.060 4815725.00 0.0 Echo P 686089.810 4815725.00 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686071.190 4815727.500 0.0 Echo P 686071.190 4815732.500 0.0 Echo P 686058.690 4815732.500 0.0 Echo P 686058.620 4815732.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.310 4815758.500 0.0 Echo P 686053.000 4815785.500 0.0 Echo P 686054.190 4815782.000 0.0 Echo P 686051.250 4815782.000 0.0 Echo P 686051.250 4815795.500 0.0 Echo P 686051.490 4815795.500	Echo	P	686101.000	4815722.000	0.0			
Echo P 686089.810 4815727.000 0.0 Echo P 686089.810 4815727.000 0.0 Echo P 686081.190 4815727.500 0.0 Echo P 686081.190 4815732.500 0.0 Echo P 686058.690 4815732.500 0.0 Echo P 686058.620 4815732.500 0.0 Echo P 686058.620 4815749.000 0.0 Echo P 686053.620 4815749.000 0.0 Echo P 686053.000 4815757.500 0.0 Echo P 686053.000 4815785.500 0.0 Echo P 686052.060 4815770.000 0.0 Echo P 686052.620 4815782.000 0.0 Echo P 686051.190 4815797.000 0.0 Echo P 686051.250 4815795.500 0.0 Echo P 686043.810 4815795.500	Echo	P	686091.060	4815725 500	0.0			
Echo P 686081.190 4815727.500 0.0 Echo P 686081.190 4815732.500 0.0 Echo P 686031.190 4815732.500 0.0 Echo P 686058.690 4815732.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686053.310 4815741.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686052.060 4815758.500 0.0 Echo P 686053.000 4815770.000 0.0 Echo P 686051.490 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.250 4815790.500 0.0 Echo P 686051.250 4815790.500 0.0 Echo P 686043.80 4815897.500 0.0 Echo P 686044.380 4815815.000	Echo	P	686089 810	4815727.000	0.0			
Echo P 686071.190 4815732.500 0.0 Echo P 686071.190 4815732.500 0.0 Echo P 686058.690 4815732.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686054.750 4815741.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.000 4815757.500 0.0 Echo P 686053.000 4815758.500 0.0 Echo P 686053.000 4815768.500 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 481579.500 0.0 Echo P 686049.810 481579.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686044.380 4815815.000	Echo	P	686081 190	4815727 500	0.0			
Echo P 686058.690 4815739.500 0.0 Echo P 686058.690 4815739.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686054.750 4815749.000 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686052.060 4815757.500 0.0 Echo P 686052.060 4815757.500 0.0 Echo P 686053.000 4815768.500 0.0 Echo P 686053.000 4815770.000 0.0 Echo P 686051.250 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 481579.500 0.0 Echo P 686049.810 481579.500 0.0 Echo P 686047.000 4815815.000 0.0 Echo P 686044.380 4815815.000	Echo	P	686071 190	4815732 500	0.0			
Echo P 686058.620 4815741.500 0.0 Echo P 686058.620 4815741.500 0.0 Echo P 686054.750 4815741.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.000 4815758.500 0.0 Echo P 686053.000 4815768.500 0.0 Echo P 686053.000 4815768.500 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686051.250 4815782.000 0.0 Echo P 686051.250 4815795.500 0.0 Echo P 686041.250 4815795.500 0.0 Echo P 686041.200 4815795.500 0.0 Echo P 686043.80 4815815.000 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686043.120 4815816.000	Echo	P	686058 690	4815739 500	0.0			
Echo P 686054.750 4815749.000 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686053.300 4815757.500 0.0 Echo P 686052.060 4815768.500 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686052.620 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.250 4815790.500 0.0 Echo P 686043.190 4815795.500 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686043.120 4815816.000 0.0 Echo P 686043.20 4815823.500 0.0 Echo P 686037.940 4815824.500	Echo	P	686058.620	4815741.500	0.0			
Echo P 686053.310 4815757.500 0.0 Echo P 686052.060 4815757.500 0.0 Echo P 686053.310 4815757.500 0.0 Echo P 686052.060 4815768.500 0.0 Echo P 686053.000 4815770.000 0.0 Echo P 686052.620 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.250 4815790.500 0.0 Echo P 686051.250 4815790.500 0.0 Echo P 686049.810 4815790.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686043.120 4815816.000 0.0 Echo P 686039.250 4815823.500	Echo	P	686054 750	4815749 000	0.0			
Echo P 686052.060 4815758.500 0.0 Echo P 686053.000 4815768.500 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686051.250 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 4815790.500 0.0 Echo P 686049.810 4815795.500 0.0 Echo P 686043.100 4815807.500 0.0 Echo P 686043.120 4815815.000 0.0 Echo P 686043.320 4815816.000 0.0 Echo P 686043.320 4815816.000 0.0 Echo P 686043.320 4815816.000 0.0 Echo P 686037.940 481582.500 0.0 Echo P 686037.940 481582.500	Echo	P	686053.310	4815757.500	0.0			
Echo P 686053.000 4815768.500 0.0 Echo P 686054.190 4815770.000 0.0 Echo P 686052.620 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 4815795.500 0.0 Echo P 686043.190 4815795.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686043.300 4815815.000 0.0 Echo P 686043.320 4815816.000 0.0 Echo P 686043.320 481583.500 0.0 Echo P 686039.250 481582.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686052.060	4815758.500	0.0			
Echo P 686054.190 4815770.000 0.0 Echo P 686052.620 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 4815790.500 0.0 Echo P 686049.810 4815795.500 0.0 Echo P 686047.000 4815795.500 0.0 Echo P 686043.810 4815815.000 0.0 Echo P 686043.320 4815815.000 0.0 Echo P 686043.250 4815823.500 0.0 Echo P 686037.250 481582.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686053.000	4815768.500	0.0			
Echo P 686052.620 4815782.000 0.0 Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 4815790.500 0.0 Echo P 686049.810 4815795.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686043.80 4815815.000 0.0 Echo P 686043.120 4815815.000 0.0 Echo P 686043.120 4815815.000 0.0 Echo P 686043.120 4815823.500 0.0 Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686054.190	4815770.000	0.0			
Echo P 686051.250 4815787.000 0.0 Echo P 686051.190 4815790.500 0.0 Echo P 686049.810 4815795.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686047.000 4815815.000 0.0 Echo P 686043.120 4815815.000 0.0 Echo P 686043.120 4815815.000 0.0 Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686052.620	4815782.000	0.0			
Echo P 686051.190 4815790.500 0.0 Echo P 686049.810 4815795.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686043.80 4815815.000 0.0 Echo P 686043.120 4815816.000 0.0 Echo P 686043.20 4815816.000 0.0 Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686051.250	4815787.000	0.0			
Echo P 686049.810 4815795.500 0.0 Echo P 686047.000 4815807.500 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686043.120 4815815.000 0.0 Echo P 686043.20 4815816.000 0.0 Echo P 686039.250 481582.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686051.190	4815790.500	0.0			
Echo P 686047.000 4815807.500 0.0 Echo P 686044.380 4815815.000 0.0 Echo P 686043.120 4815816.000 0.0 Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Р	686049.810	4815795.500	0.0			
Echo P 686044.380 4815815.000 0.0 Echo P 686043.120 4815816.000 0.0 Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Ρ	686047.000	4815807.500	0.0			
Echo P 686043.120 4815816.000 0.0 Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	P	686044.380	4815815.000	0.0			1
Echo P 686039.250 4815823.500 0.0 Echo P 686037.940 4815824.500 0.0	Echo	Ρ	686043.120	4815816.000	0.0			1
Echo P 686037.940 4815824.500 0.0	Echo	Ρ	686039.250	4815823.500	0.0			
	Echo	P	686037.940	4815824.500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	P	686034.120	4815829.500	0.0			
Echo	Р	686032.750	4815834.000	0.0			
Echo	P	686030.000	4815846.500	0.0			
Echo	P	686028.750	4815847.500	0.0			
Echo	P	686028.690	4815850.000	0.0			
Echo	P	686028.310	4815862.500	0.0			
Echo	P	686028.250	4815866.000	0.0			
Echo	P	686029.310	4815871.000	0.0			
Echo	P	686030.380	4815878.500	0.0			
Echo	P	686031.250	4815890.500	0.0			
Echo	Р	686032.440	4815893.000	0.0			
Echo	Р	686032.190	4815901.500	0.0			
Echo	P	686032.060	4815905.500	0.0			
Echo	P	686025.380	4815926.000	0.0			
Echo	P	686025.060	4815932.000	0.0			
Echo	P	686025.000	4015930.000	0.0			
Echo	P	686026.060	4015959.500	0.0			
Echo	P	686025.880	4815953 000	0.0			
Echo	P	686026.940	4815959.000	0.0			
Echo	P	686029.000	4815972 500	0.0			
Echo	P	686030 250	4815974 000	0.0			
Echo	P	686032.500	4815981.500	0.0			
Echo	Р	686032.120	4815993.500	0.0			
Echo	Р	686033.060	4816004.500	0.0			
Echo	P	686034.000	4816016.000	0.0			
Echo	P	686035.120	4816021.000	0.0			
Echo	Р	686036.250	4816024.500	0.0			
Echo	P	686038.120	4816045.500	0.0			
Echo	P	686039.060	4816056.500	0.0			
Echo	P	686043.500	4816074.000	0.0			
Echo	P	686044.560	4816080.000	0.0			
Echo	P	686050.440	4816090.000	0.0			
Echo	P	686052.880	4816092.500	0.0			
Echo	Р	686059.810	4816107.500	0.0			
Echo	Р	686068.000	4816122.500	0.0			
Echo	P	686072.500	4816138.500	0.0			
Echo	P	686079.560	4816151.000	0.0			
Echo	P	686002.250	4816168.500	0.0			
Echo	P	686093.200	4010101.000	0.0			
Echo	P	686098.250	4816187.000	0.0			
Echo	P	686101 940	4816187 500	0.0			
Echo	P	686112 880	4816192 500	0.0			
Echo	P	686117.750	4816195.000	0.0			
Echo	P	686125.000	4816198.000	0.0			
Echo	Р	686127.500	4816198.000	0.0			
Echo	P	686138.560	4816198.500	0.0			
Echo	Р	686139.750	4816198.500	0.0			
Echo	Р	686149.440	4816205.000	0.0			
Echo	P	686150.620	4816206.000	0.0			
Echo	P	686161.620	4816210.000	0.0			
Echo	P	686172.500	4816215.500	0.0			
Echo	P	686183.440	4816222.000	0.0			
Echo	Р	686194.310	4816228.500	0.0			
Echo	Р	686200.440	4816229.500	0.0			
Echo	P	686207.690	4816233.500	0.0			
ECNO	P	686213.690	4816240.000	0.0			
Echo	P	696224.600	4010240.000	0.0			
Echo	P	686234.060	4010230.000	0.0			
Echo	P	686235 100	4816262 500	0.0			
Echo	P	686242 500	4816266 500	0.0			
Echo	P	686243 690	4816268.000	0.0			
Echo	Р	686251.060	4816268.000	0.0			
Echo	P	686258.440	4816268.500	0.0			
Echo	P	686259.560	4816272.000	0.0			
Echo	P	686269.120	4816281.000	0.0			
Echo	Р	686273.940	4816285.000	0.0			
Echo	P	686277.560	4816288.500	0.0			
Echo	P	686282.440	4816290.000	0.0			
Echo	Р	686283.620	4816292.500	0.0			
Echo	Р	686290.810	4816299.000	0.0			
Echo	P	686294.440	4816300.000	0.0			
Echo	Р	686300.560	4816301.500	0.0			
⊨cno	I۲	686311.620	4816303.000	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	P	686315.310	4816303.500	0.0			
Echo	P	686318.940	4816304.500	0.0			
Echo	P	686325.000	4816307.500	0.0			
Echo	P	686327.500	4816307.500	0.0			
Echo	P	686329.940	4816307.500	0.0			
Echo	P	686332.380	4816309.000	0.0			
Echo	P	686339.560	4816315.000	0.0			
Echo	P	686340.750	4816317.500	0.0			
Echo	P	686340.690	4816320.000	0.0			
Echo	P	686336.750	4816327.500	0.0			
Echo	Р	686331.620	4816335.500	0.0			
Echo	P	686330.380	4816337.000	0.0			
Echo	P	686321.440	4816349.000	0.0			
Echo		696210.060	4010303.000	0.0			
Echo	P	686207.440	4010309.000	0.0			
Echo	P	686292 380	4816376.000	0.0			
Echo	P	686281 120	4816384 500	0.0			
Echo	P	686274 880	4816386 500	0.0			
Echo	P	686268.620	4816390.000	0.0			
Echo	P	686267.380	4816391.500	0.0			
Echo	P	686258.750	4816393.500	0.0			
Echo	Р	686251.310	4816395.500	0.0			
Echo	P	686245.060	4816398.000	0.0			
Echo	P	686237.690	4816399.000	0.0			
Echo	P	686228.940	4816402.500	0.0			
Echo	P	686220.310	4816403.500	0.0			
Echo	P	686215.440	4816403.000	0.0			
Echo	P	686196.940	4816404.000	0.0			
Echo	P	686189.560	4816403.500	0.0			
Echo	P	686177.380	4816400.500	0.0			
Echo	P	686170.060	4816398.000	0.0			
Echo	P	686160.250	4816396.500	0.0			
Echo	P	696151.600	4816396.000	0.0			
Echo	P	686144 310	4010390.000	0.0			
Echo	P	686140.620	4610395.000	0.0			
Echo	P	686139 380	4816394.500	0.0			
Echo	P	686138 190	4816393 500	0.0			
Echo	P	686133.380	4816389.500	0.0			
Echo	Р	686131.000	4816387.000	0.0			
Echo	P	686125.000	4816380.500	0.0			
Echo	P	686116.620	4816372.000	0.0			
Echo	P	686110.560	4816369.000	0.0			
Echo	P	686102.000	4816366.500	0.0			
Echo	P	686081.190	4816363.500	0.0			
Echo	Р	686073.880	4816362.000	0.0			
Echo	P	686068.940	4816361.500	0.0			
Echo	P	686060.250	4816365.000	0.0			
Echo	P	686050.380	4816366.000	0.0			
Echo	P	686027 880	4816308.000	0.0			
Echo	P	686021.600	4610379.000	0.0			
Echo	P	686012 810	4816389 500	0.0			
Echo	P	686007 880	4816391 500	0.0			
Echo	P	685994.190	4816397.500	0.0			
Echo	Р	685986.750	4816399.500	0.0			
Echo	P	685974.310	4816403.000	0.0			
Echo	Р	685970.620	4816404.000	0.0			
Echo	P	685954.560	4816407.000	0.0			
Echo	P	685947.120	4816409.500	0.0			
Echo	P	685944.620	4816410.500	0.0			
Echo	P	685931.000	4816412.500	0.0			
Echo	Р	685926.060	4816415.000	0.0			
Echo	P	685921.120	4816414.500	0.0			
Echo	Р	685913.810	4816413.000	0.0			
ECNO Echo	P	685912.560	4816413.000	0.0			
Echo	P	685897.880	4816411.500	0.0			
Echo	P	685904 100	4010411.500	0.0			
Echo	P	685801 600	4010411.000	0.0			
Echo	P	685889 250	4816411.000	0.0			
Echo	P	685881 810	4816412 000	0.0			
Echo	P	685880.620	4816412.000	0.0			
Echo	Р	685878.060	4816414.500	0.0			
Echo	Р	685856.250	4816404.000	0.0			

Laka	Point	Fasting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo		695953 910	4816401 500	(,	1 03110113	OLDEV	
Echo	P	685843.000	4610401.500	0.0			
Echo	P	685838 250	4816387 500	0.0			
Echo	P	685833.440	4816382 500	0.0			
Echo	P	685826 190	4816378 500	0.0			
Echo	P	685822 620	4816372 500	0.0			
Echo	P	685815 310	4816369 500	0.0			
Echo	P	685806.810	4816365.500	0.0			
Echo	P	685799 500	4816363 000	0.0			
Echo	P	685793 380	4816362 500	0.0			
Echo	P	685783.560	4816362.500	0.0			
Echo	P	685771 190	4816364 500	0.0			
Echo	P	685765.060	4816364.500	0.0			
Echo	P	685753.940	4816366.500	0.0			
Echo	Р	685752.690	4816366.500	0.0			
Echo	Р	685751.440	4816366.500	0.0			
Echo	Р	685746.560	4816365.000	0.0			
Echo	P	685745.440	4816362.500	0.0			
Echo	P	685743.120	4816357.500	0.0			
Echo	Р	685740.940	4816345.000	0.0			
Echo	P	685740.120	4816331.500	0.0			
Echo	P	685739.120	4816321.500	0.0			
Echo	Р	685735.750	4816312.000	0.0			
Echo	P	685733.500	4816303.000	0.0			
Echo	P	685725.380	4816285.500	0.0			
Echo	P	685721.810	4816279.500	0.0			
Echo	P	685719.500	4816274.500	0.0			
Echo	P	685723.620	4816260.000	0.0			
Echo	P	685727.750	4816241.500	0.0			
Echo	P	685730.500	4816233.000	0.0			
Echo	P	685732.750	4816194.000	0.0			
Echo	P	685734.250	4816185.500	0.0			
Echo	P	685734.750	4816166.000	0.0			
Echo	P	685737.690	4816148.500	0.0			
Echo	P	685740.440	4816136.500	0.0			
Echo	P	685742.500	4816107.000	0.0			
Echo	P	685745.120	4816101.000	0.0			
Echo	Р	685745.690	4816079.000	0.0			
Echo	P	685743.440	4816071.500	0.0			
Echo	Р	685743.620	4816065.500	0.0			
Ecno	P	685752.560	4816052.000	0.0			
Echo	P	685754.060	4816042.500	0.0			
Echo	P	685755.310	4816041.500	0.0			
Echo	P	685756.620	4816039.000	0.0			
Echo	P	685766.690	4816032.000	0.0			
Echo	P	695774.210	4816029.000	0.0			
Echo		695775 560	4010022.000	0.0			
Echo	P	695776 910	4010021.000	0.0			
Echo		695790.390	4010020.000	0.0			
Echo	P	685704.440	4816005 500	0.0			
Echo	P	685800 750	4815008 500	0.0			
Echo	P	685800.880	4815995 000	0.0			
Echo	P	685802 500	4815081 500	0.0			
Echo	P	685803 750	4815080.000	0.0			
Echo	P	685799.060	4815971 500	0.0			
Echo	P	685799.060	4815970 500	0.0			
Echo	P	685796.000	4815948 000	0.0			
Echo	P	685795.060	4815937 000	0.0			
Echo	P	685796 620	4815923 500	0.0			
Echo	P	685798.000	4815918 500	0.0			
Echo	P	685798.190	4815912.500	0.0			
Echo	P	685796.060	4815899.000	0.0			
Echo	P	685796.940	4815867.000	0.0			
Echo	Р	685799.690	4815856.000	0.0			
Echo	Р	685802.620	4815839.000	0.0			
Echo	Р	685803.880	4815838.000	0.0			
Echo	Р	685806.620	4815827.000	0.0			
Echo	Р	685807.880	4815827.000	0.0			
Echo	P	685810.560	4815818.500	0.0			
Echo	Р	685810.620	4815817.500	0.0			
Echo	P	685814.380	4815813.500	0.0			
Echo	Ρ	685824.500	4815804.000	0.0			
Echo	P	685827.060	4815800.500	0.0			
Echo	P	685830.940	4815792.000	0.0			
Echo	P	685832.250	4815791.000	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	P	685833.690	4815782.500	0.0			
Echo	Р	685833.880	4815776.500	0.0			
Echo	P	685831.690	4815766.500	0.0			
Echo	Р	685830.500	4815764.000	0.0			
Echo	P	685829.500	4815755.500	0.0			
Echo	P	685824.940	4815741.500	0.0			
Echo	P	685825.190	4815733.000	0.0			
Echo	P	685824.000	4815730.500	0.0			
Echo	P	685822.120	4815709.500	0.0			
Echo	P	685822.310	4815702.500	0.0			
Echo	P	685821.120	4815701.000	0.0			
Echo	Р	685816.620	4815686.000	0.0			
Echo	P	685815.690	4815674.000	0.0			
Echo	P	685814.560	4815671.500	0.0			
Echo	P	685812.380	4815001.500	0.0			
Echo	P	685801.000	4015029.500	0.0			
Echo	P	685801.000	4015027.000	0.0			
Echo	P	685799 120	4815604 500	0.0			
Echo	P	685798.000	4815602.000	0.0			
Echo	P	685798.060	4815599 500	0.0			
Echo	P	685798 560	4815580.000	0.0			
Echo	P	685800.000	4815573.000	0.0			
Echo	Р	685800.250	4815563.000	0.0			
Echo	Р	685800.310	4815561.500	0.0			
Echo	Р	685807.810	4815557.000	0.0			
Echo	P	685809.060	4815556.000	0.0			
Echo	Р	685820.690	4815535.500	0.0			
Echo	P	685823.190	4815533.000	0.0			
Echo	P	685824.750	4815521.000	0.0			
Echo	P	685824.940	4815516.000	0.0			
Echo	P	685825.440	4815496.500	0.0			
Echo	P	685824.620	4815481.500	0.0			
Echo	P	685823.500	4815476.500	0.0			
Echo	P	685822.310	4815476.500	0.0			
Echo	Р	685818.750	4815470.500	0.0			
Echo	P	685817.560	4815469.000	0.0			
Echo	P	685812.690	4815467.500	0.0			
Echo	P	685801.620	4815467.500	0.0			
Echo	P	685702.880	4815472 000	0.0			
Echo	P	685787 880	4815475 500	0.0			
Echo	P	685778.060	4815475 000	0.0			
Echo	P	685776 810	4815475 000	0.0			
Echo	P	685770.810	4815469.000	0.0			
Echo	P	685768.440	4815466.000	0.0			
Echo	Р	685768.620	4815459.000	0.0			
Echo	P	685769.250	4815437.000	0.0			
Echo	Р	685773.500	4815416.000	0.0			
Echo	Р	685777.750	4815394.000	0.0			
Echo	P	685779.190	4815387.000	0.0			
Echo	P	685780.560	4815382.000	0.0			
Echo	P	685780.690	4815378.500	0.0			
Echo	P	685785.810	4815368.500	0.0			
Echo	P	685787.120	4815366.000	0.0			
Echo	Р	685789.880	4815355.500	0.0			
Echo	Р	685791.190	4815353.000	0.0			
Echo	P	685791.250	4815350.500	0.0			
Echo	P	685900.050	4815337.000	0.0			
Echo	P	695902.040	4815330.000	0.0			
Echo	P	695909 990	4015550.000	0.0			
Echo	P	685823 600	4015330.000	0.0			
Echo	P	685836.000	4815333 500	0.0			
Echo	P	685842 250	4815330 000	0.0			
Echo	P	685849 810	4815323 000	0.0			
Echo	P	685857.500	4815312.000	0.0			
Echo	Р	685858.880	4815307.000	0.0			
Echo	P	685856.750	4815295.000	0.0			
Echo	P	685858.500	4815274.000	0.0			
Echo	P	685859.940	4815266.500	0.0			
Echo	P	685862.620	4815258.000	0.0			
Echo	P	685864.250	4815244.500	0.0			
Echo	P	685867.000	4815234.000	0.0			
Echo	Р	685867.440	4815218.000	0.0			
Echo	Р	685870.060	4815212.000	0.0			

l ake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Echo	P	685870.190	4815205.500	0.0			
Echo	P	685870.380	4815198.500	0.0			
Echo	Р	685876.940	4815184.000	0.0			
Echo	Р	685885.000	4815159.500	0.0			
Echo	P	685889.060	4815146.000	0.0			
Echo	P	685889.380	4815134.000	0.0			
Echo	P	685888.440	4815123.000	0.0			
Echo	P	685891.500	4815101.000	0.0			
Echo	P	685892.940	4815092.500	0.0			
Echo	Р	685893.120	4815085.000	0.0			
Echo	Р	685893.560	4815070.000	0.0			
Echo	P	685893.750	4815063.000	0.0			
Echo	P	685894.000	4815053.000	0.0			
Echo	P	605002.940	4815047.000	0.0			
Echo	P	695902 210	4815029.500	0.0			
Echo	P D	685800.000	4015020.000	0.0			
Echo	P	685886 620	4815008 500	0.0			
Echo	P	685883 120	4815000.000	0.0			
Echo	P	685882 000	4814997 500	0.0			
Echo	P	685877.380	4814985 000	0.0			
Echo	P	685876.310	4814980.000	0.0			
Echo	P	685873.940	4814976.500	0.0			
Echo	P	685867.000	4814961.500	0.0			
Echo	P	685861.060	4814951.500	0.0			
Echo	P	685858.750	4814946.500	0.0			
Echo	Р	685856.380	4814944.000	0.0			
Echo	P	685854.060	4814939.000	0.0			
Echo	P	685852.880	4814937.500	0.0			
Echo	P	685851.690	4814936.500	0.0			
Echo	P	685848.120	4814930.000	0.0			
Echo	P	685845.750	4814926.500	0.0			
Echo	P	685878.440	4815584.000	0.0			
Echo	P	685878.380	4815585.000	0.0			
Echo	P	685879.560	4815586.500	0.0			
Echo	P	685880.690	4815591.500	0.0			
Echo	Р	685880.620	4815592.500	0.0			
Echo	P	685880.560	4815596.000	0.0			
Echo	Р	685880.500	4815598.500	0.0			
Echo	P	685881.500	4815606.000	0.0			
Echo	P	685882.690	4815607.500	0.0			
Echo	P	685882.500	4815616.000	0.0			
Echo	P	685882 310	4615610.000	0.0			
Echo	P	685883 440	4815625 500	0.0			
Echo	P	685884 560	4815630 500	0.0			
Echo	P	685884 500	4815632 000	0.0			
Echo	P	685888 120	4815634 500	0.0			
Echo	P	685888.060	4815637.000	0.0			
Echo	P	685886.690	4815643.000	0.0			
Echo	Р	685886.440	4815650,500	0.0			
Echo	Р	685886.380	4815654.000	0.0			
Echo	P	685886.310	4815655.500	0.0			
Echo	P	685886.310	4815656.500	0.0			
Echo	P	685882.120	4815673.500	0.0			
Echo	P	685880.810	4815677.000	0.0			
Echo	P	685879.560	4815678.500	0.0			
Echo	P	685878.310	4815678.500	0.0			
Echo	P	685877.120	4815678.500	0.0			
Echo	P	685875.880	4815678.000	0.0			
Echo	P	685874.620	4815678.000	0.0			
Echo	Р	685872.250	4815675.500	0.0			
Echo	Р	685871.190	4815669.500	0.0			
Echo	P	685870.000	4815667.000	0.0			
Echo	P D	685870.120	4015003.500	0.0			
Echo	P	605070.190	4015001.000	0.0			
Echo	Г D	695970 500	4010000.000	0.0			
Echo	Г D	695960 440	4010000.000	0.0			
Echo	P	685868 250	4010040.000	0.0			
Echo	P	685868 440	4815635 000	0.0	I		
Echo	P	685868 500	4815631 500	0.0			
Echo	P	685868 560	4815629 000	0.0			
Echo	P	685868 690	4815625.500	0.0			
Echo	P	685868 750	4815623.000	0.0			
Echo	P	685868 880	4815619 000	0.0			

				Depth	Filtered		Horizontal
Lake	Point	Easting (m)	Northing (m)	(ṁ)	Positions	StDev	Precision (m)
Echo	P	685869.000	4815614.000	0.0			
Echo	P	685867.880	4815609.500	0.0			
Echo	P	685868.000	4815604.500	0.0			
Echo	P	685868.190	4815598.000	0.0			
Echo	P	685867.000	4815596.000	0.0			
Echo	P	685867.060	4815593.500	0.0			
Echo	P	685867.250	4815588.500	0.0			
Echo	P	685868.500	4815587.000	0.0			
Echo	P	685869.750	4815586.000	0.0			
Echo	P	685871.000	4815585.000	0.0			
Echo	P	685872.250	4815583.500	0.0			
Echo	P	685872.310	4815582.500	0.0			
Echo	P	685873.560	4815581.000	0.0			
Echo	P	685878.440	4815584.000	0.0			
Emerald	1	111184.197	86205.397	9.8	21	0.242978	0.510
Emerald	2	111167.372	86242.317	10.0	24	0.053475	0.510
Emerald	3	111183.203	86265.432	10.6	13	0.066037	0.519
Emerald	4	111162.576	86187.123	9.5	11	0.121040	0.521
Emerald	5	111171.543	86176.858	9.4	21	0.154964	0.480
Emerald	6	111181.587	86164.190	9.4	13	0.092620	0.484
Emerald	7	111227.858	86141.134	8.7	11	0.213751	0.478
Emerald	8	111217.901	86157.956	8.9	12	0.060393	0.471
Emerald	9	111200.038	86170.733	9.3	10	0.112920	0.469
Emerald	10	111187.731	86222.624	10.0	21	0.118667	0.447
Emerald	11	111187.933	86239.757	10.2	21	0.107211	0.443
Emerald	12	111196.229	86258.943	10.7	36	0.169017	0.429
Emerald	13	111211.162	86262.594	10.6	38	0.141289	0.424
Emerald	14	111200.329	86278.675	10.8	37	0.144977	0.425
Emerald	15	111198.180	86293.675	10.8	24	0.122337	0.426
Emerald	16	111219.092	86296.036	10.8	17	0.058604	0.431
Emerald	17	111237.066	86314.134	10.7	19	0.241994	0.429
Emerald	18	111212.207	86330.714	10.2	23	0.119505	0.568
Emerald	19	111216.306	86314.460	10.8	36	0.078104	0.556
Emerald	20	111198.536	86309.344	10.6	23	0.083777	0.416
Emerald	21	111176.970	86306.346	10.2	17	0.508673	0.582
Emerald	22	111159.696	86285.649	10.0	22	0.097578	0.597
Emerald	23	111159.908	86263.982	10.2	27	0.144015	0.421
Emerald	24	111224.922	86191.703	8.5	17	0.139176	0.401
Emerald	25	111224.660	86173.012	8.6	15	0.108938	0.402
Emerald	26	111256.608	86183.380	5.5	20	0.541958	0.589
Emerald	27	111275.910	86192.720	4.4	11	0.117226	0.675
Emerald	28	111276.973	86175.432	8.7	15	0.099991	0.674
Emerald	29	111280.939	86162.720	10.4	19	0.173055	0.669
Emerald	30	111293.516	86144.139	12.5	32	0.245521	0.656
Emerald	31	111304.843	86143.165	13.3	22	0.068886	0.666
Emerald	32	111303.688	86186.331	11.5	22	0.704360	0.646
Emerald	33	111302.187	86209.068	8.8	11	0.165741	0.656
Emerald	34	111323.725	86230.104	8.2	12	0.350614	0.653
Emerald	35	111308.156	86228.570	5.2	11	0.282198	0.654
Emerald	36	111301.978	86219.245	6.9	16	0.277638	0.648
Emerald	37	111293.113	86211.137	5.7	15	0.357634	0.649
Emerald	38	111327.654	86147.132	13.7	11	0.122363	0.642
Emerald	39	111353.364	86171.573	13.3	34	0.180012	0.604
Emerald	40	111345.871	86191.336	12.9	38	0.116647	0.601
Emerald	41	111341.601	86205.450	11.7	35	0.322654	0.603
Emerald	42	111357.118	86225.789	10.6	19	0.213555	0.619
Emerald	43	111355.854	86243.979	4.5	18	0.256007	0.620
Emerald	44	111363.900	86248.900	4.6	20	0.360636	0.551
Emerald	45	111371.302	86253.425	3.6	21	0.187782	0.540
Emerald	46	111378.365	86258.905	2.6	13	0.553352	0.589
Emerald	47	111386.676	86259.293	2.3	12	0.434474	0.653
Emerald	48	111390.728	86239.848	6.6	22	0.174358	0.642
Emerald	49	111385.382	86215.448	9.4	21	0.315370	0.525
Emerald	50	111377.480	86182.470	11.8	30	0.255765	0.628
Emerald	51	111372.835	86157.338	12.1	58	0.118269	0.482
Emerald	52	111364.835	86133.238	11.9	30	0.108305	0.492
Emerald	53	111232.011	86370.760	9.0	29	0.067050	0.422
Emerald	54	111244.136	86384.013	9.1	28	0.097802	0.430
Emerald	55	111251.607	86393.063	9.0	16	0.097466	0.420
Emerald	56	111254.730	86398.600	8.9	20	0.150798	0.425
Emerald	57	111260.269	86406.629	8.7	22	0.074130	0.450
Emerald	58	111264.679	86411.892	8.6	22	0.346713	0.409
Emerald	59	111285.462	86424.971	8.5	26	0.099680	0.400
Emerald	60	111304.508	86422.589	7.7	19	0.136574	0.398
Emerald	61	111323 031	86411 873	8.2	21	24 254517	0 394

Laka	Point	Easting (m)	Northing (m)	Depth	Filtered	StDev	Horizontal Precision (m)
Lake	1 UIII	111216 016	96406 995	(III) 0 7	15	0.099122	
Emerald	62	111310.910	86300 508	8.7	10	0.066122	0.398
Emerald	64	111221.213	86376.042	0.4	14	0.249397	0.451
Emerald	65	111321.904	86360 154	0.0	12	0.005019	0.459
Emerald	66	111299 875	86335 884	8.9	15	0.103000	0.403
Emerald	67	111338 567	86405.065	7.6	12	0.044723	0.458
Emerald	68	111341 611	86429.373	4.4	11	0.044720	0.400
Emerald	69	111346 005	86448 725	1.6	15	0.096833	0.397
Emerald	70	111362.218	86458.891	1.2	15	0.054952	0.396
Emerald	71	111341.961	86463.555	1.2	15	0.046130	0.395
Emerald	72	111316.342	86467.662	4.3	12	0.212171	0.438
Emerald	73	111312.102	86479.559	1.6	18	0.853845	0.471
Emerald	74	111302.320	86471.015	5.6	12	0.050814	0.396
Emerald	75	111317.566	86454.414	6.7	14	0.055721	0.395
Emerald	76	111317.187	86468.046	3.3	14	0.065522	0.395
Emerald	77	111330.302	86456.582	2.9	13	0.051276	0.395
Emerald	78	111355.287	86447.926	1.3	12	0.078626	0.396
Emerald	79	111381.103	86458.920	1.5	11	0.081089	0.397
Emerald	80	111396.950	86454.432	1.6	11	0.058278	0.397
Emerald	81	111414.958	86450.363	2.1	18	0.078430	0.393
Emerald	82	111426.011	86447.602	2.2	11	0.069679	0.399
Emerald	83	111434.117	86441.740	1.9	12	0.374095	0.407
Emerald	84	111418.151	86411.742	1.2	11	0.075593	0.309
Emerald	85	111405.844	86351.878	1.6	11	0.056695	0.311
Emerald	86	111145.143	86242.678	8.5	1		
Emerald	87	111131.668	86241.312	3.3	1		
Emerald	88	111125.157	86225.852	6.3	1		
Emeraid	89	111098.984	86214.125	5.6	1		
Emeraid	90	111090.700	86205.757	4.7	1		
Emerald	91	111113.320	86198.120	/./	1		
Emerald	92	111143.173	00217.440 96205.225	9.3	1		
Emerald	93	111169.969	86100.470	9.0	1		
Emerald	94	111152 151	86186 230	9.0	1		
Emerald	90	111145 997	86175 256	9.3	1		
Emerald	97	111123 128	86177 483	83	1		
Emerald	98	111108 796	86172 182	7.0	1		
Emerald	99	111109.858	86162.117	5.5	1		
Emerald	100	111132 985	86165 129	8.6	1		
Emerald	101	111137.217	86151.137	8.6	1		
Emerald	102	111146.414	86156.334	8.9	1		
Emerald	103	111152.251	86151.439	9.0	1		
Emerald	104	111154.026	86145.098	8.9	1		
Emerald	105	111164.589	86146.759	9.0	1		
Emerald	106	111165.118	86140.486	8.9	1		
Emerald	107	111153.872	86136.435	8.7	1		
Emerald	108	111160.126	86109.968	7.9	1		
Emerald	109	111165.953	86102.648	8.1	1		
Emerald	110	111175.646	86097.094	8.5	1		
Emerald	111	111179.327	86113.402	8.8	1		
Emerald	112	111183.291	86131.413	9.1	1		
Emerald	113	111202.048	86123.488	9.2	1		
Emerald	114	111194.464	86106.124	9.1	1		
Emeraid	115	111186.185	86102.089	8.9	1		
Emerald	116	111194.724	86093.965	9.0	1		
Emerald	117	111175.190	86062.662	7.9	1		
Emerald	110	111101.493	86070.076	0.2	1		
Emerald	119	111105 02/	86075.055	8.8	1		
Emerald	120	111211 287	86078 715	8.0	1		
Emerald	121	111203 923	86070 137	8.8	1		
Emerald	123	111193 472	86060 809	8.5	1		
Emerald	124	111183 590	86050.200	8.1	1		
Emerald	125	111195 108	86050 555	8.3	1		
Emerald	126	111204.486	86059.590	8.6	1		
Emerald	127	111213.161	86055.484	8.4	1		
Emerald	128	111206.390	86046.830	8.2	1		
Emerald	129	111218.192	86034.861	7.6	1		
Emerald	130	111230.329	86049.297	7.7	1	1	1
Emerald	131	111235.702	86044.270	7.3	1	1	
Emerald	132	111231.565	86028.422	6.5	1		
Emerald	133	111239.405	86055.593	7.7	1		
Emerald	134	111233.473	86064.469	8.2	1		
Emerald	135	111230.047	86071.226	8.2	1		
Emerald	136	111236.211	86076.066	8.4	1		
Emerald	137	111254.752	86010.111	0.8	1		

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Emerald	138	111263.327	86004.567	0.6	1		
Emerald	139	111272.026	86010.854	0.6	1		
Emerald	140	111264.456	86015.763	0.8	1		
Emerald	141	111255.506	86023.383	1.8	1		
Emerald	142	111274.552	86023.519	0.9	1		
Emerald	143	111274.716	86034.031	1.5	1		
Emerald	144	111256.693	86039.190	4.0	1		
Emerald	145	111264.942	86051.698	4.6	1		
Emerald	146	111271.087	86047.003	2.4	1		
Emerald	147	111278.329	86050.484	3.4	1		
Emerald	148	111288.582	86042.069	3.6	1		
Emerald	149	111274.419	86060.972	4.2	1		
Emerald	150	111258.043	86053.467	6.4	1		
Emerald	151	111259.101	86064.590	7.2	1		
Emerald	152	111267.773	86070.899	5.0	1		
Emeraid	153	111280.366	86064.425	6.2	1		
Emeraid	154	111292.087	86062.501	7.6	1		
Emerald	155	111280.454	86076.055	8.5	1		
Emerald	156	111258.904	86076.966	7.7	1		
Emerald	157	111200.231	00000.179	7.9	1		
Emerald	158	111220.232	86114.430	9.0	1		
Emerald	109	111230.342	00103.704	0.0	1		
Emerald	160	111230.004	00090.754	7.0	1		
Emerald	101	111274.469	00007.040	0.3	1		
Emerald	102	111299.772	00070.701	9.5	1		
Emerald	103	111310.900	00009.709	9.7	1		
Emerald	104	111240.093	86050,268	9.5	1		
Emerald	165	111350 830	860/11 600	65	1		
Emerald	167	111320.039	86060 227	0.5	1		
Emerald	168	111367 914	86078 633	7.6	1		
Emerald	169	111369 188	86092 590	8.9	1		
Emerald	170	111357 688	86090 835	10.2	1		
Emerald	170	111363 285	86113 130	11.6	1		
Emerald	172	111291.448	86092.316	10.3	1		
Emerald	173	111263.242	86106.846	4.8	1		
Emerald	174	111257.616	86117.961	4.6	1		
Emerald	175	111249.480	86151.503	7.1	1		
Emerald	176	111237.464	86157.708	8.2	1		
Emerald	177	111252.183	86163.924	6.2	1		
Emerald	178	111261.093	86161.632	5.3	1		
Emerald	179	111263.011	86171.454	4.7	1		
Emerald	180	111237.055	86179.811	7.9	1		
Emerald	181	111236.417	86202.098	7.4	1		
Emerald	182	111251.707	86206.393	3.6	1		
Emerald	183	111192.589	86185.336	9.5	1		
Emerald	184	111208.202	86202.486	9.3	1		
Emerald	185	111201.548	86224.668	9.8	1		
Emerald	186	111222.193	86216.424	8.5	1		
Emerald	187	111225.595	86251.743	10.0	1		
Emerald	188	111224.953	86265.625	10.4	1		
Emeraid	189	111228.576	86279.329	10.6	1		
Emeraid	190	111254.653	86283.900	9.8	1		
Emerald	191	111245.959	86264.929	9.6	1		
Emerald	192	111239.034	86201 501	9.7	1		
Emerald	D	11179.907	95060.042	9.0	1		
Emerald	P	111303 606	85060.012	0.0			
Emerald	P	111301 176	85969.842	0.0			
Emerald	P	111297 536	85969 732	0.0			
Emerald	P	111289.006	85970 742	0.0			
Emerald	P	111285 286	85973 142	0.0			
Emerald	P	111281 606	85974 292	0.0			
Emerald	Р	111276.676	85976.662	0.0			
Emerald	Р	111273.036	85976.552	0.0			
Emerald	Ρ	111268.146	85977.672	0.0			
Emerald	P	111266.896	85978.892	0.0			
Emerald	Р	111257.186	85978.612	0.0			
Emerald	Ρ	111253.536	85978.502	0.0			
Emerald	Ρ	111251.116	85978.432	0.0			
Emerald	Р	111237.716	85979.302	0.0			
Emerald	Р	111230.436	85979.092	0.0			
Emerald	P	111225.616	85977.702	0.0			
Emerald	Р	111215.866	85978.672	0.0			
Emerald	Р	111214.616	85979.892	0.0			
Emerald	P	111208.546	85979.712	0.0			

Laka	Point	Fasting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Emorald		111201 226	85080 762	(,	1 031110113	OLDEV	
Emerald	P	111190 266	85981 692	0.0			
Emerald	P	111181 726	85982 702	0.0			
Emerald	P	111179.266	85983.892	0.0			
Emerald	P	111174.366	85985.002	0.0			
Emerald	P	111173.116	85986.222	0.0			
Emerald	Ρ	111169.366	85989.872	0.0			
Emerald	Р	111163.046	85998.472	0.0			
Emerald	P	111160.466	86003.422	0.0			
Emerald	P	111157.896	86008.362	0.0			
Emerald	P	111156.536	86013.342	0.0			
Emerald	P	111151.386	86023.232	0.0			
Emerald	P	111151.316	86025.742	0.0			
Emerald	P	111149.700	860/1 972	0.0			
Emerald	P	111140.400	86048 202	0.0			
Emerald	P	111146 866	86053 212	0.0			
Emerald	P	111145.396	86061.952	0.0			
Emerald	P	111145.246	86066.972	0.0			
Emerald	Р	111143.926	86070.702	0.0			
Emerald	Р	111143.636	86080.722	0.0			
Emerald	Р	111142.086	86091.972	0.0			
Emerald	Р	111140.806	86094.442	0.0			
Emerald	P	111140.656	86099.462	0.0			
Emerald	P	111139.256	86105.692	0.0			
Emerald	P	111138.006	86106.912	0.0			
Emerald	P	111133.966	86120.602	0.0			
Emerald	P	111131.330	86120.032	0.0			
Emerald	P	111127.000	86135 /32	0.0			
Emerald	P	111120.230	86144.062	0.0			
Emerald	P	111118.556	86149.012	0.0			
Emerald	P	111116.056	86151.452	0.0			
Emerald	Р	111112.336	86153.852	0.0			
Emerald	Р	111108.626	86156.252	0.0			
Emerald	Р	111107.376	86157.472	0.0			
Emerald	P	111106.156	86157.432	0.0			
Emerald	P	111104.906	86158.652	0.0			
Emerald	P	111099.866	86164.782	0.0			
Emerald	P	111099.836	86166.042	0.0			
Emerald	P	111094.826	00170.912	0.0			
Emerald	P	111091.000	86170 472	0.0			
Emerald	P	111084 786	86181 912	0.0			
Emerald	P	111079.676	86190.552	0.0			
Emerald	P	111078.426	86191.772	0.0			
Emerald	Р	111075.856	86196.712	0.0			
Emerald	Ρ	111074.596	86197.932	0.0			
Emerald	P	111074.346	86206.712	0.0			
Emerald	P	111074.196	86211.722	0.0			
Emerald	P	111076.586	86213.042	0.0			
Emerald	P	111077.766	86214.332	0.0			
Emerald	P	111082.366	86223.252	0.0			
Emerald	P	111083.506	86225.792	0.0			
Emerald	P	111005.000	86232 272	0.0			
Emerald	P	111095.000	86232.212	0.0			
Emerald	P	111101 426	86236 352	0.0			
Emerald	P	111108.566	86241.572	0.0			
Emerald	Р	111109.746	86242.862	0.0			
Emerald	Р	111112.096	86245.442	0.0			
Emerald	Р	111115.666	86248.052	0.0			
Emerald	Р	111118.026	86250.632	0.0			
Emerald	P	111123.946	86255.812	0.0			
Emerald	Р	111126.336	86257.142	0.0			
Emerald	P	111127.406	86262.192	0.0			
Emerald	P	111129.616	86269.782	0.0			
Emerald	P	111129.356	86278.562	0.0			
Emerald	P	111129.106	00201.332 86202.202	0.0			
Emerald	P	111130.100	86297 102	0.0			
Emerald	P	111129 766	86306 172	0.0			
Emerald	P	111130.946	86307.462	0.0			
Emerald	Р	111133.186	86313.802	0.0			
Emerald	P	111135.506	86317.632	0.0			
Emerald	P	111137.866	86320.212	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Emerald	P	111140.186	86324.042	0.0			
Emerald	P	111142.466	86329.122	0.0			
Emerald	Р	111147.176	86334.282	0.0			
Emerald	P	111150.706	86338.142	0.0			
Emerald	Р	111156.666	86342.082	0.0			
Emerald	Р	111162.626	86346.022	0.0			
Emerald	P	111166.126	86351.142	0.0			
Emerald	P	111172.006	86357.582	0.0			
Emerald	P	111176.796	86360.232	0.0			
Emerald	P	111181.466	86366.632	0.0			
Emerald	P	111184.966	86371.752	0.0			
Emerald	Р	111191,996	86380.742	0.0			
Emerald	P	111199.236	86382.202	0.0			
Emerald	P	111205.166	86387.392	0.0			
Emerald	P	111208.656	86392.512	0.0			
Emerald	P	111213.296	86400.182	0.0			
Emerald	P	111214.506	86400.212	0.0			
Emerald	P	111221 576	86407 942	0.0			
Emerald	P	111224.996	86415.572	0.0			
Emerald	P	111229.706	86420.722	0.0			
Emerald	P	111231 986	86425 812	0.0			
Emerald	P	111235.556	86428.422	0.0			
Emerald	P	111242.546	86438.662	0.0			
Emerald	P	111247 226	86445 072	0.0			
Emerald	P	111249.506	86450.152	0.0			
Emerald	P	111254.176	86456.562	0.0			
Emerald	P	111258.886	86461.722	0.0			
Emerald	P	111269.596	86469.552	0.0			
Emerald	P	111271.946	86472.132	0.0			
Emerald	P	111275.446	86477.252	0.0			
Emerald	P	111282.546	86483.732	0.0			
Emerald	P	111287.226	86490.142	0.0			
Emerald	P	111290.686	86496.512	0.0			
Emerald	P	111294.176	86501.632	0.0			
Emerald	P	111299.956	86511.842	0.0			
Emerald	P	111303.596	86511.942	0.0			
Emerald	P	111305.956	86514.522	0.0			
Emerald	P	111309.446	86519.642	0.0			
Emerald	Р	111310.626	86520,932	0.0			
Emerald	Р	111318.946	86527.442	0.0			
Emerald	Р	111318.976	86526.192	0.0			
Emerald	Р	111321.446	86525.002	0.0			
Emerald	Р	111323.906	86523.822	0.0			
Emerald	Р	111326.336	86523.892	0.0			
Emerald	Р	111328.766	86523.962	0.0			
Emerald	Р	111331.196	86524.032	0.0			
Emerald	Р	111340.906	86524.312	0.0			
Emerald	Р	111342.116	86524.352	0.0			
Emerald	Р	111346.976	86524,482	0.0			
Emerald	Р	111353.006	86525.912	0.0			
Emerald	Р	111354.226	86525.952	0.0			
Emerald	P	111356.616	86527.272	0.0			
Emerald	Р	111362.686	86527,452	0.0			
Emerald	Р	111371.106	86530.202	0.0			
Emerald	P	111377.036	86535.392	0.0			
Emerald	Р	111378.176	86537.932	0.0			
Emerald	Р	111382.886	86543.092	0.0			
Emerald	Р	111386.416	86546.952	0.0			
Emerald	P	111391.086	86553.362	0.0			
Emerald	Р	111393.336	86559,702	0.0			
Emerald	Р	111394.366	86566.002	0.0			
Emerald	Р	111395.356	86573.562	0.0			
Emerald	Р	111396.466	86577.362	0.0			
Emerald	P	111397.426	86586.172	0.0			
Emerald	Р	111399.706	86591.252	0.0			
Emerald	Р	111402.056	86593.832	0.0			
Emerald	P	111401.986	86596.342	0.0			
Emerald	Р	111401.726	86605.112	0.0			
Emerald	Р	111402.796	86610.162	0.0			
Emerald	Р	111403.936	86612.702	0.0			
Emerald	Р	111405.116	86613.992	0.0			
Emerald	Р	111406.296	86615.282	0.0			
Emerald	Р	111409.786	86620.402	0.0			
Emerald	Р	111410.856	86625.452	0.0			
Emerald	Р	111415.676	86626.842	0.0			
Emerald	Р	111419.286	86628.202	0.0			
							1

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Emerald	P	111424.026	86632.102	0.0			
Emerald	Р	111425.206	86633.392	0.0			
Emerald	Р	111426.386	86634.682	0.0			
Emerald	Р	111427.596	86634.722	0.0			
Emerald	Р	111428.776	86636.012	0.0			
Emerald	Р	111437.096	86642.522	0.0			
Emerald	Р	111438.126	86648.822	0.0			
Emerald	Р	111439.296	86650.112	0.0			
Emerald	Р	111441.586	86655,192	0.0			
Emerald	Р	111442.686	86658.992	0.0			
Emerald	Р	111443.866	86660.282	0.0			
Emerald	Р	111446.076	86667.872	0.0			
Emerald	Р	111447.176	86671.672	0.0			
Emerald	Р	111447.136	86672.922	0.0			
Emerald	Р	111448.316	86674.212	0.0			
Emerald	Р	111448.206	86677.972	0.0			
Emerald	Р	111448.246	86676.722	0.0			
Emerald	Р	111449.756	86666.722	0.0			
Emerald	Р	111451.186	86659.242	0.0			
Emerald	Р	111451.366	86652.972	0.0			
Emerald	P	111451 546	86646 702	0.0			
Emerald	P	111451 916	86634 162	0.0			
Emerald	P	111452 136	86626 642	0.0			
Emerald	P	111451 396	86610 312	0.0			
Emerald	P	111451 576	86604 042	0.0			
Emerald	P	111451 766	86507 772	0.0			
Emorald	P	111451.096	86500.252	0.0			
Emorald	P	111451.900	86578.072	0.0			
Emorald	P	111452.500	86570.372	0.0			
Emerald	Г D	111452.500	000710.192	0.0			
Emerald	P	111452.070	00000.432	0.0			
Emerald	P	111431.000	00002.012	0.0			
Emeraid	P	111450.756	00040.012	0.0			
Emeraid	P	111450.906	86543.802	0.0			
Emeraid	P	111451.236	86532.512	0.0			
Emeraid	P	111451.596	86519.982	0.0			
Emerald	P	111451.896	86509.952	0.0			
Emeraid	P	111453.366	86501.212	0.0			
Emeraid	P	111453.806	86486.162	0.0			
Emerald	P	111452.736	86481.112	0.0			
Emeraid	P	111452.876	86476.102	0.0			
Emerald	Р	111451.996	86464.782	0.0			
Emerald	P	111450.886	86460.982	0.0			
Emerald	Р	111451.256	86448.452	0.0			
Emerald	P	111450.156	86444.652	0.0			
Emerald	P	111449.156	86437.102	0.0			
Emerald	P	111446.836	86433.262	0.0			
Emerald	P	111447.056	86425.742	0.0			
Emerald	P	111444.846	86418.152	0.0			
Emerald	P	111443.816	86411.852	0.0			
Emerald	P	111442.716	86408.052	0.0			
Emerald	P	111442.786	86405.542	0.0			
Emerald	P	111442.936	86400.532	0.0			
Emerald	P	111441.906	86394.232	0.0			
Emerald	P	111440.836	86389.182	0.0			
Emerald	P	111440.946	86385.412	0.0			
Emerald	P	111441.166	86377.892	0.0			
Emerald	P	111441.276	86374.132	0.0			
Emerald	P	111441.346	86371.622	0.0			
Emerald	P	111440.246	86367.832	0.0			
Emerald	P	111435.676	86357.662	0.0			
Emerald	P	111434.466	86357.622	0.0			
Emerald	P	111433.326	86355.082	0.0			
Emerald	P	111432.216	86351.292	0.0			
Emerald	P	111429.936	86346.202	0.0			
Emerald	Ρ	111426.656	86333.562	0.0			
Emerald	Р	111424.346	86329.732	0.0			
Emerald	Р	111422.026	86325.902	0.0			
Emerald	Р	111418.636	86317.022	0.0			
Emerald	Ρ	111417.716	86306.952	0.0			
Emerald	P	111416.686	86300.652	0.0			
Emerald	Р	111415.766	86290.592	0.0			
Emerald	Р	111414.766	86283.032	0.0			
Emerald	Р	111414.806	86281.772	0.0			
Emerald	Р	111414.916	86278.012	0.0			
Emerald	Р	111415.166	86269.242	0.0			
Emerald	Р	111416.606	86261.752	0.0			
	1		=				1

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Emerald	P	111419 146	86258 062	0.0			
Emerald	P	111421.646	86255.622	0.0			
Emerald	Р	111423.076	86248.142	0.0			
Emerald	P	111425.576	86245.702	0.0			
Emerald	Р	111425.616	86244.452	0.0			
Emerald	Р	111426.866	86243.232	0.0			
Emerald	P	111429.366	86240.792	0.0			
Emerald	Р	111429.476	86237.032	0.0			
Emerald	Р	111433.296	86230.872	0.0			
Emerald	Р	111433.626	86219.582	0.0			
Emerald	Р	111431.496	86209.482	0.0			
Emerald	Р	111428.176	86198.102	0.0			
Emerald	Р	111427.146	86191.792	0.0			
Emerald	Р	111426.196	86182.982	0.0			
Emerald	Р	111426.406	86175.462	0.0			
Emerald	Р	111425.346	86170.412	0.0			
Emerald	Р	111424.276	86165.362	0.0			
Emerald	Р	111423.316	86156.552	0.0			
Emerald	P	111422.246	86151.502	0.0			
Emerald	Р	111417.796	86137.572	0.0			
Emerald	Р	111412.056	86126,112	0.0			
Emerald	P	111408.666	86117.232	0.0			
Emerald	Р	111405.316	86107.102	0.0			
Emerald	Р	111402.036	86094,462	0.0			
Emerald	Р	111399.906	86084.362	0.0			
Emerald	Р	111398.766	86081.812	0.0			
Emerald	Р	111394.166	86072.902	0.0			
Emerald	Р	111390.706	86066.522	0.0			
Emerald	Р	111384.816	86060.082	0.0			
Emerald	Р	111381.396	86052.452	0.0			
Emerald	Р	111380.216	86051.172	0.0			
Emerald	Р	111373.186	86042.182	0.0			
Emerald	Р	111367.406	86031.972	0.0			
Emerald	Р	111366.306	86028.182	0.0			
Emerald	Р	111365.276	86021.882	0.0			
Emerald	Р	111364.136	86019.332	0.0			
Emerald	Р	111359.426	86014.182	0.0			
Emerald	Р	111353.646	86003.972	0.0			
Emerald	Р	111351.256	86002.652	0.0			
Emerald	P	111346.696	85992.482	0.0			
Emerald	Р	111343.086	85991.122	0.0			
Emerald	Р	111341.876	85991.092	0.0			
Emerald	P	111339.476	85989.762	0.0			
Emerald	Р	111328.736	85983.182	0.0			
Emerald	Р	111326.306	85983.112	0.0			
Emerald	P	111325.096	85983.082	0.0			
Emerald	Р	111314.236	85980.252	0.0			
Emerald	Р	111311.926	85976.422	0.0			
Emerald	P	111310.746	85975.132	0.0			
Emerald	Р	111309.536	85975.102	0.0			
Emerald	P	111308.316	85975.062	0.0			
Emerald	Р	111304.826	85969.942	0.0			
Emerald	Р	111285.406	86219.072	0.0			
Emerald	P	111280.406	86223.942	0.0			
Emerald	P	111279.156	86225.162	0.0			
Emerald	Р	111279.116	86226.422	0.0			
Emerald	P	111275.256	86233.832	0.0			
Emerald	P	111273.896	86238.812	0.0			
Emerald	Р	111272.576	86242.542	0.0			
Emerald	P	111271.206	86247.522	0.0			
Emerald	P	111271.176	86248.772	0.0			
Emerald	Р	111272.276	86252.572	0.0			
Emerald	P	111274.526	86258.912	0.0			
Emerald	Ρ	111275.696	86260.192	0.0			
Emerald	Р	111275.556	86265.212	0.0			
Emerald	Ρ	111276.696	86267.752	0.0			
Emerald	P	111277.796	86271.552	0.0			
Emerald	Р	111279.016	86271.582	0.0			
Emerald	Ρ	111281.256	86277.922	0.0			
Emerald	P	111285.966	86283.082	0.0			
Emerald	Р	111287.146	86284.362	0.0			
Emerald	Ρ	111290.606	86290.742	0.0			
Emerald	P	111294.216	86292.102	0.0			
Emerald	Р	111295.356	86294.642	0.0			
Emerald	P	111298.886	86298.512	0.0			
Emerald	P	111301.206	86302.342	0.0			

Laka	Point	Fasting (m)	Northing (m)	Depth	Filtered	StDev	Horizontal Precision (m)
Lake		111202 206	96206 122	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 03100113	OLDEV	
Emerald	P	111302.300	00300.132	0.0			
Emerald		111305.090	00313.012	0.0			
Emerald	P	111300.030	86321 302	0.0			
Emerald	P	111312 616	86327 762	0.0			
Emerald	P	111316 186	86330.372	0.0			
Emerald	P	111325 716	86336 922	0.0			
Emerald	P	111329 246	86340 792	0.0			
Emerald	P	111330 426	86342 072	0.0			
Emerald	P	111333.986	86344.692	0.0			
Emerald	P	111335.166	86345.982	0.0			
Emerald	Р	111338.736	86348.592	0.0			
Emerald	Р	111342.266	86352.452	0.0			
Emerald	Р	111343.336	86357.502	0.0			
Emerald	P	111345.726	86358.832	0.0			
Emerald	Р	111346.796	86363.882	0.0			
Emerald	P	111348.896	86375.232	0.0			
Emerald	P	111349.966	86380.282	0.0			
Emerald	P	111349.926	86381.532	0.0			
Emerald	P	111349.816	86385.292	0.0			
Emerald	P	111350.956	86387.842	0.0			
Emerald	P	111351.986	86394.142	0.0			
Emerald	P	111354.236	86400.482	0.0			
Emerald	P	111354.196	86401.732	0.0			
Emerald	P	111355.196	86409.292	0.0			
Emerald	P	111355.116	86411.802	0.0			
Emerald	P	111353.616	86421.792	0.0			
Emerald	P	111355.896	86426.882	0.0			
Emeraid	P	111358.136	86433.212	0.0			
Emerald	P	111359.246	86437.012	0.0			
Emerald	P	111301.320	00442.092	0.0			
Emerald	Г D	111301.400	86446.002	0.0			
Emerald	P	111300.270	86//7 302	0.0			
Emerald	P	111371.090	86447.392	0.0			
Emerald	P	111376.026	86445 022	0.0			
Emerald	P	111377 276	86443 802	0.0			
Emerald	P	111378.636	86438.822	0.0			
Emerald	P	111381.136	86436.392	0.0			
Emerald	P	111382.456	86432.662	0.0			
Emerald	Р	111382.536	86430.152	0.0			
Emerald	Р	111381.496	86423.852	0.0			
Emerald	P	111380.326	86422.562	0.0			
Emerald	Р	111379.256	86417.512	0.0			
Emerald	P	111378.146	86413.722	0.0			
Emerald	Р	111377.116	86407.412	0.0			
Emerald	P	111377.156	86406.162	0.0			
Emerald	P	111377.266	86402.402	0.0			
Emerald	P	111376.236	86396.092	0.0			
Emerald	P	111376.416	86389.832	0.0			
Emerald	P	111376.456	86388.572	0.0			
Emerald	P	111376.706	86379.802	0.0			
Emerald	Р	1113/6./46	86378.542	0.0			
Emerald	P	1113/6.816	86376.042	0.0			
Emerald	P	111376.966	86371.022	0.0			
Emeraid	P	111378.366	86364.792	0.0			
Emerald	P	111370.430	00302.202	0.0			
Emerald		111370.000	96353 512	0.0			
Emerald		111370.090	00303.012	0.0			
Emerald	P	111383.836	863/3 622	0.0			
Emerald	P	111383 946	86339 862	0.0			
Emerald	P	111385 196	86338 642	0.0			
Emerald	P	111385 236	86337 382	0.0			
Emerald	P	111386 556	86333 662	0.0			
Emerald	Р	111386.636	86331.152	0.0			
Emerald	Р	111386.666	86329.902	0.0			
Emerald	Р	111386.746	86327.392	0.0			
Emerald	P	111386.926	86321.122	0.0			
Emerald	P	111385.936	86313.562	0.0			
Emerald	Ρ	111385.966	86312.312	0.0			
Emerald	Ρ	111386.116	86307.302	0.0			
Emerald	P	111386.146	86306.042	0.0			
Emerald	P	111386.296	86301.032	0.0			
Emerald	P	111385.226	86295.982	0.0			
Emerald	P	111382.946	86290.892	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Emerald	P	111381.766	86289.602	0.0			
Emerald	Р	111380.596	86288.322	0.0			
Emerald	P	111380.666	86285.812	0.0			
Emerald	P	111379.486	86284.522	0.0			
Emerald	Р	111377.206	86279.432	0.0			
Emerald	Р	111377.276	86276.932	0.0			
Emerald	Р	111376.066	86276.892	0.0			
Emerald	Р	111370.106	86272.962	0.0			
Emerald	P	111366.576	86269.092	0.0			
Emerald	P	111365.356	86269.062	0.0			
Emerald	Р	111362.926	86268.992	0.0			
Emerald	P	111358.106	86267.592	0.0			
Emerald	Р	111355.716	86266.272	0.0			
Emerald	P	111352.116	86264.912	0.0			
Emerald	P	111346.046	86264.732	0.0			
Emerald	P	111344.826	86264.702	0.0			
Emerald	P	111343.656	86263.412	0.0			
Emerald	P	111340.086	86260.802	0.0			
Emerald	P	111336.546	86256.932	0.0			
Emerald	P	111332.906	86256.832	0.0			
Emerald	P	111332.946	86255.572	0.0			
Emerald	Р	111331.726	86255.542	0.0			
Emerald	Р	111325.696	86254.112	0.0			
Emerald	Р	111324.516	86252.822	0.0			
Emerald	P	111320.986	86248.952	0.0			
Emerald	P	111315.026	86245.022	0.0			
Emerald	Р	111313.926	86241.222	0.0			
Emerald	Р	111312.706	86241.192	0.0			
Emerald	P	111311.606	86237.392	0.0			
Emerald	P	111310.426	86236.102	0.0			
Emerald	P	111306.896	86232.242	0.0			
Emerald	Р	111302.146	86228.342	0.0			
Emerald	P	111299.756	86227.012	0.0			
Emerald	P	111298.576	86225.722	0.0			
Emerald	Р	111296.186	86224.402	0.0			
Emerald	Р	111291.366	86223.012	0.0			
Emerald	P	111290.186	86221.722	0.0			
Emerald	Р	111287.796	86220.392	0.0			
Emerald	Р	111286.616	86219.102	0.0			
Emerald	Р	111285.406	86219.072	0.0			
Vail	1	731882.280	4954034.198	5.2	11	0.118590	0.466
Vail	2	731896.206	4954051.560	9.0	11	0.157965	0.467
Vail	3	731910.639	4954070.900	11.6	11	0.075394	0.693
Vail	4	731925.110	4954087.247	12.9	25	0.080255	0.678
Vail	5	731946.618	4954111.346	11.7	11	0.056849	0.693
Vail	6	731962.354	4954129.850	7.4	14	0.141508	0.685
Vail	7	731950.468	4954160.572	6.0	15	0.220711	0.660
Vail	8	731933.901	4954138.445	11.1	20	0.083891	0.655
Vail	9	731918.349	4954119.278	13.3	23	0.137936	0.652
Vail	10	731900.630	4954097.699	12.8	21	0.060902	0.654
Vail	11	731885.211	4954077.059	10.2	27	0.172796	0.648
Vail	12	731870.453	4954060.334	7.3	26	0.088725	0.649
Vail	13	731845.685	4954063.804	4.7	12	0.117234	0.586
Vail	14	731860.622	4954084.041	8.9	15	0.126067	0.581
Vail	15	731874.534	4954102.647	11.4	17	0.072915	0.579
Vail	16	731891.051	4954124.064	13.2	20	0.054855	0.522
Vail	17	731905.780	4954144.057	13.3	25	0.123496	0.487
Vail	18	731921.751	4954164.861	9.7	14	0.061415	0.495
Vail	19	731936.757	4954188.392	4.5	15	0.065946	0.494
Vail	20	731918.251	4954211.879	2.6	13	0.075446	0.496
Vail	21	731904.984	4954190.989	7.1	15	0.062330	0.494
Vail	22	731891.480	4954172.178	10.5	26	0.063420	0.486
Vail	23	731877.095	4954149.618	12.0	19	0.048281	0.491
Vail	24	731863.404	4954129.246	12.0	25	0.090382	0.385
Vail	25	731848.512	4954106.574	9.7	16	0.073218	0.270
Vail	26	731835.136	4954087.552	6.6	21	0.077068	0.289
Vail	27	731808.120	4954082.723	4.1	30	0.107012	0.285
Vail	28	731821.405	4954111.975	8.4	17	0.087361	0.290
Vail	29	731834.871	4954134.712	10.0	20	0.097698	0.289
Vail	30	731847.287	4954154.010	9.7	31	0.126280	0.284
Vail	31	731862.354	4954178.152	8.6	21	0.070199	0.289
Vail	32	731875.341	4954198.191	6.5	17	0.103602	0.377
Vail	33	731891.215	4954224.882	3.5	14	0.051196	0.270
Vail	34	731857.324	4954227.449	5.2	14	0.071460	0.396
Vail	31	731844 671	4954202 501	7.6	16	0 136450	0 303

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Vail	36	731831.071	4954180.669	8.2	22	0.036049	0.290
Vail	37	731818.578	4954159.351	8.4	18	0.034794	0.293
Vail	38	731806.298	4954137.212	8.7	18	0.058219	0.293
Vail	39	731790.331	4954111.032	6.4	19	0.080995	0.293
Vail	40	731974.163	4954105.262	8.3	26	0.069089	0.368
Vail	41	731954.249	4954081.745	11.9	21	0.104364	0.300
Vail	42	731938.232	4954061.850	11.6	23	0.050292	0.302
Vail	43	731924.289	4954045.292	9.9	19	0.060782	0.303
Vail	44	731907.961	4954025.594	7.2	19	0.059949	0.308
Vail	45	731911.665	4954125.920	13.2	30	0.150662	0.454
Vall	46	731919.530	4954130.178	13.0	11	0.084479	0.468
Vail	47	731928.032	4954132.178	12.2	11	0.073808	0.273
Vall	48	731938.075	4954119.451	11.9	11	0.118537	0.454
Vall	49	731910.233	4954110.000	13.2	14	0.105900	0.273
Vall	50	731900.500	4954110.945	13.1	10	0.039348	0.449
Vall	51	731909.072	4954099.795	12.9	13	0.052271	0.272
Vall	52	731937.743	4954101.156	12.0	11	0.037403	0.273
Vall	53	731920.330	4954094.010	12.9	15	0.042752	0.273
Vail	55	731934.239	4954020.090	10.0	10	0.033031	0.300
Vail	55	731931.201	4954040.559	10.0	12	0.043139	0.390
Vail	57	731970.011	4954050.074	8.9	13	0.029007	0.390
Vail	58	732013 /51	4954070.010	6.5	12	0.003037	0.290
Vail	50	731002 025	4054040 480	0.5	12	0.040200	0.233
Vail	59	73107/ 127	4954040.480	8.7	12	0.033143	0.272
Vail	61	731055.806	4954024.003	8.0	12	0.049312	0.272
Vail	62	731068 665	4052082 106	5.2	11	0.000200	0.030
Vail	63	731088 032	4953963.100	5.8	12	0.210200	0.299
Vail	64	732006 123	4954001.488	5.0	12	0.079393	0.390
Vail	65	732000.123	4054021 550	5.0	11	0.054083	0.233
Vail	66	732022.473	4954031.559	5.9	11	0.034003	0.293
Vail	67	732030.000	4954045.071	2.8	11	0.033702	0.293
Vail	68	732040.330	49540022.010	2.0	11	0.079240	0.404
Vail	00 93	731997 547	4953967 492	2.0	11	0.079240	0.272
Vail	70	731916 647	4954140 462	12.0	11	0.073074	0.230
Vail	70	731922 437	4954148 844	11.6	11	0.040007	0.271
Vail	72	731906 600	4954139 761	13.2	10	0.067603	0.271
Vail	73	731907 033	4954149 816	12.9	10	0.053857	0.294
Vail	74	731901 118	4954166 952	11.2	10	0.068873	0 294
Vail	75	731867.134	4954222.315	5.0	11	0.028973	0.271
Vail	76	731840.190	4954228.157	6.0	10	0.053796	0.384
Vail	77	731856.970	4954207.911	6.5	10	0.068821	0.381
Vail	78	731841.584	4954185.503	9.2	10	0.068574	0.396
Vail	79	731825.919	4954161.660	8.5	10	0.034407	0.295
Vail	80	731809.657	4954137.846	8.9	10	0.042513	0.296
Vail	81	731794.390	4954115.554	7.3	11	0.084582	0.394
Vail	82	731782.862	4954096.755	4.3	10	0.039813	0.332
Vail	83	731755.322	4954100.883	3.6	10	0.039589	0.296
Vail	84	731768.489	4954120.749	6.2	10	0.042018	0.296
Vail	85	731781.295	4954139.908	8.1	10	0.030810	0.296
Vail	86	731795.599	4954161.169	8.1	10	0.044628	0.296
Vail	87	731811.424	4954184.515	8.0	10	0.067518	0.298
Vail	88	731826.932	4954207.832	7.6	10	0.046950	0.393
Vail	89	731812.926	4954228.720	5.2	10	0.038041	0.393
Vail	90	731793.525	4954203.182	7.2	10	0.032656	0.393
Vail	91	731775.832	4954179.158	7.4	10	0.036728	0.393
Vail	92	731762.879	4954161.851	7.4	10	0.033684	0.393
Vail	93	731746.258	4954139.864	6.7	10	0.032921	0.393
Vail	94	731729.963	4954118.325	4.0	11	0.051169	0.302
Vail	95	731716.698	4954100.475	2.0	10	0.039923	0.303
Vail	96	731710.989	4954129.572	3.3	10	0.050005	0.394
Vail	97	731687.225	4954139.516	2.2	10	0.074069	0.395
Vail	98	731702.839	4954152.679	3.5	10	0.085147	0.395
Vail	99	731724.116	4954149.145	4.7	10	0.116263	0.395
Vail	100	731714.549	4954170.465	3.8	10	0.082878	0.419
Vail	101	731738.440	4954170.023	4.9	10	0.079048	0.419
Vail	102	731732.478	4954192.485	4.2	10	0.137823	0.421
Vail	103	731753.993	4954193.278	5.5	10	0.136398	0.421
Vail	104	731768.571	4954214.443	5.3	10	0.123930	0.421
Vail	105	731893.961	4954137.692	13.2	11	0.049737	0.340
Vail	106	731924.509	4954106.091	13.0	10	0.049713	0.395
Vail	107	732013.202	4953987.220	2.8	10	0.107452	0.397
Vail	С	731911.811	4954134.684	13.3	20	0.061032	0.387
Vail	P	731697.880	4954050.500	0.0			
Vail	P	731697.810	4954051.500	0.0			
Vail	P	731696.750	4954052.500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Vail	P	731695.620	4954054.500	0.0			
Vail	P	731695.560	4954055.500	0.0			
Vail	P	731697.250	4954062.500	0.0			
Vail	P	731698.120	4954065.500	0.0			
Vail	P	731699.000	4954069.000	0.0			
Vail	P	731698.750	4954073.000	0.0			
Vail	P	731698.560	4954077.000	0.0			
Vall	P	731098.380	4954081.000	0.0			
Vall	P	731096.230	4954083.000	0.0			
Vall	P	731695.000	4954087.000	0.0			
Vail	P	731693.560	4954090.000	0.0			
Vail	P	731691 440	4954096 500	0.0			
Vail	P	731687 120	4954100 500	0.0			
Vail	P	731685.940	4954103.500	0.0			
Vail	P	731684.880	4954104.500	0.0			
Vail	P	731680.620	4954107.000	0.0			
Vail	P	731678.380	4954111.000	0.0			
Vail	P	731676.250	4954113.000	0.0			
Vail	P	731672.060	4954115.000	0.0			
Vail	P	731669.940	4954116.500	0.0			
Vail	P	731668.810	4954118.500	0.0			
Vail	P	731667.750	4954119.500	0.0			
Vail	P	731664.380	4954124.500	0.0			
Vail	Р	731663.190	4954128.500	0.0			
Vail	P	731662.000	4954131.500	0.0			
Vail	P	731661.940	4954132.500	0.0			
Vall	P	731002.730	4954136.500	0.0			
Vall	P	731664 250	4954145.500	0.0			
Vall	P	731664.230	4954147.500	0.0			
Vail	P	731664 120	4954149 500	0.0			
Vail	P	731665.000	4954152 500	0.0			
Vail	P	731666.000	4954154.000	0.0			
Vail	P	731666.940	4954155.000	0.0			
Vail	P	731667.940	4954156.000	0.0			
Vail	P	731668.880	4954157.000	0.0			
Vail	P	731672.880	4954159.000	0.0			
Vail	P	731673.810	4954160.500	0.0			
Vail	P	731680.750	4954164.500	0.0			
Vail	P	731685.810	4954166.000	0.0			
Vail	P	731686.810	4954167.000	0.0			
Vail	P	731693.810	4954170.500	0.0			
Vall	P	731093.750	4954171.500	0.0			
Vall	P	731700 750	4954173.500	0.0			
Vail	P	731703.690	4954177.000	0.0			
Vail	P	731705 500	4954181.000	0.0			
Vail	P	731707.310	4954186.000	0.0			
Vail	Р	731710.190	4954190.500	0.0			
Vail	P	731710.000	4954193.500	0.0			
Vail	Р	731710.880	4954196.500	0.0			
Vail	P	731715.810	4954199.500	0.0			
Vail	P	731720.440	4954209.000	0.0			
Vail	P	731720.440	4954210.000	0.0			
Vail	P	731724.380	4954212.000	0.0			
Vail	P	731729.250	4954217.500	0.0			
Vail	P	731735.190	4954222.000	0.0			
Vall	P	731737.120	4954223.000	0.0			
Vall	P	731745.190	4954225.500	0.0			
Vail	P	731755 380	4954225.500	0.0			
Vail	P	731761 380	4954227.000	0.0	I		
Vail	P	731768 310	4954234 500	0.0			
Vail	P	731769.250	4954235.500	0.0	I		
Vail	P	731778.310	4954239.000	0.0			
Vail	P	731782.310	4954240.500	0.0			
Vail	P	731783.310	4954241.500	0.0			
Vail	P	731785.380	4954240.500	0.0			
Vail	P	731792.500	4954241.000	0.0			
Vail	Р	731797.500	4954244.000	0.0			
Vail	P	731801.500	4954245.500	0.0			
Vail	Р	731804.560	4954245.500	0.0			
Vall	۲ D	731808.620	4954246.000	0.0			
Vall		731809.690	4954246.000	0.0			
vali	F	131011.810	4904246.500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Vail	P	731818.810	4954247.500	0.0			
Vail	P	731828.880	4954251.000	0.0			
Vail	P	731829.810	4954252.000	0.0			
Vail	P	731832.880	4954252.000	0.0			
Vail	P	731838.000	4954252.500	0.0			
Vail	P	731839.000	4954253.500	0.0			
Vail	P	731842.060	4954253.500	0.0			
Vail	P	731850.250	4954253.000	0.0			
Vail	P	731851.310	4954252.000	0.0			
Vail	P	731854.500	4954250.000	0.0			
Vail	P	731855.560	4954249.000	0.0			
Vail	P	731863.690	4954250.500	0.0			
Vail	P	731866.690	4954252.000	0.0			
Vail	P	731870.690	4954254.000	0.0			
Vail	P	731878.750	4954256.500	0.0			
Vail	P	731880.750	4954257.500	0.0			
Vail	P	731882.750	4954257.500	0.0			
Vail	P	731883.810	4954257.500	0.0			
Vail	P	731885.810	4954258.000	0.0			
Vail	P	731888.000	4954256.000	0.0			
Vail	P	731890.190	4954253.000	0.0			
Vail	P	731893.310	4954251.000	0.0			
Vail	P	731896.560	4954248.500	0.0			
Vail	P	731898.620	4954247.500	0.0			
Vail	P	731903.880	4954245.500	0.0			
Vail	P	731907.000	4954244.000	0.0			
Vail	P	731908.060	4954243.000	0.0			
Vail	P	731910.190	4954242.000	0.0			
Vail	P	731914.380	4954240.000	0.0			
Vail	P	731915.500	4954238.000	0.0			
Vail	P	731916.690	4954235.000	0.0			
Vail	P	731918.810	4954233.500	0.0			
Vail	P	731920.060	4954229.500	0.0			
Vail	P	731921.310	4954224.500	0.0			
Vail	P	731921.440	4954222.500	0.0			
Vail	P	731923.620	4954219.500	0.0			
Vail	P	731923.690	4954217.500	0.0			
Vail	P	731924.940	4954213.500	0.0			
Vail	P	731927.060	4954211.500	0.0			
Vail	P	731933.500	4954207.000	0.0			
Vail	P	731933.500	4954206.000	0.0			
Vail	P	731935.620	4954205.000	0.0			
Vail	Р	/31937.750	4954203.000	0.0			
Vail	Р	731939.880	4954201.000	0.0			
Vail	Р	731944.060	4954200.500	0.0			
Vail	Р	731948.250	4954198.500	0.0			
Vail	P	731951.310	4954197.500	0.0			
Vail	Р	731955.500	4954196.000	0.0			
Vail	P	731958.750	4954193.000	0.0			
Vail	Р	731960.880	4954191.000	0.0			
Vail	Р	731965.250	4954185.500	0.0			
Vail	P	731966.380	4954184.500	0.0			
Vail	Р	731967.500	4954181.500	0.0			
Vail	Р	731968.690	4954178.500	0.0			
Vail	P	731969.000	4954172.500	0.0			
Vail	Р	731969.190	4954169.500	0.0			
Vail	Р	731968.190	4954168.500	0.0			
Vail	Р	731968.380	4954164.500	0.0			
Vail	Р	731968.500	4954162.500	0.0			
Vail	P	731968.810	4954156.500	0.0			
Vail	Р	731970.120	4954150.500	0.0			
Vail	Р	/319/1.500	4954143.500	0.0			
Vail	P	731972.620	4954142.500	0.0			
Vail	Р	731973.880	4954137.500	0.0			
Vail	Р	731976.190	4954132.500	0.0			
Vail	Р	731977.380	4954128.500	0.0			
Vail	Р	731980.750	4954122.500	0.0			
Vail	Р	731980.880	4954120.500	0.0			
Vail	Р	731983.120	4954116.500	0.0			
Vail	Р	731985.440	4954112.000	0.0			
Vail	Р	731986.690	4954107.000	0.0			
Vail	P	731988.810	4954106.000	0.0			
Vail	Р	731994.120	4954101.000	0.0			
Vail	P	731994.190	4954100.000	0.0			
Vail	P	731998.560	4954095.500	0.0			
Vail	P	732000.620	4954094.500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Vail	P	732005.060	4954087.500	0.0			
Vail	P	732007.250	4954085.500	0.0			
Vail	P	732010.500	4954082.000	0.0			
Vail	P	732014.750	4954079.000	0.0			
Vail	P	732016.940	4954076.000	0.0			
Vall	P	732019.060	4954074.000	0.0			
Vall	P	732023.190	4954075.500	0.0			
Vail	P	732024.510	4954067 500	0.0			
Vail	P	732032 750	4954067.000	0.0			
Vail	P	732036.880	4954066.000	0.0			
Vail	P	732039.000	4954065.000	0.0			
Vail	P	732043.120	4954064.500	0.0			
Vail	P	732047.190	4954064.500	0.0			
Vail	P	732049.310	4954063.500	0.0			
Vail	P	732053.440	4954063.000	0.0			
Vail	P	732055.500	4954063.000	0.0			
Vail	P	732060.690	4954061.000	0.0			
Vail	P	732062.810	4954059.500	0.0			
Vall	P	732064.940	4954058.500	0.0			
Vall	P	732068.250	4954057.500	0.0			
Vail	P	732060.230	4954053.500	0.0			
Vail	P	732069.440	4954049 500	0.0			
Vail	P	732069 560	4954047 500	0.0			
Vail	P	732069.750	4954044.500	0.0			
Vail	P	732069.750	4954043.500	0.0			
Vail	P	732070.000	4954039.500	0.0			
Vail	P	732070.120	4954036.500	0.0			
Vail	P	732070.190	4954035.500	0.0			
Vail	P	732070.310	4954032.500	0.0			
Vail	P	732070.380	4954031.500	0.0			
Vail	P	732070.440	4954030.500	0.0			
Vail	P	732070.620	4954027.500	0.0			
Vall	P	732069.560	4954027.500	0.0			
Vall	P	732067.560	4954026.500	0.0			
Vail	P	732062 690	4954023.300	0.0			
Vail	P	732061 690	4954021.000	0.0			
Vail	P	732057.940	4954014.500	0.0			
Vail	P	732057.000	4954013.500	0.0			
Vail	P	732057.060	4954011.500	0.0			
Vail	P	732057.190	4954009.500	0.0			
Vail	P	732056.250	4954007.500	0.0			
Vail	P	732056.440	4954003.500	0.0			
Vail	P	732056.500	4954002.500	0.0			
Vail	P	732056.750	4953997.500	0.0			
Vail	P	732055.810	4953996.500	0.0			
Vall	P	732055.880	4953995.500	0.0			
Vall		732054.940	4953993.500	0.0			
Vail	P	732054.120	4953989.000	0.0			
Vail	P	732051 120	4953988 000	0.0			
Vail	P	732047 310	4953983 000	0.0			
Vail	P	732046.440	4953980.000	0.0			
Vail	P	732045.500	4953977.500	0.0			
Vail	P	732042.560	4953975.500	0.0			
Vail	P	732041.560	4953974.500	0.0			
Vail	P	732035.880	4953966.000	0.0			
Vail	P	732032.810	4953966.000	0.0			
Vail	P	732030.000	4953961.000	0.0			
Vail	P	732028.000	4953959.500	0.0			
Vail	P	732025.000	4953958.500	0.0			
Vall	P	732022.060	4953955.500	0.0			
Vall	P	732020.120	4953953.500	0.0			
Vail	P	732013.250	4903949.000	0.0			
Vail	P	732012.300	4953940.000	0.0			
Vail	P	732005.440	4953940 500	0.0			
Vail	P	732003.440	4953940 500	0.0			
Vail	P	732001.380	4953940.000	0.0			
Vail	P	731993.380	4953936.000	0.0			
Vail	P	731992.500	4953933.500	0.0			
Vail	Р	731989.380	4953934.500	0.0			
Vail	P	731979.060	4953936.000	0.0			
Vail	P	731972 060	4953932 500	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Vail	P	731970.060	4953931.500	0.0			
Vail	P	731965.810	4953935.500	0.0			
Vail	P	731963.620	4953937.000	0.0			
Vail	P	731960.380	4953941.000	0.0			
Vail	P	731957.060	4953946.000	0.0			
Vail	P	731953.810	4953950.000	0.0			
Vail	Р	731951.440	4953956.000	0.0			
Vail	Р	731949.120	4953960.500	0.0			
Vail	P	731945.880	4953964.500	0.0			
Vail	Р	731936.190	4953974.000	0.0			
Vail	Р	731934.000	4953977.000	0.0			
Vail	Р	731928.690	4953981.000	0.0			
Vail	P	731923.440	4953982.500	0.0			
Vall	P	731918.120	4953986.500	0.0			
Vail	P	731915.000	4953988.000	0.0			
Vall	P	731909.690	4953992.000	0.0			
Vall	P	731907.380	4953997.000	0.0			
Vail	P	731903.120	4953999.500	0.0			
Vall	P	731898.880	4954003.500	0.0			
vaii	P	731893.380	4954010.000	0.0			
Vail	P	731891.250	4954012.000	0.0			
Vall	P	731888.000	4954015.000	0.0			
Vall	P	731881.560	4954020.500	0.0			
Vail	P	/318/6.250	4954024.500	0.0			
Vall	P	731871.000	4954027.000	0.0			
Vall	P	731865.690	4954031.000	0.0			
Vail	P	731861.500	4954033.000	0.0			
Vall	P	731857.190	4954037.500	0.0			
Vall	P	731854.060	4954038.500	0.0			
Vall	P	731850.880	4954040.500	0.0			
Vall	P	731844.690	4954042.000	0.0			
Vall	P	731843.560	4954044.000	0.0			
Vall	P	731842.440	4954046.000	0.0			
Vall	P	731835.120	4954048.500	0.0			
Vall	P	731833.000	4954050.500	0.0			
Vall	P	731828.810	4954052.500	0.0			
Vall	P	731826.690	4954053.000	0.0			
Vall	P	731821.500	4954055.000	0.0			
Vall	P	731816.380	4954054.500	0.0			
Vall	P	731012.120	4954057.500	0.0			
Vall		731003.000	4954059.000	0.0			
Vall	P	731799.000	4954064.000	0.0			
Vall		731794.300	4954064.500	0.0			
Vall		731703.000	4954006.000	0.0			
Vall	P	731782.000	4954070.000	0.0			
Vall		7317772 560	4954071.000	0.0			
Vall		731773.300	4954071.500	0.0			
Vall	P	731771.440	4954073.500	0.0			
Vall		731764 100	4954073.500	0.0			
Vall		731704.190	4954074.000	0.0			
Vall		731759.120	4954074.000	0.0			
Vall		731755.000	4954074.500	0.0			
Vall	P	731751.010	4954076.500	0.0			
Vall		731731.730	4954077.500	0.0			
Vall	P	731748.090	4954077.500	0.0			
Vall		731743.020	4954076.000	0.0			
Vall		731742.020	4954076.000	0.0			
Vall		731740.000	4954076.000	0.0			
Vall		731739.000	4954076.000	0.0			
Vall		731738.300	4954076.000	0.0			
Vall	P D	731734.440	4954075.500	0.0			
Vall	P	731733.300	4954074.500	0.0			
Vall		731731.440	4954074.500	0.0			
Vall	P	731726.300	4954074.500	0.0			
Vall		731705 200	4904074.000	0.0			
Vail		721724 200	4954073.000	0.0			
Vall		721721 440	4904072.000	0.0			
Vall		721740 440	4904070.000	0.0			
Vall		721716 500	4904009.000	0.0			
Vall		721711 500	4904000.000	0.0			
Vall		731711.500	4954064.500	0.0			
Vall	۲ D	731/10.500	4954063.500	0.0			
Vall	۲ D	731707.440	4954063.000	0.0			
Vall		731706.500	4954062.000	0.0			
Vall	۲ D	731704.560	4954060.000	0.0			
vaii	۲	731703.560	4954059.000	0.0			

Lake	Point	Easting (m)	Northing (m)	Depth (m)	Filtered Positions	StDev	Horizontal Precision (m)
Vail	P	731702.620	4954058.000	0.0			
Vail	P	731701.620	4954057.000	0.0			
Vail	P	731698.690	4954054.500	0.0			
Vail	P	731697.690	4954053.500	0.0			
Vail	P	731697.880	4954050.500	0.0			

Beebe Pond

APPENDIX C: MAGNETIC SUSCEPTIBILITY DATA

Raw magnetic susceptibility values for each core (SI units). AM = Amherst; BB = Beebe; CH = Chapel; DU = Duck; DM = Dunmore; EC = Echo; EL = Elligo; EM = Emerald; MO = Morey; TH = Thirteenth; VA = Vail

Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
0.95	10.5	3.8	12.4	2.0	3.0	39.5	26.0	11.9	0.2	11.9	0.7	3.1	-0.2	-0.1
1.90	14.0	4.9	15.7	2.4	3.8	59.6	31.4	15.5	0.2	16.2	0.9	4.4	-0.3	-0.2
2.85	16.4	5.6	18.1	2.4	4.4	76.5	33.0	18.5	0.3	18.3	0.9	6.0	-0.3	-0.3
3.60	17.5	5.8	20.8	2.2	4.6	07.0	32.9	20.1	0.5	18.7	0.0	7.3	-0.1	-0.2
5.70	17.3	5.0	20.0	1.8	4.0	97.0	31.7	21.0	0.2	17.1	0.9	9.0	-0.3	-0.2
6.65	16.7	4.9	22.0	1.5	4.5	97.7	31.5	23.5	0.4	15.9	0.3	9.7	-0.3	-0.5
7.60	16.1	4.3	22.0	1.5	4.5	97.5	33.7	24.2	0.4	14.7	0.9	10.1	-0.3	-0.3
8.55	15.4	3.5	21.4	1.4	4.4	97.4	38.3	24.7	0.4	13.5	0.7	10.9	-0.3	-0.5
9.50	14.8	2.8	20.3	1.3	4.4	97.2	44.6	25.3	0.4	12.4	0.8	11.8	-0.2	-0.4
10.45	14.3	2.2	19.2	1.1	4.4	96.9	48.5	25.9	0.4	11.6	0.9	13.0	-0.2	-0.3
11.40	14.0	1.9	17.9	1.0	4.6	96.6	47.1	26.2	0.5	11.0	0.9	13.9	-0.2	-0.4
12.35	13.8	1.5	16.7	0.8	4.7	96.4	43.1	26.4	0.6	10.4	0.9	14.7	0.0	-0.4
14 25	13.0	0.8	14.4	0.7	4.9	90.3	41.3	20.0	0.0	9.9	0.9	14.3	0.1	-0.4
15.20	13.9	0.6	13.1	0.7	5.0	97.9	45.7	28.1	0.7	9.5	1.1	12.8	0.2	-0.3
16.15	14.4	0.6	12.2	0.7	4.7	98.3	46.1	27.8	0.8	8.6	0.9	10.7	0.5	-0.4
17.10	14.8	0.5	11.5	0.8	4.1	98.9	42.2	27.9	0.9	7.8	1	8.8	1.0	-0.3
18.05	14.9	0.6	11.1	0.8	3.4	99.6	36.6	27.7	0.9	7.1	0.9	7.4	0.9	-0.4
19.00	14.3	0.6	11.0	1.1	4.6	99.8	32.5	27.5	1.1	6.7	1	6.2	0.9	-0.4
19.95	13.3	0.6	11.0	1.1	5.7	99.9	31.4	27.0	1.1	6.5	0.9	5.3	0.8	-0.3
20.90	12.3	0.6	11.1	0.9	6.4	99.9	32.3	26.8	1.2	6.Z	1	4.8	0.9	-0.2
21.00	11.0	0.7	12.8	0.0	7.2	99.0	32.0	20.4	0.9	5.2	0.9	4.4	0.9	-0.2
23.75	10.8	1.0	14.4	0.8	7.5	99.4	32.7	25.3	0.8	4.6	1.1	3.5	0.7	-0.3
24.70	10.2	1.4	16.5	0.7	7.6	98.8	34.5	24.9	0.7	4.2	1.2	3.1	0.5	-0.4
25.65	10.0	1.9	18.9	0.6	7.9	97.6	40.0	24.4	0.7	3.7	1.1	2.9	0.3	-0.4
26.60	9.8	2.5	21.9	0.6	7.9	95.1	50.6	24.0	0.6	3.5	1	2.8	0.1	-0.4
27.55	9.3	2.7	25.7	0.7	7.8	91.3	68.2	23.9	0.5	3.5	1	2.6	0.0	-0.4
28.50	8.9	3.0	30.7	0.5	7.7	86.9	94.3	23.8	0.5	3.4	1	2.4	-0.1	-0.4
29.45	8.5	3.4	36.3	0.6	7.3	82.8	125.3	23.8	0.6	3.4	1	2.4	-0.2	-0.5
30.40	0.1	3.0	41.7	0.0	6.5	79.0	130.0	23.9	0.5	3.1	0.9	2.3	-0.2	-0.6
32.30	7.5	4.1	48.2	0.0	6.1	76.2	111 6	24.2	0.5	3.0	1.1	2.2	-0.2	-0.5
33.25	6.6	5.0	48.6	0.6	5.8	76.2	83.7	25.4	0.5	2.6	1.1	2.2	0.0	-0.6
34.20	6.4	5.6	47.2	0.7	5.6	77.6	64.8	26.9	0.6	2.4	1.1	2.3	-0.1	-0.5
35.15	6.2	6.2	44.3	0.7	5.4	79.9	53.5	29.1	0.6	2.4	1.1	2.2	-0.1	-0.6
36.10	6.0	6.9	41.2	0.8	5.3	82.3	47.6	31.9	0.7	2.2	1.1	2.2	-0.1	-0.5
37.05	5.9	7.5	38.6	0.7	5.1	84.5	45.1	34.8	0.6	2.1	1.1	2.2	-0.2	-0.6
38.00	5.8	8.0	35.9	0.7	5.0	86.7	45.7	36.6	0.7	2.2	1.2	2.3	-0.2	-0.6
30.95	5.0	0.3	20.0	0.0	5.0	09.2	49.1	30.1	0.7	2.1	1.4	2.4	-0.2	-0.0
40.85	6.0	8.8	26.7	0.0	5.0	93.1	64.2	30.4	0.0	1.9	1.3	2.4	-0.2	-0.0
41.80	6.1	9.0	23.3	0.8	5.5	93.3	75.2	27.3	0.7	1.9	1.4	2.7	-0.1	-0.6
42.75	6.3	9.2	20.1	1.0	5.9	91.9	85.7	25.5	0.7	1.9	1.3	2.8	-0.2	-0.8
43.70	6.1	9.3	17.6	1.0	5.8	88.9	89.7	24.6	0.8	1.9	1.4	2.9	-0.1	-0.7
44.65	6.2	9.2	15.9	1.0	5.9	84.7	82.2	24.3	0.7	1.8	1.5	3.1	0.0	-0.7
45.60	6.1	9.2	14.9	1.0	5.8	80.0	67.0	24.5	0.7	1.8	1.5	3.2	-0.1	-0.6
40.00	0.U 5 Q	9.3	14.2	1.1	5.0 5.3	70.2	43.5	24.0 25.1	0.0	1.0	1.0	3.4	-0.1	-0.6
48.45	5.8	9.0	13.7	1.0	5.1	67.6	37.8	25.1	0.6	1.8	1.6	3.5	-0.1	-0.6
49.40	5.8	7.6	13.4	1.0	5.1	66.2	34.9	25.2	0.6	1.6	1.6	3.6	-0.1	-0.6
50.35	5.7	5.5	12.8	1.0	5.2	66.0	33.6	25.0	0.6	1.7	1.7	3.7	-0.2	-0.5
51.30	5.9	4.2	12.1	0.9	5.2	65.8	32.9	24.9	0.6	1.7	1.7	3.7	-0.1	-0.5
52.25	5.8	3.9	11.3	1.0	5.3	65.3	32.8	25.3	0.6	1.6	1.9	3.6	-0.2	-0.4
53.20	5.7	3.3	11.1	0.9	5.5	64.9	33.8	26.5	0.5	1.6	2	3.6	-0.2	-0.4
54.15	5.5	2.8	11.5	0.9	5.6	66.0	35.9	28.5	0.5	1.6	1.9	3.6	-0.2	-0.4
56.05	5.5 5.5	2.0	12.5	0.0	5.0 5.7	67.7	39.0 44.8	34.7	0.0 8 0	1.0	1.9	3.5	-0.2	-0.4
57.00	5.5	2.3	15.3	0.9	5.7	68.4	51.6	38.4	0.0	1.3	21	3.3	-0.2	-0.5
57.95	5.5	2.0	17.2	0.9	5.8	67.3	61.7	42.0	0.8	1.4	2	3.3	0.0	-0.4
58.90	5.6	1.8	18.8	0.9	6.0	64.1	77.7	46.0	0.7	1.4	2	3.3	0.0	-0.4
59.85	5.8	1.7	19.8	0.9	6.2	59.8	103.1	49.4	0.8	1.5	2	3.3	-0.1	-0.4
60.80	5.9	1.6	20.9	0.9	6.3	55.8	140.2	50.7	0.9	1.3	2	3.3	0.0	-0.4
61.75	6.0	1.4	22.7	0.8	6.7	53.2	190.6	48.5	1	1.3	1.9	3.3	-0.1	-0.4
62.70	6.0	1.3	25.2	0.8	7.0	52.4	249.1	43.2	0.9	1.3	1.9	3.3	0.0	-0.3
64 60	0.2 6.1	1.3	21.0	0.9	7.4	53.6	360.0	37.0	0.8	1.3	1.9	3.4	0.0	-0.2
04.00	0.1	1.4	23.2	0.0	1.0	00.0	000.0	52.4	J	1.5	1.0	5.5	0.0	0.1
Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
------------	------------	-----	------------	-----	------------	-------	--------------	------------	-----	-----	-----	------	------	--------------
65.55	6.0	1.1	28.3	0.7	7.9	54.3	400.5	29.9	0.8	1.3	1.8	3.7	0.0	-0.1
66.50	5.8	1.1	25.8	0.7	8.0	55.2	437.0	28.1	0.8	1.4	1.8	3.7	0.0	-0.3
67.45	5.6	1.0	22.1	0.9	8.0	56.5	473.1	26.5	0.8	1.4	1.8	3.8	0.0	-0.4
68.40	5.5	1.1	18.1	0.8	7.1	58.3	501.4	25.0	0.8	1.4	1.8	3.7	0.1	-0.4
70.30	5.4	1.4	14.0	0.8	7.3	60.4	525.2	23.7	0.7	1.4	1.0	4.0	0.1	-0.4
71.25	5.5	1.6	10.4	0.9	7.2	61.4	535.4	22.0	0.7	1.4	2	4.0	0.2	-0.4
72.20	5.3	1.9	9.4	0.9	6.9	64.0	551.8	21.3	0.6	1.4	2	4.0	0.2	-0.5
73.15	5.2	2.0	9.1	0.9	6.7	68.8	574.3	20.1	0.7	1.5	2.1	4.2	0.2	-0.5
74.10	5.2	2.0	9.4	0.9	6.6	76.3	598.2	18.3	0.7	1.4	2	4.2	0.2	-0.5
75.05	5.3	1.8	10.1	0.8	6.5	87.0	617.0	15.8	0.7	1.4	2.1	4.4	0.3	-0.5
76.00	5.5	1.7	12.0	0.0	6.7	114.4	633.6	12.9	0.7	1.4	2.1	4.5	0.2	-0.5
77.90	5.7	0.8	12.5	0.8	6.8	127.6	636.0	12.0	0.7	1.5	2.4	4.6	0.1	-0.4
78.85	5.8	0.6	12.3	0.8	7.0	136.8	632.4	11.5	0.6	1.4	2.4	4.6	0.1	-0.3
79.80	6.1	0.5	11.7	0.8	7.1	138.5	613.4	11.5	0.6	1.5	2.4	4.7	0.1	-0.3
80.75	6.2	0.5	11.2	0.7	7.3	132.5	563.0	11.4	0.6	1.5	2.4	4.8	0.2	-0.2
81.70	6.2	0.5	11.3	0.7	7.4	121.8	4/5./	11.3	0.6	1.5	2.5	4.7	0.2	-0.1
83.60	6.5	0.5	12.3	0.0	7.0	101.8	271.2	11.2	0.7	1.5	2.0	4.7	0.3	-0.1
84.55	6.5	0.5	12.5	0.0	7.7	95.6	191.3	11.0	0.3	1.4	2.4	4.5	0.3	0.0
85.50	6.3	0.6	12.9	0.7	7.9	92.8	135.9	10.9	0.8	1.4	2.4	4.4	0.4	0.2
86.45	6.1	0.6	13.1	0.7	7.9	92.2	100.3	10.9	0.7	1.3	2.4	4.3	0.4	0.2
87.40	6.0	0.6	13.4	0.7	7.9	92.6	81.6	10.8	0.8	1.4	2.4	4.1	0.5	0.2
88.35	5.8	0.5	13.9	0.6	8.0	93.7	76.3	10.8	0.7	1.4	2.5	4.1	0.6	0.2
89.30	5.6	0.5	14.1	0.7	8.1	94.7	78.2	11.2	0.8	1.5	2.5	4.0	0.6	0.2
90.25	5.5	0.5	14.0	0.7	0.3 8.6	90.0	82.4	12.8	0.7	1.4	2.0	3.9	0.0	0.2
92.15	5.3	0.4	13.3	0.5	8.9	99.8	80.1	13.6	0.0	1.5	2.4	3.9	0.7	0.2
93.10	5.2	0.3	13.7	0.4	9.3	102.1	75.4	14.5	0.9	1.4	2.4	3.9	0.8	0.2
94.05	5.5	0.3	14.3	0.5	9.7	104.7	70.5	15.3	1	1.4	2.5	3.9	0.7	0.1
95.00	5.7	0.3	15.5	0.4	10.3	106.9	65.7	16.1	1	1.6	2.6	3.7	0.8	0.3
95.95	5.8	0.3	17.1	0.4	11.1	108.8	60.6	16.6	0.9	1.6	2.6	3.7	0.8	0.1
96.90	5.7	0.4	18.7	0.4	12.3	110.3	52.6	17.1	1.1	1.5	2.6	3.7	1.0	0.1
98.80	5.8	0.4	21.0	0.4	16.0	112.0	48.9	18.0	0.9	1.5	2.7	3.7	1.0	-0.1
99.75	5.8	0.6	21.4	0.7	18.4	112.1	44.8	18.1	0.9	1.3	2.8	3.7	1.2	-0.2
100.70	5.8	0.6	21.3	0.7	20.7	111.5	42.0	18.2	1	1.4	2.8	3.8	1.4	-0.2
101.65	5.7	0.7	20.0	1.0	22.2	110.1	40.6	18.3	0.8	1.4	2.9	3.7	1.6	-0.4
102.60	5.7	0.7	17.9	1.3	24.2	107.9	39.6	18.4	0.8	1.4	2.9	3.9	1.8	-0.2
103.55	5.6	0.6	15.5	1.6	27.4	105.3	38.3	18.5	0.8	1.4	2.9	3.9	1.9	-0.3
104.50	5.5	0.7	13.3	1.0	32.7	102.9	30.4 40.1	10.4	0.0	1.0	3.1	3.9	1.7	-0.6
106.40	5.8	0.7	10.7	1.7	46.9	98.9	41.9	17.7	0.8	1.4	3.2	4.1	1.4	-0.3
107.35	5.6	0.8	10.3	1.3	51.0	97.2	43.6	17.2	0.8	1.5	3.3	4.2	1.1	-0.4
108.30	5.7	0.9	9.7	0.9	52.2	95.5	44.3	16.9	0.7	1.4	3.3	4.2	0.8	-0.4
109.25	5.9	0.9	9.1	0.7	48.6	93.5	44.1	16.7	0.7	1.5	3.4	4.2	0.7	-0.3
110.20	6.0	1.0	8.6	0.4	41.8	91.5	43.8	16.6	0.6	1.5	3.4	4.2	0.6	-0.2
111.15	6.1	1.0	8.4	0.4	33.4	89.7	42.3	16.2	0.6	1.6	3.5	4.3	0.5	-0.3
112.10	6.0	1.0	0.0 8.5	0.3	20.3	85.6	38.1	15.0	0.5	1.0	3.5	4.4	0.4	-0.4
114.00	5.9	1.1	8.4	0.2	18.7	82.8	39.3	14.8	0.6	1.6	3.6	4.9	0.4	-0.3
114.95	6.0	1.2	8.2	0.1	16.7	79.9	40.7	14.4	0.6	1.8	3.4	5.2	0.4	-0.4
115.90	5.9	1.3	7.7	0.1	14.8	77.4	38.9	14.0	0.6	1.7	3.4	5.6	0.4	-0.3
116.85	5.9	1.6	7.2	0.0	13.0	75.8	34.6	13.7	0.6	1.7	3.3	6.1	0.5	-0.4
117.80	5.6	1.8	6.6	0.1	11.8	/4.4	34.3	13.2	0.7	1.7	3.2	6.8	0.4	-0.4
110.75	5.5 5.2	2.2	5.9	0.1	10.6	73.8	34.0	12.0	0.7	1.0	3.Z	9.1	0.4	-0.5 -0.2
120.65	4.9	3.3	4.9	0.1	10.2	75.0	33.4	11.8	0.7	1.6	3.2	10.5	0.2	-0.4
121.60	4.8	4.0	4.6	0.2	9.9	76.2	31.6	11.3	0.8	1.6	3.1	11.7	0.0	-0.3
122.55	4.6	5.1	4.8	0.2	9.5	76.1	33.1	11.0	0.8	1.6	3.1	12.0	0.0	-0.4
123.50	4.7	6.3	4.7	0.2	9.0	74.0	32.9	10.9	0.8	1.6	3.4	11.6	-0.1	-0.3
124.45	5.1	7.4	4.7	0.3	8.6	70.5	32.6	10.7	0.7	1.5	3.5	10.5	-0.2	-0.2
125.40	5.7	8.3	4.5 3.8	0.3	8.3 g 1	62.5	32.5	10.7	0.6	1.5	3.6	9.1	-0.1	-0.3
120.35	6.6	9.0	3.0	0.4	8.1	58.8	31.7	10.0	0.0	1.5	3.5	5.1	-0.1	-0.3
128.25	6.3	8.9	3.0	0.5	8.1	55.2	31.7	10.8	0.4	1.3	3.6	3.0	-0.2	-0.2
129.20	5.6	8.6	4.0	0.6	8.1	51.8	30.9	10.7	0.5	1.1	3.5	4.3	-0.3	-0.1
130.15	4.8	8.0	4.2	0.5	8.3	48.7	30.4	10.4	0.5	0.8	3.5	4.9	-0.3	-0.2
131.10	4.2	7.4	4.3	0.5	8.7	46.0	31.7	9.6	0.4	0.6	3.4	5.1	-0.3	-0.1
132.05	4.0	6.7	4.3	0.3	8.9	43.2	33.3	8.2	0.6	0.3	3.4	5.0	-0.3	-0.2
133.00	3.0	1.0	4.3	0.3	9.U 8.2	40.3	33.3	5.9 3.6	0.5	0.9	3.4	4.1	-0.3	-0.1
134.90	3.4	3.9	4.2	0.2	8.6	34.3	31.8	5.3	0.4	1.5	3.3	4.4	-0.2	0.0
135.85	3.6	3.5	4.2	0.1	8.5	32.1	32.6	6.8	0.3	2.0	3.4	4.3	0.0	-0.1
136.80	3.9	3.5	4.5	0.1	8.7	30.3	33.8	7.8	0.4	2.0	3.5	4.2	0.0	0.0
137.75	4.3	3.8	5.3	0.3	9.1	28.6	35.3	8.4	0.3	2.0	3.7	3.9	0.0	-0.1

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
138.70	4.5	4.3	5.9	0.2	9.8	26.5	36.7	8.8	0.3	1.9	3.7	3.8	0.1	-0.2
139.65	4.6	5.0	6.3	0.2	10.8	24.0	38.8	9.2	0.3	1.9	3.8	3.7	0.2	-0.1
140.60	4.5	5.8	6.2	0.3	12.3	20.8	41.5	9.3	0.1	2.0	3.9	3.6	0.3	-0.2
141.55	4.5	6.6 7.2	6.1	0.2	14.4	16.4	43.5	9.4	0.2	1.9	3.9	3.5	0.3	-0.2
143.45	4.6	7.7	6.4	0.3	20.0	10.8	40.3	9.5	0.3	2.0	3.9	3.3	0.4	-0.1
144.40	4.7	8.0	6.5	0.4	23.1	16.6	34.3	9.4	0.2	1.9	4.1	3.3	0.6	0.4
145.35	4.8	8.3	6.5	0.5	25.9	21.8	28.3	9.5	0.1	1.9	4.1	3.3	0.7	0.3
146.30	4.9	8.1	6.5	0.7	28.8	25.3	23.3	9.4	0.2	1.9	3.9	3.3	0.7	0.3
147.25	4.8	7.8	6.4	0.7	32.2	27.7	19.7	9.3	0.1	1.9	3.7	3.3	0.6	0.4
148.20	4.6	7.3	6.3	0.7	35.4	29.0	17.6	9.3	0.1	2.0	3.8	3.3	0.6	0.5
149.13	4.3	6.4	6.6	0.7	37.9	29.4	15.4	9.3	0.2	2.0	3.0	3.5	0.0	0.4
151.05	4.3	6.0	6.5	0.0	36.8	29.0	14.6	9.6	0.4	1.9	3.6	3.4	0.8	0.4
152.00	4.2	5.7	6.7	0.7	34.7	28.9	13.9	9.7	0	1.9	3.2	3.5	1.0	0.3
152.95	4.2	5.4	7.0	0.7	31.9	29.6	13.3	9.9	0	1.9	3.1	3.4	0.8	0.5
153.90	4.2	5.1	7.5	0.7	29.4	31.1	13.1	10.1	0	1.9	3	3.4	0.6	0.6
154.85	4.1	4.8	8.0	0.8	27.2	34.1	13.0	10.3	0	2.0	2.9	3.6	0.7	0.6
156.75	4.1	4.5	10.0	1.0	25.0	43.3	13.1	10.5	0.1	2.3	2.0	3.7	0.6	0.4
157.70	4.1	3.2	13.6	1.1	23.4	48.4	14.3	10.8	0	2.1	2.9	3.6	0.5	0.5
158.65	4.0	2.7	18.5	1.3	22.6	52.9	14.9	10.5	0	2.1	2.9	3.6	0.3	0.4
159.60	4.0	2.5	24.8	1.6	21.6	56.2	15.6	10.5	-0.1	2.1	3	3.7	0.3	0.4
160.55	4.0	2.3	30.8	1.4	20.6	59.3	16.8	10.4	-0.1	2.1	3	3.8	0.3	0.5
161.50	4.1	2.4	34.2	1.3	19.1	61.8	17.9	10.3	0	2.2	2.9	3.9	0.3	0.6
162.45	3.9	2.5	32.8	1.3	17.5	64.1	19.1	10.1	0.1	2.1	2.9	3.9	0.3	0.6
164.35	3.0	2.0	18.5	1.1	14.1	67.6	20.4	9.9	0.1	2.1	2.9	3.8	0.3	1.0
165.30	4.0	3.1	12.5	0.9	12.3	68.8	24.5	9.8	0.1	2.2	2.9	3.8	0.4	1.4
166.25	3.8	2.7	8.8	0.7	10.6	68.0	27.4	9.6	0.2	2.2	3	3.9	0.4	1.5
167.20	3.7	2.1	6.6	0.5	8.4	64.9	30.7	9.6	0.2	2.2	3	3.7	0.3	1.2
168.15	3.8	1.7	5.3	0.4	6.0	61.0	34.3	9.6	0.2	2.3	3.1	3.7	0.3	1.0
169.10	3.7	1.4	4.8	0.6	8.4	56.9	38.2	9.4	0.1	2.2	3.2	3.8	0.3	0.9
170.05	3.7	1.3	4.7	0.0	11.5	51.2	41.0	9.4	0.2	2.2	3.2	3.0	0.3	0.8
171.95	3.5	1.1	4.9	0.0	11.8	49.3	45.7	9.4	0.3	2.2	3.3	3.9	0.3	0.6
172.90	3.5	1.0	5.0	0.5	12.0	47.7	44.3	9.7	0.3	2.2	3.3	3.8	0.2	0.3
173.85	3.5	1.1	5.3	0.6	12.1	46.0	41.3	9.8	0.3	2.2	3.4	3.8	0.3	0.0
174.80	3.5	1.1	5.4	0.5	12.1	44.5	39.1	10.1	0.2	2.1	3.5	3.6	0.3	0.0
175.75	3.4	1.1	5.4	0.4	12.2	43.4	38.7	10.4	0.2	2.1	3.6	3.6	0.3	0.0
176.70	3.4	1.2	5.1	0.4	12.5	42.8	40.4	10.7	0.1	2.1	3.5	3.6	0.3	-0.1
177.03	3.0	1.4	4.0	0.3	12.0	43.0	43.4	11.0	02	2.1	3.5	3.5	0.3	-0.1
179.55	3.1	1.4	4.4	0.4	12.3	44.8	51.4	11.1	0.2	2.1	3.4	3.5	0.6	-0.1
180.50	3.1	1.3	4.4	0.7	11.8	46.4	52.6	11.0	0.1	2.1	3.5	3.5	0.6	0.0
181.45	3.2	1.3	4.4	0.9	11.5	48.0	49.5	10.9	0.2	2.1	3.5	3.5	0.7	0.0
182.40	3.2	1.2	4.2	1.3	11.5	49.4	43.6	10.9	0.2	2.2	3.4	3.5	0.8	-0.1
183.35	3.1	1.1	3.8	1.5	11.8	50.3	37.2	10.9	0.1	2.1	3.5	3.4	0.9	0.0
184.30	3.0	1.1	3.4	1.6	12.2	50.6	32.9	10.8	0.1	2.0	3.5	3.5	1.0	0.0
186.20	3.0	0.9	2.9	1.0	13.0	49.1	28.8	11.0	0.1	2.1	3.0	3.0	1.1	0.2
187.15	3.0	0.0	2.8	1.4	14.7	47.5	27.9	11.1	0.1	2.2	3.7	3.6	1.1	0.4
188.10	3.0	0.8	2.6	1.4	15.4	46.2	27.7	11.1	0	2.2	3.8	3.6	1.1	0.5
189.05	3.1	0.6	2.7	1.3	16.3	45.9	28.5	11.0	0.1	2.2	3.9	3.6	0.9	0.7
190.00	3.1	0.6	2.7	1.2	17.2	46.9	29.9	11.1	0.1	2.2	3.9	3.6	0.8	0.9
190.95	3.0	0.6	2.8	1.0	18.0	48.6	31.6	11.0	0.1	2.3	4	3.7	0.6	1.1
191.90	3.Z	0.5	∠.ŏ 2.₽	0.9	10.0	50.8	33.0	11.0	0	2.1	4	3.8 3.7	0.5	1.3
193.80	3.0	0.5	2.8	0.0	20.5	56.2	37.0	11.4	0	2.1	4	4.0	0.4	1.0
194.75	3.0	0.6	2.6	1.0	20.9	58.0	38.0	11.8	0.1	2.0	3.9	4.1	0.4	0.8
195.70	3.1	0.7	2.4	1.0	21.3	58.7	38.4	12.2	0.2	2.0	3.9	4.1	0.5	0.8
196.65	2.9	0.8	2.2	1.3	21.4	57.9	38.5	12.6	0.1	2.2	3.8	4.1	0.6	1.0
197.60	2.9	0.6	2.1	1.1	21.0	55.4	39.0	13.2	0.1	2.0	3.7	4.2	0.7	1.1
198.55	2.8	0.7	2.3	1.2	19.8	52.5	40.7	13.5	0.1	2.1	3.6	4.2	0.8	1.3
200 45	2.1 2.7	0.7	2.4	1.1	16.1	49.0 47.8	44.3 50.5	13.0	-0.1	2.1	3.4	4.4	0.0	1.4
201.40	2.7	0.8	2.3	1.2	15.1	45.2	59.7	12.6	-0.1	2.0	3.4	4.3	0.8	1.6
202.35	2.9	1.0	3.2	1.3	13.9	41.1	70.3	11.8	-0.1	1.9	3.3	4.4	0.7	1.5
203.30	2.8	1.3	3.5	1.3	12.9	36.5	78.9	11.2	-0.2	1.8	3.2	4.4	0.7	1.2
204.25	2.7	1.5	3.9	1.2	12.0	32.5	84.0	10.6	-0.1	1.8	3.3	4.5	0.6	0.9
205.20	2.8	1.6	4.3	1.1	11.2	29.9	86.8	10.2	-0.1	1.7	3.2	4.6	0.6	0.9
206.15	2.9	1.7	4.7	1.1	10.5	28.6 29.2	88.8 00.7	9.8	-0.2	1./	3.3	4.6	0.5	0.7
207.10	3.1	1.0	5.0	1.1	10.1 9.0	20.2	92.2	9.0	-0.1	1.0	3.2	4.8 4 Q	0.7	0.8
209.00	3.2	1.2	4.8	1.4	10.0	30.9	93.8	9.4	-0.1	1.7	3.1	4.9	0.6	0.7
209.95	3.1	0.9	4.5	1.4	10.1	33.5	95.5	9.5	-0.1	1.7	3	4.9	0.7	0.6
210.90	3.3	0.7	4.0	1.5	10.4	37.1	97.2	9.4	-0.1	1.8	3.2	4.8	0.6	0.4

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
211.85	3.2	0.5	3.5	1.8	10.4	41.8	98.3	9.5	-0.1	1.8	3.1	4.9	0.6	0.3
212.80	3.1	0.6	3.4	1.7	10.3	47.6	98.3	9.4	0	1.7	3.2	4.9	0.4	0.1
213.75	3.0	0.5	3.4	1.9	10.0	53.8	95.9	9.3	-0.1	1.8	3.2	4.8	0.6	0.1
214.70	2.9	0.5	3.8	2.0	9.7	59.5	90.8	9.3	-0.1	1.7	3.2	4.9	0.7	0.0
216.60	2.9	0.6	4.3	2.0	9.9	69.2	77.2	9.3	0	1.8	3.3	5.0	0.7	0.0
217.55	2.9	0.5	4.3	2.0	10.2	71.3	71.1	9.4	0	1.7	3.3	5.2	1.0	0.0
218.50	2.9	0.9	4.2	2.2	10.5	70.9	65.8	9.4	0	1.8	3.2	5.0	1.1	0.1
219.45	2.9	1.0	4.1	2.2	10.5	68.9	60.5	9.4	0.1	1.9	3.2	5.0	1.1	0.0
220.40	3.0	0.8	4.1	2.2	10.4	66.7	56.0	9.4	0	1.9	3.3	5.0	1.0	0.1
221.35	3.0	0.8	4.0	2.2	10.0	64.3	52.6	9.4	0	1.9	3.4	4.9	0.9	0.0
222.30	3.0	0.8	4.1	2.3	9.7	60.0	48.7	9.4	0	2.0	3.5	5.0	0.7	0.1
224.20	2.8	0.7	4.6	2.6	9.6	57.5	45.8	9.6	0	2.0	3.6	5.1	0.6	0.3
225.15	2.9	0.9	4.8	2.9	9.9	55.0	42.2	9.6	-0.1	2.1	3.5	5.1	0.4	0.3
226.10	2.9	1.0	4.7	2.8	10.4	53.1	38.6	9.6	-0.1	2.0	3.5	5.3	0.5	0.4
227.05	2.9	1.3	4.4	2.5	11.0	52.5	36.5	9.6	0.1	2.0	3.4	5.2	0.4	0.4
228.00	3.0	1.5	4.2	2.2	11.6	53.1	35.4	9.8	01	2.0	3.5	5.4	0.4	0.5
220.93	2.7	1.0	4.2	1.9	12.1	55.3	34.9	9.0	0.1	2.1	3.5	5.0	0.4	0.3
230.85	2.6	0.9	3.9	1.6	14.0	56.1	34.3	10.1	0.1	2.1	3.5	5.7	0.2	0.5
231.80	2.6	0.6	3.8	1.5	15.7	56.3	34.5	10.2	0	2.1	3.5	5.7	0.3	0.6
232.75	2.6	0.4	4.0	1.3	18.0	56.5	34.6	10.3	-0.1	2.1	3.6	5.6	0.2	0.6
233.70	2.6	0.2	4.2	1.2	20.6	54.6	34.5	10.3	-0.1	2.0	3.6	5.5	0.2	0.6
234.65	2.8	0.2	4.4	1.3	23.8	50.0	34.3	10.3	-0.1	2.0	3.7	5.5	0.2	0.4
235.60	2.7	0.1	4.3	1.4	32.2	39.6	36.2	10.3	-0.2	2.0	3.7	5.4 5.4	0.2	0.5
237.50	2.7	0.2	3.5	1.0	36.1	37.3	38.8	10.4	-0.2	2.0	3.9	5.4	0.2	0.7
238.45	2.7	0.1	3.0	1.2	37.9	36.7	42.1	10.3	-0.3	1.9	4.1	5.5	0.5	0.9
239.40	2.8	0.3	2.8	1.0	37.5	36.4	45.8	10.1	-0.1	1.8	4.1	5.5	0.6	1.1
240.35	2.9	0.4	2.7	1.1	36.6	35.8	48.1	10.0	-0.2	1.7	4	5.4	0.9	1.3
241.30	2.9	0.4	2.7	1.0	36.4	35.2	47.2	9.9	-0.2	1.8	4.2	5.4	1.0	1.3
242.25	3.2	0.5	2.7	1.1	36.9	36.1	42.0	9.6	-0.3	1.8	4.3	5.4	1.2	1.4
243.20	3.1	0.0	2.0	1.1	33.5	45.3	24.0	9.4	-0.2	1.0	4.3	5.3	1.2	1.5
245.10	3.3	0.7	3.0	1.4	29.2	54.1	21.9	9.2	-0.1	1.8	4.5	5.4	1.0	2.2
246.05	3.5	0.6	3.1	1.3	24.7	65.1	19.8	9.2	-0.2	1.8	4.7	5.4	0.9	2.4
247.00	3.5	0.5	3.3	1.1	20.9	77.5	17.7	9.1	-0.2	1.8	4.8	5.4	0.7	2.5
247.95	3.5	0.3	3.4	0.9	17.9	87.9	17.4	8.8	-0.3	1.8	4.9	5.4	0.5	2.8
248.90	3.4	0.3	3.4	1.0	15.9	94.1	16.8	8.5	-0.2	1.9	4.9	5.3	0.4	3.1
249.85	3.0	0.2	3.5	1.0	14.9	95.5	10.7	8.3	-0.2	1.9	C 0 N	5.2	0.4	3.3
250.00	3.8	0.2	3.9	1.1	14.0	84.7	17.1	8.0	-0.3	1.0	4.5	5.0	0.3	3.4
252.70	4.0	0.4	4.1	1.2	15.3	76.8	17.6	7.8	-0.2	1.9	4.9	4.9	0.5	3.4
253.65	3.9	0.6	4.2	1.0	15.4	69.3	17.6	7.7	-0.2	1.9	4.8	4.9	0.5	3.4
254.60	4.1	0.7	4.5	0.9	15.3	63.3	17.5	7.8	-0.2	1.8	4.8	4.8	0.7	3.4
255.55	4.1	0.9	4.8	0.9	15.3	59.5	17.3	7.7	-0.2	1.8	4.8	4.7	0.8	3.5
256.50	4.2	1.0	5.1	0.8	15.4	57.4	16.8	7.6	-0.2	1.9	4.7	4.6	0.8	3.4
257.45	4.2	1.1	5.3 5.4	0.8	15.6	55.9	15.1	7.5	-0.2	1.0	4.7	4.0	0.8	3.4
259.35	4.1	1.1	5.4	0.0	17.0	55.0	14.5	7.2	-0.3	1.8	4.8	4.7	0.6	3.2
260.30	4.0	1.1	5.4	1.2	17.8	53.5	13.9	7.0	-0.2	1.9	4.9	4.6	0.4	2.8
261.25	3.8	1.2	5.3	1.6	19.0	51.7	13.2	6.7	-0.2	1.8	4.9	4.7	0.3	2.4
262.20	3.9	1.3	5.1	1.8	21.0	51.5	12.6	6.6	-0.2	1.8	5	4.7	0.3	1.9
263.15	3.8	1.4	5.1	2.1	24.0	53.3	12.3	6.4	-0.2	1.8	5	4.7	0.2	1.2
264.10	4.0 4 1	1.8	5.2	2.1	∠ö.0 31.8	57.1	12.1	6.2 5 Q	-0.2	1.8	5 5 1	4.6	0.2	0.7
266.00	4 2	2.3	6.2	2.4	34.0	69.3	12.5	5.8	-0.1	1.0	5.1	4.6	0.2	0.0
266.95	4.3	3.1	6.9	2.6	32.5	76.3	13.8	5.9	-0.2	2.0	5.3	4.7	0.1	-0.1
267.90	4.3	3.2	6.4	2.4	28.4	82.5	14.6	5.9	0	2.0	5.3	4.7	0.1	-0.2
268.85	4.3	2.7	7.7	2.1	24.2	86.1	15.3	5.9	-0.1	2.1	5.3	4.9	0.1	-0.1
269.80	4.2	2.1	7.8	1.7	21.6	85.2	15.9	5.8	-0.1	2.0	4.9	5.0	0.1	-0.1
2/0./5	4.1	1.3	8.2	1.6	20.9	79.8	16.1	5.8	-0.1	2.0	4.2	5.3	0.2	-0.1
271.70	3.9	0.9	0.3	1.4	21.5	65.5	16.0	5.7	0	2.2	23	5.4	0.1	-0.1
273.60	3.7	0.4	5.6	1.4	23.8	62.4	16.0	5.7	0	2.0	2.9	5.6	0.2	-0.1
274.55	3.7	0.3	3.9	1.6	24.2	60.7	16.2	5.6	0	1.9	4.2	5.5	0.3	0.0
275.50	3.6	0.2	2.6	1.5	24.1	59.1	17.1	5.6	-0.1	1.6	5.5	5.2	0.4	-0.1
276.45	3.6	0.2	1.9	1.7	23.6	57.3	18.2	5.5	0	1.5	6.1	4.4	0.3	0.0
277.40	3.4	0.3	1.5	1.6	22.8	55.4	19.6	5.6	0.1	1.5	6.3	3.2	0.4	0.1
278.35	3.4	0.2	1.3	1.6	22.2	52.9 20.0	∠0.5 21.2	5.8 5.9	0.4	1.4	6.5	3.8	0.5	0.2
219.30	3.4	0.3	0.3	1.0	21.7	47.0	21.2	6.0	0.3	1.4	6.7	4.1	0.5	0.1
281.20	3.5	0.3	0.3	1.8	21.0	44.2	21.5	6.0	0.2	1.5	6.9	4.2	0.5	0.3
282.15	3.4	0.3	0.1	1.8	21.4	41.7	21.1	6.1	0.1	1.5	7	4.0	0.5	0.3
283.10	3.5	0.3	0.0	1.7	22.1	40.0	20.4	5.9	0.1	1.5	7.2	3.8	0.6	0.2
284.05	3.6	0.3	-0.1	1.5	23.0	38.8	20.1	5.1	0.1	1.4	7.3	3.9	0.4	0.2

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
285.00	3.6	0.3	-0.1	1.5	23.3	38.6	19.9	3.6	0.1	1.2	7.4	4.0	0.3	0.0
285.95	3.6	0.3	-0.1	1.4	23.6	38.8	20.0	2.0	0.1	0.6	7.6	4.1	0.3	0.2
286.90	3.5	0.3	-0.2	1.1	23.8	39.5	19.9	3.3	0.2	0.6	7.6	4.4	0.2	0.3
288.80	3.0	0.3	-0.2	2.1	24.1	39.9 40.1	17.2	5.0	0.2	0.7	7.8	4.0	0.2	0.2
289.75	3.8	0.2	-0.3	2.6	24.2	39.8	15.5	6.5	0.3	0.7	7.8	5.2	0.2	0.2
290.70	3.7	0.3	-0.2	2.7	23.9	38.4	14.2	6.8	0.4	0.8	7.8	5.4	0.4	0.2
291.65	3.7	0.3	-0.2	2.8	23.2	34.4	13.1	7.2	0.4	0.8	7.8	5.4	0.4	0.2
292.60	3.7	0.4	-0.1	2.6	22.3	27.3	12.5	7.5	0.5	0.7	7.6	5.6	0.4	0.2
293.55	3.8	0.5	0.0	2.6	21.4	27.9	11.9	7.8	0.3	0.7	7.5	5.7	0.5	0.4
294.50	3.9	0.6	0.1	2.5	20.5	43.6	11.0	8.0	0.2	0.7	7.1	5.7	0.3	0.5
296.40	3.9	0.5	0.1	2.6	19.1	48.2	11.6	8.0	0.0	0.0	6.9	6.0	0.4	0.6
297.35	4.0	0.6	0.2	2.3	18.9	49.5	12.0	7.8	0.3	0.7	6.9	6.2	0.3	0.5
298.30	4.0	0.8	0.2	2.0	18.8	47.6	12.2	7.5	0.3	0.7	7	6.2	0.3	0.4
299.25	4.2	0.8	0.1	1.9	19.0	43.8	12.7	7.5	0.2	0.6	7.1	5.9	0.2	0.7
300.20	4.1	0.8	0.1	1.6	19.6	40.4	13.1	7.5	0.4	0.6	6.9	5.8	0.3	0.5
301.15	4.1	0.0	-0.1	1.5	20.6	37.6	13.4	7.5	0.3	0.6	6.7	5.0 5.0	0.3	0.5
303.05	3.8	1.0	-0.1	1.7	23.7	37.0	14.3	7.5	0.2	0.7	6.7	5.9	0.5	0.5
304.00	3.8	1.3	0.2	1.6	25.6	38.9	15.0	7.5	0.4	0.6	6.6	5.7	0.4	0.7
304.95	4.9	1.7	0.2	1.8	27.3	40.3	15.6	7.3	0.6	0.6	6.5	5.5	0.3	0.6
305.90	5.6	2.3	0.2	1.8	29.1	42.1	16.5	6.9	0.4	0.7	6.3	5.3	0.3	0.6
306.85	5.9	2.8	0.5	1.9	31.6	44.2	16.9	6.7	0.4	0.6	6.2	5.2	0.2	0.5
307.80	6.1	2.9	0.7	2.0	34.5	46.3	17.2	6.4	0.4	0.8	6.1	5.1	0.2	0.6
308.75	5.0	2.0	0.8	1.9	37.2	46.2	17.5	6.2	0.5	1.0	59	4.9	0.1	0.7
310.65	5.8	2.5	0.5	1.9	39.8	51.8	19.0	6.2	0.6	0.4	5.8	4.4	0.2	1.0
311.60	5.6	3.3	0.3	1.9	38.2	54.2	19.5	6.1	0.7	0.3	5.7	4.3	0.2	1.3
312.55	5.5	4.7	0.2	1.6	34.1	58.3	19.7	6.3	1	0.3	5.6	3.9	0.2	1.8
313.50	5.6	6.2	0.2	1.4	29.0	64.8	19.9	6.4	0.9	0.2	5.4	4.0	0.1	2.3
314.45	5.9	6.9	0.2	1.2	25.0	72.7	20.4	6.4	1	0.3	5.2	3.8	0.2	2.5
315.40	6.3	6.Z	0.2	1.1	22.2	79.6	21.0	6.4	1	0.1	5.2	3.8	0.2	2.6
317.30	7.0	4.5	0.2	0.9	17.5	84.0	22.0	6.5	1.1	0.0	5.1	3.8	0.1	2.7
318.25	7.2	2.1	0.2	0.9	15.0	86.8	25.8	6.7	0.9	0.0	4.9	3.8	0.2	1.6
319.20	7.2	1.6	0.4	1.0	11.4	90.6	28.1	6.8	0.7	0.0	4.8	3.9	0.3	1.3
320.15	7.3	1.2	0.8	1.1	7.5	92.9	30.8	6.9	0.5	-0.1	4.8	4.0	0.4	1.4
321.10	7.5	1.0	1.4	1.1	18.0	92.6	33.0	6.9	0.6	0.0	4.7	4.0	0.5	0.8
322.05	7.6	0.8	1.9	1.3	24.4	90.1	33.8	6.9	0.5	-0.1	4.8	4.1	0.4	0.7
323.00	7.7	0.6	2.2	1.2	29.7	80.0	34.0	6.6	0.5	-0.2	4.7	4.2	0.4	0.0
324.90	7.3	0.5	1.6	1.4	34.9	73.6	32.4	6.4	0.5	-0.2	4.8	4.1	0.3	0.0
325.85	7.6	0.4	0.5	1.4	33.6	66.2	31.3	6.3	0.6	-0.1	4.9	4.1	0.1	0.4
326.80	7.3	0.3	0.3	1.4	30.3	58.5	30.8	6.2	0.8	0.0	4.7	4.1	0.0	0.4
327.75	6.8	0.2	0.0	1.2	26.3	51.0	31.0	6.1	0.9	0.0	4.7	4.1	-0.2	0.3
328.70	6.7	0.1	-0.2	1.0	22.8	44.6	32.0	6.1	1.1	0.1	4.7	4.3	-0.3	0.2
329.65	6.5	0.0	-0.3	0.8	20.1	39.7	32.8	6.0 5.0	1.1	0.2	4.8	4.3	-0.4	0.3
331.55	6.1	-0.1	-0.4	0.0	16.1	35.4	33.2	5.9	0.9	0.3	4.0	4.4	-0.4	0.0
332.50	5.7	-0.1	-0.5	0.0	15.7	35.0	32.5	5.9	0.3	0.5	4.8	4.8	-0.4	0.2
333.45	5.5	0.0	-0.4	0.7	14.9	35.1	32.8	5.9	1	0.7	4.9	5.0	-0.4	0.3
334.40	5.4	0.1	-0.4	0.8	14.0	35.5	34.1	5.9	1.1	0.9	5	5.2	-0.4	0.2
335.35	5.4	0.2	-0.4	0.9	12.9	35.8	36.2	5.9	1.1	1.1	5	5.2	-0.3	0.1
336.30	5.2	0.2	-0.4	1.0	11.9	36.0	38.9	5.8	1.2	1.3	5.2	5.1	-0.4	0.2
338.20	5.0	0.4	-0.3	1.1	10.7	36.1	41.1	5.8	1.2	1.5	5.4	5.2	-0.5	0.2
339.15	5.0	0.6	-0.3	1.7	10.6	36.3	42.6	5.8	1.1	1.4	5.8	5.3	-0.5	0.2
340.10	4.8	0.7	-0.2	2.0	10.9	36.8	46.0	5.9	1.1	1.1	5.9	4.4	-0.6	0.2
341.05	4.7	0.7	-0.1	2.4	11.5	37.3	55.0	5.8	1	0.7	5.8	5.5	-0.5	0.1
342.00	4.6	0.9	-0.1	2.6	12.2	37.3	70.5	5.7	1	0.3	5.7	5.4	-0.5	0.2
342.95	4.6	0.9	-0.1	2.6	13.3	37.3	90.2	5.6	1	0.0	5.4	5.6	-0.5	0.2
343.90	4.6	0.9	-0.2	2.6	14.4	37.2	108.1	5.5	1	-0.1	5.2	5.8	-0.3	0.3
345.80	4.7	0.8	-0.3	∠.0 3.0	17.3	37.3	106.3	5.3	1.1	-0.3	5.1	5.0	-0.3	0.4
346.75	4.7	0.5	-0.5	3.4	19.4	36.8	85.0	5.3	1.1	-0.3	4.8	6.1	-0.2	0.5
347.70	4.8		-0.5	3.6	22.0	36.5	62.9	5.1	1	-0.4	5	6.2	-0.2	0.8
348.65	4.8		-0.6	3.5	25.2	36.8	47.9	5.2	0.9	-0.5	4.9	5.4	-0.2	0.9
349.60	4.8		-0.5	3.2	28.6	37.4	39.0	5.2	0.8	-0.4	4.9	6.4	-0.2	1.0
350.55	4.7		-0.4	2.6	31.3	38.2	34.2	5.3	0.9	-0.4	4.5	6.6	-0.2	1.1
351.50	4.5 <i>4 4</i>		-0.4	∠.1 1 7	36.4	39.3	28.2	5.5	0.7	-0.5 _0 /	4.3	6.0 6.7	-0.3	0.9
353.40	4.4		-0.4	1.7	37.3	41.2	26.3	5.4	0.0	-0.4	3.7	6.6	-0.3	0.7
354.35	4.3		-0.4	1.4	38.0	42.2	25.5	5.5	0.6	-0.6	2.9	6.5	-0.3	0.5
355.30	4.3		-0.3	1.3	38.3	42.8	26.8	5.9	0.7	-0.5	2.8	6.5	-0.4	0.5
356.25	4.2		-0.4	1.1	37.4	43.2	29.2	6.0	0.7	-0.5	2.8	6.4	-0.3	0.4
357.20	4.1		-0.4	1.1	35.4	43.4	31.9	6.1	0.6	-0.5	3.1	6.2	-0.4	0.3

Depth (cm)	AM	BB	СН	ווס	ΡМ	FC1	FC2	FI 1	FI 2	FM	MO1	MO2	ТН	VA
358 15	4 1	00	-0.4	0.9	33.1	43.3	34.0	62	0.7	-0.5	34	62	-0.3	0.4
359.10	4.0		-0.5	0.8	31.3	42.5	33.8	6.6	0.9	-0.4	3.7	6.1	-0.3	0.2
360.05	3.9		-0.5	0.9	29.8	41.3	30.6	6.9	0.8	-0.5	3.8	6.2	-0.3	0.3
361.00	3.8		-0.5	0.8	28.7	40.3	26.6	7.0	0.9	-0.6	4	6.2	-0.2	0.2
361.95	3.9		-0.5	0.9	27.6	39.4	23.9	7.2	1	-0.5	4.1	6.2	-0.2	0.2
362.90	4.3		-0.5	0.9	25.9	38.0	22.5	7.2	1	-0.5	4.3	6.2	-0.2	0.1
363.85	4.5		-0.6	0.9	23.9	36.2	21.9	7.2	0.9	-0.6	4.4	6.2	-0.2	0.2
364.80	4.7		-0.6	0.8	22.0	34.3	21.9	7.2	0.9	-0.5	4.5	6.2	-0.2	0.3
365.75	4.8		-0.6	0.7	20.5	33.2	22.1	7.2	1	-0.5	4.7	6.0	-0.2	0.3
366.70	5.1		-0.7	0.7	19.0	32.7	22.5	7.1	1.1	-0.5	4.7	5.9	-0.1	0.2
367.65	5.2		-0.6	0.8	17.9	32.7	22.9	7.1	1.3	-0.5	4.7	5.8	-0.1	0.3
368.60	5.5		-0.7	0.7	17.1	33.1	23.7	6.9	1.2	-0.6	4.7	5.8	-0.1	0.3
309.55	5.5		-0.6	0.8	10.0	33.7	23.0	0.0	1.3	-0.6	4.7	5.0 5.7	-0.1	0.2
370.30	5.0		-0.7	0.7	16.7	35.3	23.2	6.6	1.1	-0.5	4.0	5.7	-0.1	0.3
372.40	5.9		-0.6	0.7	16.8	36.4	22.0	6.5	1	-0.5	4.7	5.8	0.1	0.2
373.35	5.9		-0.6	0.7	16.8	37.5	22.4	6.4	0.9	-0.5	4.7	5.8	-0.1	0.2
374.30	5.9		-0.6	0.8	16.6	38.5	22.3	6.5	0.9	-0.5	4.6	5.8	-0.1	0.3
375.25	5.8		-0.5	1.0	16.4	38.9	21.6	6.5	0.8	-0.6	4.6	5.9	-0.1	0.3
376.20	5.8		-0.5	1.0	16.2	38.6	21.8	6.8	0.7	-0.4	4.6	6.2	0.0	0.3
377.15	5.7		-0.5	0.8	15.9	37.2	22.8	7.1	0.7	-0.5	4.6	6.5	0.0	0.4
378.10	5.7		-0.4	0.6	15.8	34.8	24.0	7.4	0.7	-0.5	4.7	6.8	0.0	0.5
379.05	5.6		-0.2	0.5	15.9	32.3	25.0	7.5	0.6	-0.4	4.7	7.0	-0.1	0.4
380.00	5.5		-0.2	0.5	16.2	29.5	25.2	7.7	0.7	-0.5	4.6	7.1	-0.2	0.5
380.95	5.3		0.0	0.5	16.4	26.9	24.7	8.1	0.7	-0.5	4.4	7.4	-0.2	0.6
381.90	5.2		0.1	0.3	16.7	24.7	23.6	8.1	0.4	-0.5	4.4	7.8	0.0	0.6
382.85	5.0		0.2	0.5	17.0	23.2	22.3	8.1	0.5	-0.6	4.4	8.2	0.1	0.9
383.80	4.9		0.0	0.5	17.6	22.6	21.3	8.2	0.6	-0.6	4.2	8.3	-0.1	1.1
384.75	4.7		-0.3	0.5	18.5	22.6	21.1	8.5	0.8	-0.5	4.1	8.5	-0.1	1.3
305.70	4.7		-0.5	0.5	20.6	23.2	21.4	0.7	0.0	-0.7	20	0.7	-0.1	1.1
387.60	4.0		-0.5	0.7	20.0	23.9	21.5	0.9	0.0	-0.0	3.9	0.0	0.0	1.1
388 55	4.5		-0.0	0.4	21.2	25.9	22.4	9.1	0.7	-0.0	3.8	8.9	0.0	1.1
389.50	4.4		-0.7	0.2	21.4	27.2	24.3	9.4	0.7	-0.6	3.5	9.0	0.2	0.9
390.45	4.4		-0.7	0.7	21.1	28.7	24.5	8.9	0.8	-0.8	3.3	9.2	0.4	0.7
391.40	4.6		-0.7	0.8	20.6	30.6	24.4	8.0	0.7	-0.8	3.2	9.5	0.6	0.7
392.35	4.5		-0.7	0.7	20.3	32.1	24.8	7.5	0.8	-0.8	3.1	9.7	0.9	0.6
393.30	4.5		-0.6	0.6	19.8	33.5	25.4	7.1	0.8	-0.7	3	10.0	1.1	0.5
394.25	4.8		-0.6	0.4	19.1	34.7	26.2	7.0	0.7	-0.8	3	10.1	1.4	0.5
395.20	5.0		-0.6	0.5	18.0	35.5	26.8	6.9	0.8	-0.9	3	10.4	1.6	0.5
396.15	5.2		-0.6	0.5	16.5	35.6	27.9	7.0	0.6	-0.8	3.1	10.4	2.0	0.7
397.10	5.3		-0.6	0.6	15.0	35.1	27.8	6.9	0.6	-0.8	3.2	10.4	2.3	0.5
398.05	5.3		-0.5	0.7	14.0	33.9	24.4	6.8	0.7	-0.8	3.1	10.4	2.5	0.3
399.00	5.6		-0.3	0.8	13.4	32.7		6.7	0.6	-0.9	3.1	10.4	2.8	0.3
399.95	5.8		-0.2	0.8	13.3	31.3		6.8	0.6	-0.9	3.2	10.4	3.1	0.4
400.90	5.8		0.2	1.1	13.5	30.0		6.7	0.6	-0.8	3.2	10.6	3.7	0.4
401.03	5.0		0.5	1.3	14.1	29.3		6.0	0.5	-0.0	3.3	10.5	4.3	0.5
402.00	5.9		1.3	1.2	15.0	20.7		6.9	0.5	-0.9	3.4	10.7	4.9	0.7
404 70	6.2		1.5	1.1	15.5	20.7		7.1	0.0	-0.9	3.4	11.1	5.0	11
405.65	6.3		1.8	1.2	15.6	30.3		7.2	0.5	-0.9	3.3	11.4	5.7	1.6
406.60	6.1		2.0	1.1	15.4	31.3		7.2	0.5	-0.9	3.4	11.6	5.1	2.0
407.55	5.9		2.2	1.0	15.3	32.6		7.2	0.5	-0.8	3.4	11.8	4.0	2.5
408.50	5.8		2.6	0.9	15.6	33.5		7.2	0.5	-0.8	3.3	12.0	3.0	3.0
409.45	5.5		3.0	0.8	16.3	34.1		6.9	0.6	-0.9	3.4	12.1	2.0	3.2
410.40	5.1		2.7	0.6	17.6	34.3		6.8	0.6	-0.7	3.4	12.3	1.4	3.3
411.35	4.8		1.8	0.7	18.4	34.3		6.7	0.5	-0.8	3.5	12.3	1.0	3.4
412.30	4.8		1.0	0.6	18.1	34.3		6.9	0.5	-0.7	3.5	12.3	0.7	3.1
413.25	4.8		0.4	0.6	16.9	34.4		7.0	0.6	-0.7	3.6	12.3	0.5	2.8
414.20	4.7		0.0	0.9	15.9	34.4		7.3	0.6	-0.6	3.6	12.3	0.4	2.2
415.15	4.8		-0.1	1.0	11.2	33.7		1.1	0.5	-0.6	3.1	12.5	0.3	1.0
410.10	4.9		-0.2	1.2	14.5	32.9		0.0 8.2	0.7	-0.5	3.7	12.9	0.3	0.7
	4.9 4 0		-0.1	1.3	13.9	32.0		0.2 8 3	0.0	-0.5	3.7	13.2	0.2	0.7
418.95	4.3		0.0	1.2	12.8	32.4		8.2	0.7	-0.5	3.6	14.1	0.2	0.7
419.90	4.9		0.1	1.0	12.5	32.7		7.8	0.8	-0.6	3.6	14.4	0.2	0.4
420.85	4.7		0.2	0.8	12.4	33.1		7.4	0.9	-0.5	3.6	14.7	0.2	0.3
421.80	4.6		0.3	0.7	12.4	33.8		6.9	0.9	-0.6	3.5	14.9	0.1	0.3
422.75	4.4		0.3	0.6	12.5	34.6		6.9	1.1	-0.5	3.3	14.4	0.2	0.2
423.70	4.5		0.5	0.6	13.0	35.4		6.7	1.1	-0.5	3.3	13.3	0.2	0.3
424.65	4.4		0.7	0.7	13.7	36.3		6.6	1.3	-0.5	3	11.1	0.2	0.5
425.60	4.3		0.9	0.9	14.7	37.4		6.5	1.3	-0.5	2.4	8.1	0.1	0.5
426.55	4.0		1.1	1.0	16.9	38.8		6.5	1.4	-0.5	1.9	7.6	0.1	0.7
427.50	4.3		1.3	1.2	19.7	40.9		6.5	1.7	-0.6	2.3	10.9	0.1	1.1
428.45	4.1		1.4	1.4	22.0	42.8		6.7	1.8	-0.5	2.9	14.1	0.2	1.3
429.40	4.1		1.4	1.5	23.1	44.3		0.9 7 1	2.1	-0.5	3.2	10.4	-0.1	1.8
+30.33	4.0		1.0	1.0	20.Z	-++.0		1.11	2.0	-0.0	0.0	10.7	-0.2	∠.3

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
431.30	4.1		0.9	1.4	22.6	43.9		7.3	2	-0.5	3.6	21.1	-0.1	2.8
432.25	4.1		1.1	1.5	21.6	42.6		7.6	1.5	-0.4	3.7	23.4	-0.2	3.2
433.20	4.0		1.2	1.6	20.0	40.4		8.0	1.2	-0.4	3.8	25.7	-0.2	3.2
434.15	4.1		0.7	1.7	17.2	38.5		8.3	0.9	-0.4	4	27.4	0.0	2.9
435.10	4.0		0.5	1.9	13.5	37.3		7.5	1.4	-0.3	4	28.4	0.0	2.5
437.00	4.0		0.3	1.3	7.4	37.5		7.0	1.0	-0.2	4.1	29.0	0.1	1.0
437.95	3.9		0.1	1.5	6.4	37.5		4.9	1.6	-0.1	4.6	29.4	0.8	0.8
438.90	4.0		0.1	1.2	6.8	36.9		4.6	1.7	0.0	4.7	29.8	0.2	0.5
439.85	4.0		0.0	1.3	7.9	35.5		5.8	1.8	0.0	4.8	30.1	-0.2	0.4
440.80	4.1		0.1	1.5	9.3	33.1		6.3	1.9	-0.1	4.7	29.7	-0.3	0.3
441.75	4.1		0.2	1.9	10.6	28.7		6.2	1.9	-0.1	4.8	29.2	-0.4	0.4
442.70	4.2		0.6	1.9	11.5	21.5		6.2	2	-0.1	4.9	28.8	-0.3	0.5
443.03	4.1		1.0	2.0	11.0	8.6		6.1	2.2	-0.2	4.9	29.2	-0.3	0.0
445.55	4 1		2.2	1.0	11.3	0.0		6.1	2.2	-0.2	5	31.2	-0.3	1.1
446.50	4.1		2.3	1.8	11.2			6.0	2.3	-0.2	5.4	32.3	-0.3	1.5
447.45	3.9		2.3	2.0	12.0			6.0	2.3	-0.2	5.2	33.1	-0.4	1.3
448.40	3.9		2.0	1.9	13.4			5.8	2.4	-0.2	4.9	33.6	-0.3	1.4
449.35	3.7		1.6	1.7	15.1			5.7	2.4	-0.2	4.8	34.1	-0.2	1.4
450.30	3.6		1.4	1.9	16.5			5.7	2.4	-0.2	4.8	34.1	-0.2	1.5
451.25	3.6		1.4	2.1	17.2			5.5	2.6	-0.3	4.9	34.3	-0.2	1.5
452.20	3.0		2.2	2.4	16.4			5.5	2.7	-0.2	4.9	36.7	-0.1	1.4
454 10	3.6		3.1	2.5	15.3			5.5	2.3	-0.2	4.0	38.9	0.0	0.9
455.05	3.6		4.3	2.5	14.7			5.4	3.2	-0.3	4.9	40.9	0.0	0.8
456.00	3.6		5.2	2.8	14.2			5.5	3.4	-0.2	5	42.7	0.1	0.8
456.95	3.5		5.7	2.8	13.7			5.8	3.5	-0.2	5	43.5	0.2	0.6
457.90	3.5		6.3	3.5	13.3			5.8	4	0.0	5	43.8	0.2	0.6
458.85	3.5		7.6	4.3	13.1			6.1	3.7	-0.1	5.1	44.0	0.1	0.6
459.80	3.5		9.8	4.6	13.5			6.5	3.7	-0.1	5.2	45.0	-0.1	0.7
460.75	3.5		12.5	5.0	14.1			7.0	3.7	0.0	5.1	46.0	-0.2	0.9
462.65	3.5		14.9	4.7	16.2			7.0	3.0	0.3	5.1	47.0	-0.2	1.0
463.60	3.7		17.8	4.0	17.4			7.1	3.8	-0.1	4.9	47.6	-0.2	1.0
464.55	3.6		18.8	4.0	18.8			7.3	3.8	-0.3	4.9	46.5	-0.2	1.0
465.50	3.7		19.2	4.1	20.1			7.2	3.6	-0.2	5.1	45.3	-0.3	1.0
466.45	3.7		19.4	4.2	20.9			7.0	3.6	-0.3	5.2	43.6	-0.3	1.1
467.40	3.9		19.9	4.1	20.5			6.7	3.5	-0.2	5.2	41.9	-0.2	1.3
468.35	3.9		20.4	4.1	17.6			6.6	3.5	-0.3	5.1	41.3	-0.3	1.6
469.30	4.0		20.6	4.3	12.9			6.6	3.5	-0.2	5.2	41.1	-0.4	1.5
470.23	3.9		20.0	4.9	0.1			6.0	3.0	-0.3	1.8	41.5	-0.3	1.5
472.15	3.7		20.0	6.4				7.2	4 1	-0.3	4.0	46.5	-0.4	1.3
473.10	3.7		20.3	6.8				7.4	4.4	-0.3	4.9	50.1	-0.4	0.9
474.05	3.7		20.1	6.4				7.5	4.7	-0.3	4.8	53.4	-0.3	0.7
475.00	3.7		19.8	5.4				7.5	4.9	-0.4	4.8	55.9	-0.3	0.5
475.95	3.7		19.5	4.4				7.7	5.2	-0.4	4.6	58.1	-0.2	0.5
476.90	3.6		19.1	3.7				7.8	5.4	-0.4	4.4	58.9	-0.2	0.5
477.85	3.8		18.7	3.2				7.7	5.4	-0.5	4.4	58.5	0.0	0.5
470.00	3.0		10.7	2.9				7.0	5.0	-0.4	4.2	56.2	0.1	0.7
480.70	4.0		20.1	2.3				7.6	5.2	-0.4	4.2	55.3	0.2	0.7
481.65	3.9		20.4	2.1				7.7	4.9	-0.4	4.2	54.8	0.1	0.7
482.60	4.0		19.2	1.8				7.8	4.5	-0.3	4.3	54.7	0.3	0.6
483.55	4.1		17.2	1.6				7.8	4.3	-0.4	4.3	55.0	0.2	0.6
484.50	4.1		15.6	1.4				7.8	4	-0.3	4.6	55.6	0.1	0.6
485.45	4.1		14.8	1.2				7.8	3.7	-0.4	4.7	56.3	0.1	0.7
400.40 487.35	4.Z		14.7	1.1				7.9	3.7	-0.4	4.9	57.0	0.1	0.5
488.30	4.5		15.0	1 1				8.2	3.6	-0.4	5.3	56.6	0.1	0.4
489.25	4.5		16.0	1.1				8.4	3.6	-0.3	5.5	56.4	0.0	0.7
490.20	4.7		16.1	1.1				8.7	3.5	-0.3	5.9	56.2	0.1	0.7
491.15	4.8		15.6	1.2				9.0	3.5	-0.3	6.1	55.9	0.1	0.8
492.10	5.1		14.4	1.2				9.2	3.3	-0.4	6.2	55.8	0.2	0.9
493.05	5.2		12.7	1.2				9.4	3	-0.2	6.6	55.9	0.4	1.3
494.00	5.4		11.2	1.3				9.3	2.8	-0.4	6.6	55.9	0.7	1.6
494.95 405.00	5.4 5.4		13.0	1.3				9.1	2.7	-0.4	0.8	53.2	1.0	2.2
496 85	5.4		17.2	1.4				8.2	2.0	-0.3	71	51.8	1.4	2.3
497.80	5.4		23.5	1.4				7.6	2.4	-0.3	7.3	50.2	1.8	2.7
498.75	5.2		30.1	1.4				7.4	2.4	-0.2	7.4	49.0	1.8	2.3
499.70	4.8		36.2	1.5				7.1	2.4	-0.3	7.4	48.4	1.4	2.2
500.65	4.7		44.2	1.5				6.9	2.5	-0.3	7.4	49.0	1.1	2.3
501.60	4.6		55.9	1.4				6.7	2.5	-0.2	7.3	51.5	0.7	2.3
502.55	4.7 4.8		/1.1 87.2	1.4				6.4 6.4	2.5	-0.2	7.1	55.5 50 8	0.5	2.0

Depth (cm)	AM	BB	СН	ווס	DM	FC1	FC2	FI 1	FI 2	FM	MO1	MO2	ТН	VA
504.45	5.0	00	103.0	1.1	Divi	201	202	6.5	2.6	-0.2	6.9	62.7	0.3	1.2
505.40	5.0		117.7	1.2				6.4	2.6	-0.1	6.9	64.4	0.3	0.9
506.35	5.2		130.8	1.1				6.4	2.6	-0.1	6.9	65.1	0.4	0.7
507.30	5.4		140.9	1.2				6.3	2.5	0.0	7	65.1	0.5	0.6
508.25	5.4		147.3	1.3				6.3	2.5	-0.1	7	65.3	0.6	0.7
509.20	5.3		147.3	1.5				6.2	2.5	-0.1	7.2	65.0	0.7	0.8
510.15	5.1		138.5	1.7				6.2	2.5	-0.1	7.4	64.7	0.7	0.8
511.10	5.0		122.7	1.9				6.3	2.6	0.0	7.5	65.0	0.8	0.8
512.00	4.9		85.8	2.1				6.5	2.0	-0.2	7.0	65.6	1.1	0.7
513.95	4.5		71.7	2.6				6.6	2.7	-0.3	7.6	66.8	1.1	0.8
514.90	4.3		60.8	3.0				6.5	2.8	-0.2	7.8	68.8	1.2	0.7
515.85	4.7		52.9	3.7				6.5	2.8	-0.3	8	71.3	1.1	0.6
516.80	5.2		47.9	4.1				6.4	2.9	-0.2	7.9	74.0	1.0	0.6
517.75	5.5		45.0	4.1				6.2	2.9	-0.3	8.3	76.4	0.9	0.6
518.70	5.8		43.7	3.9				6.3	3	-0.3	8.4	78.4	0.7	0.5
519.65	6.1		44.7	3.6				6.3	2.9	-0.3	8.6	80.8	0.6	0.7
520.00	6.1		47.7 51.6	3.4				6.5	2.9	-0.3	0.0	87.0	0.5	0.5
522.50	5.9		54.1	3.3				6.5	2.0	-0.3	9.1	91.1	0.3	0.4
523.45	5.4		55.6	3.4				6.7	2.7	-0.2	9.4	93.4	0.0	0.3
524.40	5.0		57.3	3.6				6.8	2.7	-0.2	9.4	94.3	0.1	0.4
525.35	4.9		59.3	4.1				6.6	2.7	-0.1	9.5	94.9	0.1	0.3
526.30	4.8		61.9	4.4				6.6	2.8	0.0	9.6	95.9	0.1	0.2
527.25	4.6		66.2	4.4				6.4	3.1	-0.1	9.4	97.9	0.2	0.3
528.20	4.5		73.8	4.5				6.2	3.1	0.0	9.2	101.1	0.3	0.3
529.15	4.7		86.0	4.4				6.0	3.3	0.0	8.9	105.1	0.6	0.4
530.10	4.9		111.0	4.3				5.6 5.6	3.0	-0.1	0./	112.0	0.9	0.4
532.00	4.7		122.3	4.8				5.5	3.9	-0.1	8.2	115.5	1.5	0.0
532.95	4.2		121.4	5.4				5.4	4	-0.1	8	117.0	2.0	0.8
533.90	4.2		111.5	5.9				5.4	4	-0.1	7.9	117.4	2.2	0.8
534.85	4.2		95.4	6.6				5.3	3.8	-0.1	7.7	116.4	2.4	0.7
535.80	4.1		75.5	7.2				5.3	3.9	-0.1	7.8	114.3	2.4	0.7
536.75	4.0		53.0	7.9				5.4	4	-0.1	7.9	111.0	2.4	0.9
537.70	3.8		32.5	8.8				5.5	4.1	-0.1	8	107.0	2.1	0.8
538.65	3.8		18.7	9.8				5.6	3.9	-0.2	8.2	102.9	1.7	0.9
540 55	3.0			12.5				5.7	3.7	-0.1	0.0	99.2	1.5	1.0
541.50	3.7			14.4				6.2	3.0	-0.1	96	90.4	1.4	1.0
542.45	3.5			16.5				6.5	3.5	-0.1	10.1	95.0	1.2	1.8
543.40	3.7			18.2				6.7	3.3	-0.2	10.9	95.9	1.0	2.1
544.35	3.7			19.3				6.9	3.3	-0.1	11.4	97.4	0.9	2.2
545.30	3.7			20.7				7.1	3.3	-0.1	11.9	98.9	0.7	2.3
546.25	3.7			22.7				7.5	3.4	-0.2	12.3	100.3	0.6	2.8
547.20	3.9			24.6				7.6	3.3	-0.1	12.5	101.5	0.6	3.5
546.15	3.9			20.0				7.8	3.3	-0.2	12.7	102.9	0.6	4.2
550.05	4.0			28.8				7.0	3.2	-0.2	12.0	107.5	0.0	3.5
551.00	4.2			30.1				7.8	3.3	-0.2	13	110.9	0.6	3.1
551.95	4.1			30.4				7.6	3.3	-0.2	13	114.6	0.7	2.8
552.90	4.1			31.1				7.3	3.3	-0.3	13.1	118.3	0.6	2.8
553.85	4.2			31.6				7.2	3.3	-0.5	13.2	121.3	0.6	3.0
554.80	4.2			32.7				7.0	3.2	-0.6	13.2	123.9	0.6	3.0
555.75	4.2			34.4				7.0	3.3	-0.6	13.1	125.4	0.4	3.2
557.65	4.1			30.9				6.9	3.2	-0.7	12 0	120.3	0.3	3.1
558 60	3.8			44.4				6.7	3.3	-0.8	12.9	114 9	0.3	3.2
559.55	3.9			49.9				6.4	3.4	-0.9	12.7	103.5	0.2	3.5
560.50	3.8			54.9				5.8	3.5	-0.9	12.7	88.1	0.3	3.5
561.45	3.5			58.5				4.7	3.6		12.6	69.6	0.5	3.7
562.40	3.5			60.0				3.0	3.5		12.6	51.6	0.6	3.8
563.35	3.5			58.9				0.0	3.5		12.7	36.8	0.8	4.0
564.30	3.7			55.4					3.6		12.9		0.9	4.1
202.25	3.7			50.1 /2.2					3.0		13.3		1.0	4.3
567 15	3.7			36.8					3.0 3.8		13.4		1.1	4.1
568.10	3.8			31.8					3.8		13.9		1.1	3.9
569.05	3.8			28.3					3.9		14.2		1.0	3.9
570.00	3.8			25.6					3.8		14.4		1.0	4.0
570.95	3.7			23.1					3.8		14.5		1.0	4.5
571.90	3.6			20.9					3.7		14.4		1.1	4.6
572.85	3.6			18.9					3.7		13.4		1.2	4.5
573.80	3.6			17.5					3.6		10.8		1.3	4.2
574.75	3.8 2.6			10.0					3.5 2.6		1.3		1.5	4.2
576.65	3.0			15.5					3.0		4.5		1.0	4.2

Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
577.60	3.6			14.7					3.8		1.6		1.9	4.6
578.55	3.6			13.0					3.9				2.0	5.0
580.45	3.0			6.4					4				1.9	5.8
581.40	3.3			3.7					3.9				1.6	6.4
582.35	3.4								3.9				1.5	7.2
583.30	3.4								3.7				1.3	8.0
584.25	3.5								3.4				0.9	8.6
585.20	3.4								2.8				0.4	8.7
587.10	3.5								1.7				3.4	8.0
588.05	3.5												3.3	8.1
589.00	3.4												3.2	8.4
589.95	3.3												3.3	8.4
590.90	3.5												3.1	8.0
592.80	3.4												2.9	7.1
593.75	3.4												2.8	6.2
594.70	3.2												2.8	4.9
595.65	3.3												2.7	3.5
596.60	3.4												2.4	
598.50	3.4												1.7	
599.45	3.4												1.5	
600.40	3.4												1.3	
601.35	3.4												1.1	
602.30	3.4												1.1	
604.20	3.4												1.1	
605.15	3.3												1.1	
606.10	3.1												1.2	
607.05	2.6												1.2	
608.00	1.8												1.2	
609.95	1.2												1.2	
610.85													1.2	
611.80													1.3	
612.75													1.6	
613.70													1.7	
615.60													2.2	
616.55													2.5	
617.50													2.6	
618.45													2.7	
619.40													2.8	
620.35													2.9	
622.25													3.1	
623.20													3.2	
624.15													3.3	
625.10													3.4	
627.00													3.8	
627.95													4.2	
628.90													4.4	
629.85													4.6	
631.75													4.5 4 1	
632.70													4.1	
633.65													4.1	
634.60													4.4	
635.55													4.6	
637.45													4.9	
638.40													4.6	
639.35													4.2	
640.30													3.9	
641.25													3.7	
642.20													3.4	
644.10													3.5	
645.05													3.7	
646.00													4.2	
646.95													4.7	
648.85													5.1 4 Q	
649.80													4.4	

Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EL2	EM	MO1	MO2	TH	VA
650.75				<u> </u>				<u> </u>					3.8	
651.70													3.4	
652.65													3.0	
653.60													27	
654 55													2.4	
655.50													21	
656.45													1 9	
657.40													1.3	
658 35													1.7	
659.30													1.0	
660.25													1.4	
661.20													1.0	
662 15													1.4	
663.10													1.4	
664.05													1.5	
665.00													2.1	
665.00													2.1	
666.00													2.0	
000.90													3.1	
C0.100													3.7	
668.80													4.1	
669.75													4.6	
670.70													5.2	
671.65													6.2	
672.60													7.4	
673.55													8.6	
674.50													9.5	
675.45													10.2	
676.40													10.6	
677.35													11.0	
678.30													11.2	
679.25													11.4	
680.20													11.9	
681.15													12.6	
682.10													13.5	
683.05													14.5	
684.00													15.7	
684.95													17.9	
685.90													21.9	
686.85													28.2	
687.80													37.0	
688.75													48.1	
689.70													59.0	
690.65													63.6	
691.60													57.5	
692.55													43.9	
693.50													28.8	
694.45													17.4	

APPENDIX D: LOSS-ON-IGNITION DATA

Raw loss on ignition (LOI) values for each core (%). AM = Amherst; BB = Beebe; CH = Chapel;

DU = Duck; DM = Dunmore; EC = Echo; EL = Elligo; EM = Emerald; MO = Morey; TH = Thirteenth; VA = Vail

Depth (cm)	AM	BB	СН	ווס	ΡМ	FC1	FC2	FI 1	FM	MO1	MO2	тн	٧/Δ
1	21.74	17.88	25.62	41.50	21.97	5.78	16.14	16.40	22.11	22.25	13.29	46.13	47.78
2	22.44	18.12	21.04	45.39	19.90	5.08	10.64	18.77	14.97	21.96	11.71	44.62	46.59
3	23.22	18.20	23.70	46.74	21.25	4.54	10.90	15.96	12.16	22.56	11.27	44.29	46.65
4	21.93	17.82	25.13	47.40	21.49	4.35	13.74	15.84	12.40	23.11	10.05	40.24	47.58
5	24.00	17.99	21.48	48.19	23.13	4.23	14.57	15.50	12.86	21.54	8.86	39.33	46.59
6	24.42	18.60	23.37	49.46	24.37	4.47	20.56	15.75	13.98	21.42	9.14	39.46	47.09
7	27.64	20.11	19.35	49.20	24.43	4.16	25.45	14.64	16.61	21.32	9.63	40.87	46.69
8	32.15	21.33	20.95	48.88	25.28	4.62	20.82	15.24	18.13	22.14	8.83	39.85	46.36
9	30.35	26.40	23.75	50.11	23.92	4.46	10.78	12.24	22.81	22.38	7.69	39.68	45.87
10	30.18	29.51	20.51	51.01	24.78	4.85	12.80	12.99	21.81	22.59	6.80	39.36	46.73
11	27.65	30.28	27.33	51.84	23.26	4.95	14.95	13.07	23.75	22.97	5.89	39.82	45.82
12	29.31	29.81	27.40	56.43	22.85	5.45	23.55	14.88	24.30	23.28	6.21	39.97	45.59
13	29.90	31.11	28.95	53.24	23.24	5.72	19.02	13.51	22.83	22.09	5.93	39.43	44.04
14	32.31	33.05	31.08	54.83	22.76	6.41	15.80	9.24	22.58	23.29	0.87	41.67	45.27
15	33.37	31.82	26.15	54.68	22.18	5.29	18.94	8.01	22.84	23.06	8.85	37.89	45.13
10	18.60	31.00	23.04	52.69	21.31	5.70	12.04	8.79	24.00	23.33	9.10	40.09	44.69
17	21 42	20.24	21.05	54.26	20.05	1.05	25.05	0.94	32.04	23.32	15.23	12.00	40.00
10	32.61	29.24	15.45	54.20	20.55	4.95	24.44	6.57	/2 10	22.14	13.29	30.78	44.59
20	31.97	30.58	19.40	53.82	20.55	4 67	29.43	6.78	38.07	21.02	17 21	35.10	44 35
20	31.51	28.87	19.54	55.32	20.00	3.82	19 41	6.64	44 42	21.88	18 14	36.20	43.69
22	31 19	28.53	22.94	56.58	22.45	4.32	16.09	5 43	43.89	22.34	22 18	31.24	43.46
23	30.34	29.07	26.91	57.25	20.80	4.07	21.34	11.27	43.43	22.87	23.13	33.18	40.57
24	31.50	30.49	36.38	60.37	20.44	3.53	23.91	4.85	43.24	22.42	24.04	39.65	41.51
25	30.91	28.03	27.27	58.90	18.69	3.71	26.00	6.16	47.51	21.76	24.88	36.60	42.34
26	31.21	19.96	25.39	59.92	18.85	3.58	39.14	5.85	44.79	22.33	24.81	39.82	41.63
27	30.18	21.11	15.23	60.53	18.67	3.67	32.51	5.45	43.01	21.71	24.89	41.93	43.57
28	30.80	20.97	12.11	57.42	19.30	3.95	25.17	6.35	45.62	21.43	25.17	43.81	43.13
29	32.13	19.83	17.55	54.86	19.35	4.47	13.99	7.67	43.07	21.43	24.75	45.29	44.03
30	33.29	21.13	16.74	53.74	22.31	6.26	12.30	9.11	43.41	20.83	25.08	46.58	43.30
31	35.14	19.73	14.75	52.40	21.34	8.38	5.34	12.14	46.61	21.33	24.76	48.32	43.57
32	37.31	18.89	11.98	52.12	22.05	11.16	5.81	10.48	47.17	21.23	25.11	40.55	42.26
33	38.59	14.72	14.73	53.69	22.10	9.01	15.91	11.57	46.39	20.26	25.33	40.97	43.26
34	42.02	6.45	8.42	55.39	23.11	8.02	21.61	7.80	46.77	20.63	24.89	43.12	42.46
35	41.45	7.08	29.40	55.96	23.06	11.81	19.13	5.40	45.83	20.49	25.40	51.97	39.69
36	38.71	4.35	21.76	52.98	22.56	12.62	22.43	4.73	44.44	19.36	23.75	47.00	42.19
37	37.63	2.55	19.27	52.81	21.17	9.69	10.08	0.43	44.37	19.04	24.98	47.24	44.92
30	37.10	2.59	20.74	53.32	21.02	1.10	10.37	10.03	45.69	17.91	20.19	47.14	47.07
39	30.21	3.90	24.71	56 21	22.00	5.00	12.25	10.90	47.40	17.04	24.90	47.02	40.00
40	38.40	2 13	25.51	57.62	22.49	7.92	11 78	12.12	47.52	18.24	26.65	47.40	40.79
41	37.82	2.13	26.81	56.20	22.12	7.10	9.40	11.32	48.63	17.00	20.03	46.79	49.10
43	37.85	2.04	20.01	55.76	22.47	5.32	8 96	11.81	48.42	16.96	24.12	45.36	48.57
44	37.83	4.34	23.50	51.73	20.30	4.68	8.26	11.68	48.70	17.21	23.98	45.90	48.05
45	37.26	2.83	24.46	53.95	18.53	5.42	10.25	11.58	47.23	17.10	23.65	46.77	48.12
46	38.94	3.30	27.30	53.58	16.14	6.69	15.31	11.76	45.70	17.13	23.67	46.86	47.44
47	37.53	1.56	32.72	54.74	18.76	7.43	13.69	12.21	45.70	20.08	23.04	43.28	46.99
48	36.08	1.56	35.55	55.21	21.74	8.68	17.02	12.75	47.03	20.27	22.76	43.45	48.82
49	36.40	1.14	28.67	60.79	22.53	11.73	18.51	15.01	48.29	21.60	22.10	44.44	48.82
50	36.05	1.26	28.91	61.28	20.55	9.61	18.01	15.54	49.05	20.51	21.96	43.06	49.06
51	37.10	3.42	31.62	61.03	19.49	13.33	20.02	16.44	50.00	19.91	20.92	41.17	47.39
52	36.26	14.06	31.29	63.29	19.63	12.07	20.87	17.72	51.05	19.49	20.44	43.68	47.15
53	35.62	18.52	32.52	62.26	20.27	7.28	19.78	17.08	50.96	19.04	21.54	41.54	43.98
54	33.33	20.40	29.24	61.43	19.13	6.54	19.12	14.51	50.08	19.68	12.02	40.86	37.60
55	35.10	21.06	29.59	62.00	19.71	10.12	19.31	9.43	48.81	18.36	21.00	41.75	42.69
56	34.37	15.97	29.07	61.40	17.72	10.96	17.66	9.96	47.05	16.51	19.69	41.06	46.83
57	34.74	16.44	28.71	61.08	17.74	11.67	15.34	12.38	46.49	17.90	20.57	41.09	47.34
58	33.87	18.77	26.44	62.72	17.30	10.60	45.31	7.40	46.31	17.14	21.00	39.94	46.08
59	33.20	19.23	29.72	60.70	18.27	7.03	14.56	5.26	48.40	18.71	21.00	39.63	44.49
60	32.15	21.11	34.52	60.10	10.01	7.05	14.62	2.00	49.10	21.70	20.99	42.15	49.62
10	31.69	21.00	32.10	62.50	10.01	0.77	14.03	3.57	49.11	22.00	20.77	42.70	12 70
62	32.02	23.10	34 47	62 24	16.10	1/ 21	0.57	9.04	49.00 50.50	21.44	20.13	42.00	40.70
64	33.03	23.00	31.36	78 06	16 20	14.31	9.57	17 37	50.59	21.40	19.79	42.40	47.11
65	33.25	23.56	31.30	61 90	14 16	18 36	13.22	16 71	48 49	21.43	18.02	41.06	44 38
33	32 97	24.08	31.68	62 30	14 43	Q Q1	18 55	15.07	40.49	20.01	18.82	41.00	46.80
67	30.40	27.39	31 42	63 23	12.93	15 24	34.37	16 79	50.00	20.33	17.80	39.85	47 66
68	31.59	33.47	31.60	61.41	12.91	12.92	10.28	19.04	49.57	20.37	18.38	40.71	48.81
69	32.43	31.95	33.91	62.57	13.83	14.80	8.25	20.55	48.53	20.51	18.78	39.63	49.10
70	32.11	34.09	29.73	62.82	15.06	13.95	10.07	19.74	47.48	20.13	17.98	39.94	50.46

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
71	31.01	27.91	34.02	61.03	15.23	8.99	5.96	23.62	47.90	19.87	18.32	42.06	51.55
72	30.53	28.69	46.32	61.65	14.97	8.67	6.74	20.93	46.13	19.81	19.55	38.49	52.22
73	30.47	21.84	39.76	63.79	16.24	12.02	14.57	18.94	45.34	19.43	18.18	41.25	52.30
74	28.57	22.93	29.98	65.28	17.98	11.84	6.09	17.82	45.18	19.22	19.27	43.01	52.19
75	28.72	26.01	27.01	60.06	19.24	9 70	4.59	39.15	44.89	18.77	10.00	47.32	51.77
70	29.07	20.00	20.30	62.39	17.96	6 14	3.85	45.04	44.70	18.67	19.65	46.30	50.07
78	29.01	33.42	16.25	63.18	17.11	6.15	5.14	47.66	46.35	18.73	19.10	44.36	49.13
79	30.13	30.76	30.21	61.83	16.63	5.77	3.67	47.15	46.49	18.73	18.07	46.96	47.49
80	30.26	30.31	30.37	62.11	17.78	5.67	3.15	47.26	45.67	18.82	18.49	46.96	46.31
81	29.84	28.52	30.12	62.50	17.03	5.57	2.95	46.43	43.74	18.83	17.03	44.23	45.13
82	28.84	29.58	20.55	61.78	16.42	6.32	1.60	47.18	44.64	19.47	17.52	42.04	34.09
83	30.22	28.98	27.16	60.21	15.99	5.89	2.58	48.50	44.24	18.76	18.18	43.37	44.06
84	29.32	27.51	24.83	50.25	16.19	5.25	13.37	47.16	42.65	17.67	17.57	39.65	39.47
86	28.93	25.57	16.55	61.92	15.03	6.67	22.33	45.81	42.98	18 44	17.03	45.36	37 67
87	29.61	26.64	15.07	64.86	16.82	9.88	23.35	46.57	44.00	18.18	17.34	45.14	37.97
88	30.18	28.23	19.56	64.01	17.85	8.70	23.38	46.53	43.91	18.17	17.13	39.65	39.08
89	30.21	28.01	21.15	61.43	16.92	8.02	21.66	48.42	46.11	17.76	17.18	38.25	41.56
90	30.30	27.50	21.69	62.17	17.58	7.65	19.80	48.01	46.32	18.16	16.92	41.29	41.71
91	31.10	29.36	18.19	62.73	16.41	7.70	18.63	47.25	47.05	18.48	16.59	44.05	42.97
92	30.34	29.67	19.92	61.83	15.08	8.30	16.18	45.59	47.26	16.97	16.56	42.02	43.56
93	29.64	28.80	16.29	63.68	15.73	6.78	13.73	41.55	47.77	18.11	15.19	39.82	39.39
94	29.70	29.20	12.02	61.00	16.32	6.13	9.56	42.22	47.30	18.26	14.01	38.00	40.01
90	29.27	31.88	12.13	62 17	16.10	6.48	5.64	50.85	49.20	18.18	15.00	47 57	40.75
97	30.78	31.86	14.58	61.04	14.79	6.80	14.43	30.64	49.26	17.15	14.94	46.79	38.52
98	31.08	31.42	17.38	60.62	14.75	6.13	16.88	27.46	48.79	17.56	14.75	42.92	39.30
99	30.03	30.78	16.62	60.53	12.74	5.16	16.27	31.29	50.91	17.63	14.23	33.79	44.41
100	28.99	28.98	15.34	61.16	11.92	5.87	16.83	28.57	50.25	18.13	14.54	34.37	45.59
101	29.46	27.89	14.67	63.77	8.59	5.09	18.75	40.66	50.49	17.10	14.33	37.23	42.65
102	29.11	27.95	12.95	62.40	4.31	5.86	20.62	28.03	52.09	17.09	13.94	24.91	43.81
103	29.00	27.26	16.53	58.16	11.08	6.83	20.59	27.62	50.66	18.12	13.43	32.22	46.01
104	20.47	29.10	20.99	46.40	6.06	7.13	19.50	25.40	51.09	15.07	13.59	22.07	47.92
105	27.65	30.72	37.69	41.80	4 07	9.00	16.68	25.00	50.43	15.40	13.13	47 12	47 10
107	27.45	28.62	24.85	43.12	2.80	9.81	16.13	32.48	50.30	15.64	12.79	38.02	45.62
108	28.59	30.86	22.73	56.16	3.05	8.35	14.98	36.21	51.48	14.99	13.10	42.55	45.92
109	27.69	26.76	21.06	59.79	3.04	7.73	14.12	34.13	50.55	14.70	13.39	50.00	46.37
110	29.64	25.54	27.98	59.47	2.72	6.99	12.75	33.59	49.91	14.45	13.22	51.66	46.67
111	28.68	25.79	24.84	62.02	2.76	7.81	3.12	29.28	50.00	15.05	13.68	45.35	44.97
112	28.90	24.06	22.15	61.35	8.71	7.58	17.48	34.34	50.35	15.09	13.19	51.47	44.16
113	28.91	24.16	21.83	60.26	14.64	8.69	18.25	35.95	49.28	14.01	13.74	52.48	41.11
114	20.34	24.55	22.91	57.06	12.04	7.01	23.04	33 58	50.63	14 44	12.27	47.30	39.23 44.22
115	27.66	25.35	29.01	56.27	12.04	9.41	27.84	34 15	49.73	15.25	10.26	40.21	45.77
117	26.47	22.71	34.25	60.97	16.42	8.96	28.91	33.87	50.00	16.51	9.80	40.68	47.30
118	25.52	23.51	53.13	59.22	21.23	8.38	29.09	33.53	48.68	16.35	10.03	42.43	46.15
119	28.84	22.57	70.92	62.88	21.33	8.65	29.33	36.26	49.00	16.34	7.78	39.01	45.97
120	33.29	23.28	67.63	58.42	20.14	8.72	30.09	43.80	49.22	15.43	6.04	38.99	45.86
121	35.78	15.63	71.33	60.78	19.98	7.61	31.43	45.04	48.93	15.83	3.31	41.88	45.38
122	37.34	13.55	74.87	61.72	18.94	6.00	29.55	44.98	48.29	16.10	3.60	42.22	45.99
123	30.10	7.06	71.31	78.60	20.94	3.0Z	20.76	44.00	47.02	15.11	0.43	41.49	40.44
124	38.89	3.37	56.96	71.49	22.10	9.02	32.03	46.41	48.48	14 22	8.60	39.37	43.28
126	38.46	5.17	59.15	57.70	21.76	8.57	30.57	45.94	47.99	13.53	10.64	38.85	43.02
127	37.63	7.02	67.16	59.66	22.55	9.51	30.75	45.70	47.92	13.19	9.06	39.25	43.16
128	26.39	2.20	72.36	55.57	22.66	8.86	29.97	44.39	47.38	13.27	13.75	40.26	43.26
129	29.19	1.47	42.52	60.74	22.51	9.54	30.52	44.08	48.06	11.81	13.60	39.49	43.30
130	33.75	1.90	63.71	71.18	21.98	18.21	30.13	43.71	46.61	13.33	13.05	39.22	41.50
131	38.66	4.43	51.82	61.38	22.65	14.53	29.67	43.11	45.48	13.41	13.81	38.25	40.86
132	37.23	5.51 1 70	31.05	53.67	22.00	14.59	27.09	40.50	44.93	14.69	13.30	30.00	39.40
133	38.82	4.13	24.25	56 55	19.04	20.34	20.31	46 34	44.85	14.40	13 55	37 29	42.31
135	37.83	11.76	31.41	57.77	21.01	20.30	21.00	44.75	44.91	15.21	12.56	40.19	41.73
136	36.96	20.96	48.26	58.62	23.06	20.54	17.58	45.76	45.42	14.43	14.68	35.81	42.38
137	39.19	22.17	37.99	58.97	22.09	22.15	13.75	44.52	45.27	14.41	16.50	35.83	43.49
138	39.97	21.99	25.41	58.74	18.04	39.31	14.36	42.38	45.64	14.57	19.00	36.63	44.22
139	39.04	15.53	22.28	55.79	17.97	27.27	13.16	43.55	46.25	14.92	19.24	36.54	42.28
140	38.18	12.77	24.68	56.27	21.21	25.10	11.82	43.50	46.00	15.12	20.50	40.68	41.99
141	38.91	14.03	28.53	59.79	20.22	20.05	9.86	43.62	40.53	14.51	19.61	40.85	43.19
142	38.04	3.51	48 54	50.49	17.00	24.10	2.10	44.00	41.14	14.73	20.32	42 42	43.34
143	36 10	4 88	24 13	60 49	13.68	20.48	2.33 5.75	43 70	47 54	13.55	20.42	40 43	41 22
145	36.77	7.81	25.05	59.47	11.13	18.80	16.04	44.17	47.39	14.10	20.48	35.62	39.55
146	38.26	3.47	30.88	58.66	12.22	16.39	22.63	44.55	47.43	14.45	21.22	34.38	39.45
147	36.01	3.08	31.09	51.84	8.36	15.58	24.73	43.76	46.71	15.01	21.12	41.92	38.59

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
148	35.03	5.95	30.18	56.84	8.72	15.42	24.98	43.64	47.55	13.94	21.06	43.86	35.00
149	36.09	5.89	32.71	56.50	7.82	17.20	25.88	43.18	47.56	13.43	21.79	39.45	38.69
150	36.52	3.97	36.56	52.43	8.52	18.12	23.80	42.28	48.47	13.65	21.04	39.53	38.85
151	36.07	8 27	31.67	55.27	9.66	19.19	24.20	42.34	49.07	14.49	19.13	41.10	36.33
153	36.98	5.75	34.07	57.51	10.33	18.45	28.82	41.83	49.17	14.97	21.11	48.34	37.79
154	35.36	8.17	32.20	58.73	15.21	17.11	26.24	41.75	49.90	15.80	20.34	50.16	40.37
155	34.76	10.10	36.56	58.53	14.14	13.18	26.20	39.98	48.11	16.86	19.38	40.56	37.37
156	33.82	14.42	43.56	54.22	15.56	10.77	26.29	40.21	47.85	17.19	18.08	41.12	34.78
157	34.11	15.92	51.82	56.60	15.50	9.78	24.81	41.25	47.63	15.26	18.71	41.21	36.11
158	32.60	26.09	49.62	53.92	17.10	9.99	23.10	41.93	48.11	17.35	18.05	44.89	36.24
160	31.72	26.03	2 29	58.57	16.46	8.84	24 49	41.12	48.39	17.10	17.88	47.98	35.24
161	32.01	22.88	1.68	56.43	16.43	8.86	22.99	40.62	47.42	17.87	16.98	48.02	34.07
162	31.65	18.25	1.63	56.86	17.76	7.83	22.03	41.27	48.06	17.65	16.73	45.97	32.83
163	30.88	30.33	1.65	56.95	17.15	7.05	21.27	42.31	47.32	17.78	16.31	42.80	35.99
164	30.12	21.51	16.00	55.61	18.37	3.06	20.61	42.64	48.07	17.35	15.81	42.88	33.33
165	30.61	18.42	45.40	54.38	17.95	4.81	19.00	43.20	48.31	17.40	15.32	46.86	30.99
167	32.04	34 38	45.15	58.36	20.14	9.51	16.03	41.72	40.12	15.50	15.67	41.02	35.70
168	30.30	17.15	47.09	56.87	19.30	10.85	14.27	40.50	47.92	16.93	15.76	45.15	33.40
169	30.44	24.50	42.25	56.50	20.93	12.89	12.16	41.88	48.68	17.34	15.77	49.59	33.42
170	30.92	29.69	42.25	58.65	19.41	14.39	10.94	41.24	48.20	16.52	15.39	49.88	38.64
171	32.48	26.32	41.12	62.30	17.23	14.32	9.13	41.18	47.76	16.32	14.65	53.82	39.90
172	32.15	22.37	39.56	57.00	16.19	14.96	7.83	39.69	48.62	16.25	15.29	48.87	37.07
173	32.81	25.73	41.87	59.04	17.61	15.86	5.81	39.28	50.20	16.51	15.38	45.03	38.95
174	32.90	26.02	42.75	57.41	17.45	19.13	14.23	38.36	49.31	15.95	16.39	50.03	41 01
176	33.30	23.19	37.34	57.66	18.03	16.67	15.36	35.85	48.62	15.36	16.54	42.25	43.19
177	33.82	23.34	37.53	56.76	15.73	15.91	14.19	31.37	47.02	15.38	16.55	47.15	43.51
178	33.11	19.72	37.85	54.88	13.95	16.02	13.90	25.52	47.95	15.21	16.83	44.67	40.96
179	33.71	15.82	49.46	55.47	14.64	15.75	12.69	31.25	46.94	15.02	17.60	45.44	40.66
180	32.41	16.88	51.72	53.77	17.10	13.50	7.19	33.41	45.84	14.64	17.59	44.48	39.80
181	31.87	10.27	46.39	53.62	19.19	12.90	3.89	34.59	46.10	14.44	17.88	38.61	39.79
183	33 47	23.04	36.62	53 11	17 62	12 76	14.91	36.43	45.80	14.38	18.26	33.30	37 77
184	33.26	19.28	41.51	59.92	19.13	13.35	25.19	35.92	46.41	13.85	18.20	34.96	37.58
185	32.44	21.82	40.85	56.91	16.85	14.39	18.32	38.35	46.87	14.02	17.54	38.56	39.20
186	32.82	27.24	50.39	55.68	15.71	18.00	17.18	37.64	46.51	14.30	17.31	36.97	39.10
187	33.52	25.56	50.07	55.21	15.02	20.19	18.57	38.00	45.89	14.35	16.97	35.72	40.60
188	34.00	32.52	46.90	53.71	15.24	19.70	20.03	38.62	46.15	14.34	16.20	34.14	42.18
109	34.16	35.03	45 11	54.00	12 55	21.50	17 34	41.10	45.09	14.30	15.10	41.80	39.70
190	33.08	35.77	42.35	53.92	12.63	17.12	15.82	40.00	46.03	14.10	15.80	37.82	31.13
192	34.23	36.15	44.55	54.87	13.19	16.15	14.48	39.05	44.77	13.96	15.28	37.32	35.52
193	32.99	35.98	42.80	54.75	12.44	11.77	12.83	37.61	45.23	13.53	15.33	37.25	41.41
194	34.31	39.79	41.26	52.53	11.67	11.99	11.49	37.71	44.39	13.14	15.90	37.18	41.76
195	34.31	38.04	42.19	66.13	11.53	10.81	10.94	37.75	43.48	12.67	15.51	38.49	40.81
196	34.60	37.47	43.40	59.11	12.22	9.72	9.55	33.38	44.91	13.77	15.81	35.66	41.28
197	35.19	35.01	46.95	52.23	10.58	12 47	12 42	25.06	43.97	14.07	13.76	36.13	37.80
199	36.31	34.58	48.71	51.43	11.56	13.80	13.38	21.70	43.21	14.84	13.80	37.91	31.31
200	35.91	31.57	46.29	59.09	15.59	13.40	12.41	20.26	43.80	14.90	14.67	36.07	30.66
201	35.13	27.26	42.46	62.73	15.85	12.99	11.51	33.33	43.64	17.15	14.17	35.42	30.38
202	36.26	26.23	44.56	59.24	17.51	15.94	8.47	38.52	43.50	16.75	15.13	35.75	31.51
203	35.45	24.45	48.40	58.20	17.22	18.08	4.20	35.08	44.87	16.61	14.45	33.38	38.43
204	36.00	20.40	40.11	60.75	10.10	10.01	1.90	40.38	43.03	15.59	13.01	37.22	40.20
205	34.58	12.16	37.23	56.53	18.46	19.63	1.56	40.50	46.87	16.16	13.04	35.79	41.90
207	33.01	20.33	32.06	56.88	20.78	18.93	2.94	39.08	45.27	15.73	12.87	35.06	39.62
208	32.06	17.22	34.19	58.90	20.53	17.77	2.88	39.37	43.95	16.28	12.09	35.02	37.62
209	31.68	26.14	33.01	57.88	19.59	18.36	2.58	37.93	44.24	16.56	12.34	36.61	38.44
210	30.08	31.09	33.65	55.67	20.38	17.74	1.74	33.33	46.12	16.64	12.29	34.02	44.53
211	32.48	33.18	32.72	56.37	19.71	14.15	2.01	34.02	45.08	17.23	12.66	35.76	47.93
212	33.53	33.60	43 30	55.02	15.19	11.66	1.70	40.41	40.40	15.04	12.09	38.03	40.74
213	34 67	32 53	45 47	55.02	19.03	10.91	2 04	38 62	46 64	16.80	11.90	47 61	46 12
215	34.66	32.67	39.86	61.55	18.94	11.08	3.05	37.01	47.52	16.45	13.32	42.36	46.22
216	34.39	32.68	35.81	59.38	19.11	8.39	6.10	33.81	47.56	16.75	13.46	39.76	44.69
217	33.23	33.70	31.36	59.83	18.66	8.05	8.11	28.17	48.28	16.12	13.57	39.80	44.56
218	34.05	32.27	30.15	58.07	18.07	7.30	8.42	25.42	48.09	15.67	13.69	32.09	45.17
219	32.58	29.42	43.87	57.31	16.70	7.64	8.12	23.16	48.82	15.73	13.66	33.94	44.52
220	32.23	28.64	39.46	57.20	15.79	8.68	11.93	26.47	47.81	15.25	16.35	40.15	43.93
221	32.44	29.00	33.58	56 71	17.66	7 93	11.59	39 45	46 61	16 11	16 12	44 18	42.30
223	30.78	30.42	38.44	58.73	19.82	9.36	11.05	38.82	45.22	15.99	15.69	47.25	44.34
224	32.03	33.80	46.40	57.40	20.91	10.90	10.07	33.33	44.80	15.72	15.12	49.91	44.63

Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
225	31.05	30.75	36.44	46.81	19.66	12.43	9.87	41.40	44.54	15.44	13.20	48.61	42.16
226	30.44	28.87	29.87	60.45	19.35	12.69	12.79	40.67	43.02	15.58	14.61	42.52	44.57
227	31.55	33.00	34.85	62.13	17.43	11.82	18.98	42.23	45.76	15.33	13.77	39.05	43.50
228	32.49	22.51	39.72	60.29	14.49	11.75	16.87	41.25	47.64	14.88	12.25	46.44	42.90
229	34.62	30.72	36.33	59.65	15.42	9.39	14.03	38.73	47.78	15.19	11.27	40.17	41.13
230	33.29	40.38	35.64	61.56	17.14	10.53	13.80	37.95	48.09	14.87	11.86	42.86	43.49
231	33.11	42.72	37.93	61.07	17.03	9.63	16.00	39.53	46.52	13.64	12.48	39.24	44.44
232	34.08	35.33	38.22	61.45	15.99	8.08	13.62	40.78	46.28	15.89	11.22	39.09	45.80
233	35.16	39.15	41.62	57.92	13.62	7.62	10.53	41.03	47.44	15.69	11.64	40.47	46.12
234	34.29	41.00	36.72	58.30	12.02	9.08	13.68	39.44	45.51	15.61	11.03	41.08	43.88
235	34.51	50.77	37.17	57.72	10.62	13.89	15.27	38.99	46.50	13.84	10.90	39.38	43.93
230	34.29	39.69	29.86	58.33	10.71	13.96	16.00	38.45	46.60	15.47	11.29	38.16	43.25
237	33.71	36.58	27.65	58.18	9.03	13.72	15.44	37.09	46.68	16.32	11.64	45.09	42.60
230	33.0Z	41.73	30.37	57.49	5.70	13.29	14.00	30.04	49.33	14.59	10.00	30.02	40.14
239	21.00	34.00	44.02	54.04	5.03	0.97	0.62	32.00	51.45	14.73	10.00	30.43	41.70
240	31.02	30.04	50.62	53 /3	8.40	17.63	8.03	35.80	51 13	14.58	10.05	33 38	37.02
241	31.30	31 20	49.83	52 37	8 29	18 15	5.85	34.96	51.13	15.49	10.33	34.04	40.69
242	30.72	31.00	46.34	55.05	5.27	16.10	14 77	34.00	51 15	14.84	11.46	34.04	30 31
240	31.40	30.16	45.89	53.64	6.11	14 43	14.81	37 15	49 20	14.87	10.65	36.43	40.02
245	29.01	32.09	44 78	54 05	6 75	11.56	15.77	33 12	50.00	14.07	10.00	34 61	39 14
246	29.34	35.65	44 40	53.51	9.24	9.13	20.34	34.62	49.60	14.30	10.00	33 59	38.68
247	28.65	38.47	45.80	51.57	11.76	6.02	21.56	39.39	48.93	14.80	10.02	37.85	38.39
248	29.98	40.08	41.96	51.01	13.33	4.26	23.22	33.85	47.33	13.54	10.48	35.86	37.20
249	27.52	37.86	40.34	51.46	15.27	3.75	25.31	40.34	48.45	14.31	10.87	36.95	34.82
250	26.66	38.36	45.56	52.24	18.05	5.77	26.21	38.15	46.89	14.40	11.10	36.51	22.17
251	27.70	38.80	45.39	52.39	17.21	8.31	33.52	37.37	47.03	14.82	10.53	37.74	20.38
252	25.80	32.96	37.55	52.84	14.97	9.05	24.74	35.66	47.16	14.66	11.11	38.50	21.35
253	24.68	33.96	42.21	55.12	16.06	9.80	22.59	40.18	46.21	15.54	11.65	36.44	22.98
254	25.25	32.79	43.58	56.58	14.19	12.37	20.05	40.14	47.21	14.91	11.13	36.73	22.82
255	26.76	24.43	38.52	55.49	14.17	12.23	22.40	37.82	47.61	15.02	11.78	38.76	22.59
256	25.83	25.02	33.85	52.81	15.09	12.00	21.49	43.29	47.63	14.04	12.79	34.45	21.63
257	26.74	23.66	46.82	53.44	15.47	11.92	20.74	38.81	47.50	14.25	12.68	41.42	22.00
258	28.18	26.30	33.37	48.58	15.33	11.82	21.97	44.23	46.75	14.72	12.41	44.37	21.58
259	27.93	23.04	36.56	50.56	13.95	12.15	19.71	44.67	47.27	14.61	12.59	42.18	21.50
260	27.41	20.73	31.34	50.94	13.74	11.87	24.64	37.90	47.47	14.07	12.58	42.37	20.97
261	29.22	24.26	40.87	52.68	13.94	13.25	23.30	37.27	47.55	14.08	13.36	42.76	19.95
262	28.32	35.16	34.69	49.34	13.22	13.14	24.69	41.80	45.55	13.64	14.35	40.75	14.68
263	27.85	31.78	36.06	53.14	12.95	11.85	27.03	41.01	45.08	12.98	14.24	41.40	44.29
264	26.72	31.44	39.16	53.26	11.09	11.41	27.21	42.68	45.26	13.87	13.58	38.32	44.66
265	27.87	33.06	36.66	53.99	9.46	9.34	27.97	44.89	44.12	12.98	12.77	37.56	42.86
266	27.03	28.97	35.14	53.44	6.09	7.65	26.98	45.81	43.86	13.55	13.26	37.70	42.36
267	25.80	27.85	34.48	53.91	5.85	6.22	26.89	41.79	41.21	14.98	12.82	41.09	41.84
268	23.94	23.52	30.21	54.98	9.06	4.94	28.45	43.04	41.98	14.40	12.77	38.71	41.91
209	22.00	25.50	22.10	50.23	15.30	3.71	23.67	43.07	39.00	10.33	13.20	30.52	42.53
270	20.09	29.10	23.04	52.14	15.19	4.29	21.01	43.23	37.20	12.01	13.00	39.23	42.14
271	27.00	38.87	24.20	51.63	13.43	17.63	22.00	42.13	10 /0	13.44	11 77	38.02	42.02
272	28.24	35.71	20.80	52.02	12/1	11.03	10 77	/1 10	40.43	12.04	11.88	38.82	30.72
273	29.63	36.46	8 16	51.39	11 24	9.85	18.80	41.63	49.09	12.30	11.00	40.13	39.04
275	29.36	40.31	45.30	52.80	11.29	8.33	21.39	41.57	49 12	11.80	10.02	41 77	39.15
276	28.70	38.16	45.35	56.72	11.24	8.54	24.90	40.89	50.91	11.06	10.69	41.46	41.68
277	28.33	36.42	47.85	63.89	12.61	8.20	24.62	42.52	51.50	11.09	14.11	39.43	41.05
278	28.53	34.66	47.88	54.40	13.39	8.61	22.02	43.23	51.04	10.62	13.55	38.01	42.44
279	28.22	35.58	45.58	52.67	13.36	8.81	21.81	42.02	49.62	10.95	13.37	34.07	42.14
280	28.42	36.74	43.04	52.31	12.31	9.60	21.82	42.06	49.29	10.32	13.56	40.30	41.58
281	28.20	37.04	48.20	52.76	15.52	9.80	20.17	39.26	48.90	10.23	13.41	38.95	42.74
282	27.50	37.35	46.25	52.12	15.24	10.20	22.70	35.81	50.33	9.73	13.28	40.00	43.97
283	28.00	33.69	46.28	53.48	13.28	10.80	19.14	37.19	52.39	10.18	13.94	40.90	42.35
284	28.68	41.67	48.02	51.44	12.96	12.22	19.01	36.20	52.53	9.73	16.15	36.78	41.12
285	28.69	34.36	49.49	53.40	12.52	12.41	26.06	40.06	53.53	9.71	17.79	38.79	42.57
286	28.38	33.37	48.87	52.61	11.64	11.78	25.84	37.43	53.11	9.19	14.66	38.03	42.88
287	28.97	37.37	48.58	54.66	12.45	11.06	22.73	38.13	52.88	9.73	14.21	41.24	41.23
288	28.94	39.82	48.42	56.14	11.88	11.39	19.84	40.16	52.26	9.58	13.85	39.55	43.51
289	28.17	38.53	47.85	53.96	11.17	10.52	14.54	41.57	53.29	9.49	13.42	35.15	43.51
290	27.64	36.88	48.15	54.55	11.50	9.86	20.78	41.79	52.49	8.29	12.57	32.69	44.46
291	28.55	38.51	48.22	55.36	11.81	10.11	29.34	40.83	52.12	9.18	12.54	36.13	42.42
292	27.33	38.72	44.88	51.62	12.01	9.86	26.93	38.60	51.62	8.21	12.41	38.95	44.35
293	27.00	24 55	42.04	52.00	12.32	12.02	20.50	30.17	52.32	9.24	14.00	30.00	44.8/
294	27.00	31.55	44.19	51.09	12.20	12.93	30.02	30.00	50 90	11.30	11.00	41.05	41.40 20.00
290	21.14	34.23	40.90	53.64	12.90	10.44	30.02	26.00	52.09	11.04	00.00	37.10	29.00 20 65
290	20.00	32.62	46 50	50.75	13.27	6 14	28 60	30.02	52.20	10.80	11.50	36 77	40.63
297	28.38	33 30	46.00	51.08	13.03	8 00	34 25	38.46	52 70	11 20	11 58	37 70	39 56
230	28.00	32 72	41 75	51.00	13.33	13.84	29.40	37 42	51 94	10.64	15.00	38.98	44 03
300	28.86	29.67	49.10	51.00	13.85	16.23	28 70	34.80	52 23	10.92	13.96	38.89	43 71
301	26.70	32.24	49.53	50.53	12.91	15.82	26.43	32.39	51.03	10.72	14.04	38.39	41.91

Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
302	25.34	27.30	48.29	49.28	12.83	15.30	25.07	29.96	50.29	10.87	14.63	38.24	41.05
303	25.86	28.16	47.83	49.92	11.51	16.51	26.40	28.89	49.19	9.72	14.10	41.08	41.74
304	23.57	28.66	45.82	49.59	9.93	15.32	26.66	27.83	47.75	10.86	13.51	41.62	40.60
305	21.24	29.38	45.15	49.50	6.81	13.97	25.38	33.18	50.15	11.53	13.02	43.41	40.00
306	21.22	27.18	43.66	48.69	9.76	13.37	24.74	35.76	52.82	11.71	13.51	41.92	36.48
307	19.52	28.21	38.81	49.47	10.73	12.72	23.76	37.28	52.92	11.01	13.17	41.34	38.15
308	20.76	24.92	31.02	50.48	8.85	10.67	23.78	39.49	51.63	11.86	13.10	41.11	40.64
309	22.00	14.84	33.68	52.18	6.74	10.11	18.85	41.19	52.14	11.76	13.02	41.77	40.51
310	22.00	30.65	44.03	54.17	6.70	10.08	23.65	40.00	52.90	11.80	13.54	39.40	39.47
311	21.57	33.08	43.68	54.84	7.01	9.75	22.89	38.91	53.59	11.89	14.57	33.88	34.03
312	23.49	32.91	44.38	54.59	4.16	10.42	23.73	38.77	53.70	11.97	15.39	35.69	23.97
313	22.54	30.50	42.45	50.34	4.55	10.96	21.42	36.31	54.31	10.60	10.02	34.75	25.08
314	22.01	20.57	43.65	51.52	8.57	8.30	19.71	35.33	54.07	11.20	18.24	34.57	24.73
315	21.15	22.23	20.30	52.96	10.40	3.69	10.72	33.90	53.90	11.72	17.57	30.30	20.30
310	10.08	23.20	12 58	51.05	13.01	2.49	21.13	37.39	56 13	12./1	15.10	34.25	20.97
318	19.90	26.82	42.30	51.40	13.74	1 94	20.87	33.33	54 93	10.78	16.00	32.08	32.23
319	18 45	33.30	41.50	52 20	14 64	1.34	19.04	32 51	52 11	12 12	18.08	33.97	40.97
320	18.84	32 29	38.53	52.99	14 76	1.00	14.33	28.76	50.31	11.80	15.00	31.68	43.20
321	17.64	31.49	32.08	52.67	11.62	1.89	10.89	30.48	48.88	11.07	15.89	32.76	41.43
322	17.85	29.76	31.15	51.41	9.99	3.37	8.82	28.90	48.69	11.63	16.09	33.02	42.01
323	17.05	31.34	23.47	46.23	9.27	5.34	9.76	24.12	46.61	11.29	14.70	31.92	42.96
324	17.50	32.75	28.00	39.11	6.03	6.22	13.06	30.63	46.02	10.95	14.22	33.63	42.77
325	18.51	33.41	50.32	40.83	8.29	8.76	12.75	34.53	44.49	11.40	15.33	32.39	41.71
326	18.32	35.76	50.24	43.19	9.41	9.92	11.11	33.83	39.97	10.75	15.43	33.55	41.50
327	19.75	32.54	49.09	44.25	9.61	11.23	13.73	34.24	37.87	11.80	15.95	33.53	45.13
328	20.51	32.20	48.91	51.34	10.81	11.38	12.54	36.18	37.94	11.48	15.33	33.19	42.91
329	20.84	33.66	48.09	53.59	13.85	12.99	17.98	36.12	36.17	11.41	15.06	34.81	41.97
330	21.16	41.47	47.42	55.49	13.65	15.63	18.16	38.79	36.39	10.85	15.21	33.38	42.12
331	20.28	41.27	47.40	57.56	14.62	15.96	14.35	39.27	29.38	11.48	15.34	32.81	43.01
332	21.57	46.36	47.54	58.12	15.02	14.69	14.28	39.05	22.64	11.36	15.69	32.34	41.84
333	23.88	44.85	49.86	61.03	14.16	14.03	11.43	38.15	20.95	11.30	16.05	31.05	41.94
334	24.51	47.43	50.58	58.83	14.68	13.78	10.38	37.20	18.11	10.36	15.88	31.24	45.42
335	24.83	37.37	50.17	56.99	15.04	12.33	13.24	35.51	25.07	11.30	15.89	31.13	45.81
330	24.79	36.50	44.53	55.99	15.90	12.12	12.80	38.50	40.15	10.69	15.80	32.94	43.67
337	25.84	44.30	46.93	57.03	17.72	12.82	12.85	39.20	47.83	11.19	15.10	33.24	43.63
338	24.62	39.12	40.88	50.40	16.03	12.60	11.50	40.00	51.03	11.04	14.52	33.18	42.35
339	25.14	34.75	47.23	60.05	15.79	12.47	9.51	29.21	55.19	11.04	14.52	22.59	41.91
340	27.01	22.51	44.94	59.91	15.70	11 /2	11 / 9	20.24	56.02	9.02	14.04	32.50	40.71
341	27.00	34.02	35 71	61 55	15.71	12.46	18.53	39.34	60.45	11 70	14.17	32.03	41.77
343	27.58	32.63	44.89	57.22	15.21	13.60	21.81	39.41	65.57	12 77	14.00	32.01	40.27
344	27.00	30.12	48.33	56.02	14 11	12.03	18.33	40.04	68 14	11 47	14.01	32.22	38.58
345	27.32	31.87	46.31	56.46	15.80	13.64	7.14	39.92	72.00	12.89	14.39	32.52	39.26
346	27.13	30.46	44.57	52.91	15.82	15.80	7.78	39.21	71.58	12.92	14.42	33.89	40.54
347	27.67	30.13	45.06	60.08	12.86	17.26	5.62	41.92	71.46	12.86	14.53	34.02	39.33
348	26.71		46.28	59.22	13.04	17.50	1.99	43.31	72.73	11.61	15.01	34.77	38.06
349	27.08		47.01	53.32	12.81	17.87	9.88	42.48	73.60	10.65	12.87	37.15	34.65
350	26.98		47.38	62.11	10.05	16.97	15.18	42.76	77.29	11.97	12.93	35.89	31.91
351	27.32		47.42	52.08	8.26	14.11	17.51	43.67	79.73	12.07	12.37	35.07	40.77
352	28.85		47.92	50.12	6.06	16.22	15.93	43.42	79.55	10.18	12.11	36.22	40.98
353	28.71		46.76	66.96	6.82	15.75	17.67	42.83	78.06	13.13	12.24	36.60	38.18
354	30.34		44.62	59.36	8.88	15.05	14.88	42.62	74.38	10.33	12.57	34.28	40.91
355	30.05		43.49	57.29	7.31	12.82	23.45	40.92	71.30	12.46	12.73	32.23	42.45
356	30.93		46.32	/1.97	6.88	13.45	24.44	39.81	69.28	14.21	12.88	32.45	41.95
357	29.75		47.46	54.51	8.43	14.15	24.60	40.20	78.15	12.50	13.34	33.08	42.50
308	30.20		40.27	60.24	12.13	12.73	18.26	40.59	71.00	13.00	14.50	33.47	44.04
309	28 30		45.23	62.87	9.00	14 35	14 26	38.05	70.50	12.90	15.55	32.02	46.91
361	20.09		46 58	63.72	10.40	14.55	8 37	36 57	70.50	13.53	15.03	32.70	43.6/
362	26.72		44.76	63.60	9.22	14.50	9.57	35.88	72.87	13.16	15.00	33.16	42 52
363	26 67		48 45	62 45	8 24	14 22	22.08	35.92	74 02	12 55	14 99	32 71	37.37
364	26.65		49.10	61.24	12.42	14.92	23.86	38.91	72.75	12.84	14.66	32.11	40.76
365	26.41		50.38	57.23	14.97	17.96	24.40	38.91	70.37	12.06	14.75	32.49	42.25
366	26.04		52.22	54.87	12.01	19.00	21.85	37.71	68.00	12.47	15.14	32.13	40.90
367	25.92		52.66	59.06	12.03	19.54	24.60	37.16	63.98	11.68	15.25	31.26	40.38
368	25.84		53.25	61.00	15.65	19.87	21.50	38.67	58.59	11.97	16.13	33.33	41.90
369	25.68		54.68	59.98	15.88	19.05	20.90	39.38	57.76	12.50	16.12	34.16	40.67
370	24.98		53.47	58.43	16.57	18.28	22.95	38.78	57.34	11.33	16.62	35.58	38.79
371	25.36		53.46	61.07	15.76	17.97	20.51	36.64	55.28	12.07	17.15	36.32	38.49
372	23.04		54.18	74.65	15.40	16.93	17.47	38.20	53.72	12.72	17.79	36.35	40.40
373	22.72		57.59	56.32	14.80	16.72	18.79	38.60	52.63	11.96	17.87	37.08	39.97
374	23.08		62.97	59.55	15.10	16.46	22.76	39.13	53.33	11.25	17.82	33.55	39.56
375	24.15		54.25	/1.42	16.42	15.78	22.35	38.18	54.23	10.47	18.04	32.74	38.63
376	23.71		52.88	58.73	16.19	14.58	17.88	38.14	53.88	13.11	18.06	33.52	38.48
3//	23.65		52.11	61.00	17.40	17.19	15.85	37.94	54.17	12.97	17.99	33.33	41.41
3/8	24.10		JZ.14	01.00	17.43	13.03	20.00	51.90	57.50	12.44	17.00	55.0Z	40.09

Depth (cm)	ΔΜ	BB	СН		ПΜ	EC1	EC2	FI 1	FM	MO1	MO2	тн	VΔ
270	24.45	00	50.54	64.80	15.57	15.09	22.57	26.74	60.76	12 22	17.00	2/ 11	12.25
380	24.43		47.07	62.60	14.68	25.65	20.25	36.14	50.70	12.33	17.03	33.83	30.06
381	23.00		42.34	72 12	14.00	18 65	15.97	35.49	76.87	12.24	16.54	32 74	40.78
382	20.00		43.36	63.89	14.12	18 24	22.18	35.81	78.43	12.00	15.75	31.86	41.62
383	23.77		53.33	64 59	14.12	31.97	19 11	36.34	79.40	13.55	15.14	33 19	37.97
384	24 18		45.81	64 61	14.10	22.12	13.65	34 46	79.51	13.28	13.89	31 64	39.12
385	26.53		43.78	65.47	14.02	22.12	17.02	35.60	78.00	13.86	13.00	32.20	39.53
386	20.00		40.70	61.43	13.07	20.27	23.91	34.92	77.67	13.00	13.72	33.68	38.02
387	29.05		40.33	61 18	11 33	20.27	24.52	34.32	76.03	13.55	12/13	34.08	38.78
399	20.42		44.72	50.99	10.07	20.14	10.19	22.79	75.26	12.00	12.43	21.56	20.70
200	20.42		45.00	62.05	12.46	10.00	10.10	20.60	77.07	12.47	12.04	20.70	12 55
309	29.22		40.90	65 71	11.50	22.47	21 10	27.09	01 1 1	14 54	12.06	29.19	42.00
201	23.32		40.00	64.20	11.02	17.20	21.10	17.00	01.14	15 10	12.44	20.77	40.57
391	31.07		40.03	74.02	11.02	17.39	20.01	17.29	01.90	15.10	13.44	29.31	42.57
392	31.29		40.30	74.92	14.20	19.04	12.29	39.10	02.11	10.90	12.04	27.60	43.40
393	29.00		40.04	00.05	12.99	10.10	10.97	39.07	70.04	10.00	12.33	23.40	44.30
394	28.54		47.53	01.04	14.39	15.20	10.09	30.53	70.04	15.77	11.90	20.75	43.09
395	29.09		47.39	61.49	11.00	18.08	19.01	37.14	78.59	16.04	11.70	21.04	45.03
396	27.97		47.97	66.69	11.04	15.67	15.57	36.78	79.39	16.56	11.19	19.14	43.70
397	26.73		47.52	66.64	14.12	23.41	12.79	35.63	79.09	17.04	10.73	17.15	42.58
398	25.88		44.77	69.60	14.71	19.97	8.78	35.29	79.67	14.92	10.72	18.74	43.89
399	25.97		45.28	64.93	14.17	18.43		36.08	79.48	16.06	10.37	16.05	44.12
400	25.30		44.98	60.44	13.40	20.16		36.79	/8.91	14.49	11.13	16.46	44.93
401	24.44		45.64	56.48	14.20	20.83		39.76	/8.91	15.77	11.88	16.49	48.15
402	24.29		42.63	54.06	15.12	18.95		41.19	78.29	15.03	11.45	13.53	47.11
403	22.96		48.19	60.24	15.30	25.97		41.13	75.58	15.62	10.87	12.38	45.60
404	23.58		42.41	61.05	14.59	20.21		40.56	72.50	14.97	11.50	9.08	41.41
405	22.65		28.62	62.38	12.36	20.33		40.15	70.86	15.57	11.30	7.46	45.97
406	22.28		27.65	64.39	16.04	19.92		39.51	69.65	15.58	10.20	8.43	42.54
407	22.24		36.25	61.75	16.88	19.23		38.09	67.18	15.97	9.73	12.87	36.96
408	20.70		52.34	61.46	12.81	17.39		36.77	65.23	14.74	9.59	21.98	30.38
409	20.68		44.90	58.59	15.71	19.30		37.27	63.42	15.65	9.91	30.73	31.94
410	19.46		33.13	54.25	15.28	18.84		38.98	60.99	15.22	9.33	23.59	34.28
411	22.83		24.44	61.11	14.97	17.14		38.59	56.97	16.26	8.73	28.15	31.36
412	27.86		43.05	62.00	16.74	17.40		40.11	54.93	13.00	8.92	39.17	31.98
413	27.99		42.90	63.27	17.83	17.29		40.52	52.65	14.79	8.78	38.29	37.76
414	27.39		41.29	65.96	19.35	17.07		39.77	50.57	14.50	8.58	36.67	37.60
415	28.92		40.92	65.26	13.00	16.39		38.42	51.07	14.96	9.45	36.24	41.63
416	28.05		41.56	64.72	14.06	15.74		36.00	51.64	15.14	10.28	37.06	43.78
417	27.90		42.06	62.79	13.30	15.67		34.79	50.91	13.37	10.86	37.33	47.18
418	27.28		41.26	58.65	13.60	17.05		33.77	52.11	14.07	11.12	38.78	50.62
419	26.87		38.53	63.17	14.19	16.85		32.76	55.20	14.17	10.98	39.62	48.05
420	26.75		37.71	62.95	18.27	16.99		30.84	52.70	13.46	9.86	39.08	50.83
421	27.96		39.64	63.80	15.55	18.32		30.86	52.25	14.04	9.56	41.14	45.07
422	28.46		37.42	63.74	16.04	18.34		40.57	50.68	13.02	9.34	43.13	43.36
423	29.45		43.30	64.85	11.67	16.48		38.52	49.78	12.35	9.73	43.46	40.86
424	30.29		53.20	63.11	16.58	17.24		36.36	48.53	11.67	8.77	43.48	39.70
425	31.81		52.58	62.75	15.36	15.96		42.55	48.86	12.88	8.30	44.97	43.95
426	29.28		53.06	63.09	22.75	15.69		42.29	49.28	12.88	8.37	44.03	43.86
427	30.46		43.01	64.64	13.97	17.39		43.60	53.46	13.01	8.45	44.61	41.95
428	30.13		46.04	63.14	13.29	18.05		42.49	54.84	12.70	8.20	45.98	48.71
429	31.33		40.53	61.18	12.46	11.68		41.37	51.46	11.72	8.56	47.21	50.59
430	34 30		38 74	63.38	13 59	10.89		40 10	52 39	12.92	9.63	47.80	46 14
431	31.63		26.70	63.46	10.50	11.38		39.37	50.49	13.49	10.35	44.30	52.20
432	30.66		31.35	62.26	12.85	10.14		37.89	49.68	13.74	10.24	45.40	24.03
433	30.89		28.93	61.91	16 84	10.01		36.86	49.08	13 92	8 61	50 19	40.48
434	30.99		27.25	63.09	15.03	11.38		37.02	51.04	14.49	6.90	52.74	41.34
435	30.25		31.10	61.68	17.84	15.22		36.70	55.66	13.18	5.60	47.65	22.25
436	30 27		30.82	64 04	25.07	20.71		34 91	57 11	15.03	5.60	47 72	42 91
437	30.26		31.31	64 77	28.01	13.64		32.09	58 14	15.34	5 22	54.00	45.27
438	29.94		33.90	61 14	32.88	11.56		26.25	56.96	16.01	5.57	58.80	41.86
430	30.56		35.62	61 74	33.60	12 15		42 47	57 30	14 58	£ 78	59.00	43.00
400	31.00		36.08	62 32	29.02	24 14		41.60	57.50	14.80	4.70	59.54	42 74
440	30.67		34 76	61 60	34.26	15 50		41 41	55 73	14 10	5 13	59.04	42 3/
147	30.15		34.05	62.03	24 52	14 21		41.76	53 70	1/ 72	1 30	58 /2	42.04
442	20.13		33.00	63 56	31 10	6 1 2		40.55	51 80	14 27	4.50	56 16	46.57
443	30.16		39.76	63.88	20.48	14 10		41.26	51 97	14.87	4 52	58.23	38.81
444	20 22		40.92	62.00	20.40	14.10		30.62	52.76	1/ 75	4.00	62.25	1/ 5/
440	29.00		28 17	60 22	21.24			37.03	53 02	14.70	4.52	57 56	44.04
440	31.01		20.17	62.01	17 99			30.20	52.0Z	12.24	2 20	52 02	40.97
447	21.60		21.23	62.01	10.00			10.29	55.13	1/ 54	3.00	5E 40	49.00
448	33 66		21.09	60 27	15.00			40.30	54 47	14.01	3.19	55.40	10.11
449	33.00		20.73	60.42	1/ 95			41.40	51 61	14.93	3.10	5/ /2	32 00
430	22 60		41.00	50.25	14.00			27 00	50.74	14.94	3.02	40.02	JU.99
401	33.00		41.41	59.20	14 70			31.00	50.74	15.11	3.01	49.92	40.03
402	31 60		32.66	50.9Z	13.76			42.00	10.07	15.50	2.20 2.25	49.40	43.30
403	21.09		20 77	61.05	14 47			43.70	49.90	17.04	2.23	40.07	40.13
404	20.70		29.11	61.90	14.47			41.01	40.47	14.00	2.00	41.41	42.01
400	23.10		34.07	01.00	10.09			42.20	43.30	10.00	3.07	40.10	42.20

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
456	28.48		46.73	59.85	14.54		0	40.42	51.61	16.02	2.35	45.73	42.84
457	29.32		14.08	55.69	14.55			42.15	53.97	14.92	2.44	41.80	45.11
458	30.04		12.34	52.80	17.27			40.19	57.66	14.76	1.86	39.87	43.10
459	29.76		19.30	56.95	18.44			41.11	57.58	14.94	2.23	40.98	41.27
460	30.47		22.23	58.87	19.09			40.42	56.39	14.69	2.26	41.28	41.13
461	28.97		15.56	57.86	18.22			43.93	57.51	14.86	2.99	40.60	42.26
462	27.76		9.27	51.61	16.91			39.53	57.34	14.70	2.14	40.75	45.33
463	27.17		5.78	54.96	17.12			37.92	57.84	13.93	2.02	42.90	46.99
464	27.98		6.34	54.94	15.53			37.48	56.10	12.68	1.81	45.01	39.98
465	27.08		5.03	56.12	15.41			33.60	55.69	14.09	2.03	45.67	43.45
466	27.25		4.07	59.48	14.24			29.01	55.67	14.40	1.74	44.95	41.04
467	26.89		3.42	53.65	13.84			43.87	56.50	13.39	1.71	45.93	41.89
468	26.84		3.46	52.76	12.48			41.06	57.61	14.35	4.18	46.56	37.52
469	27.25		3.76	52.64	13.18			42.68	57.47	12.94	5.39	47.55	40.30
470	28.77		3.59	53.14	12.71			44.38	57.31	13.79	2.76	48.42	34.47
471	28.61		4.69	57.98				39.76	54.96	14.93	1.49	49.03	42.58
472	27.83		3.99	57.07				32.37	54.22	14.95	0.65	49.84	44.78
473	28.59		5.03	61.14				35.10	54.90	13.28	1.38	48.90	44.43
474	29.00		2.78	61.01				34.71	54.80	15.01	1.51	47.91	44.46
475	30.27		3.48	42.52				37.07	54.11	14.91	1.58	47.47	43.06
476	30.19		5.53	30.33				37.48	54.32	16.45	1.75	45.88	48.57
477	28.54		4.33	29.94				35.45	53.91	16.21	1.67	45.38	46.49
478	29.37		3.34	31.71				35.00	54.98	15.20	1.68	44.44	45.03
479	29.95		3.36	30.72				41.34	55.84	16.51	1.74	44.79	43.08
480	29.19		3.70	32.22				39.53	55.48	16.69	1.74	41.25	43.14
481	28.00		3.74	35.67				38.30	56.12	17.53	1.96	38.49	42.70
482	29.24		9.75	40.40				39.22	56.21	17.63	1.91	38.86	44.88
483	28.60		13.41	28.26				39.66	55.72	15.33	1.83	40.13	41.99
484	29.01		13.31	60.00				40.08	55.50	16.73	1.59	40.43	42.61
485	29.85		12.73	63.34				40.22	49.92	16.06	1.69	41.11	43.82
486	27.65		11.89	64.67				37.91	48.82	15.63	2.16	39.55	44.58
487	28.40		10.62	61.84				35.93	48.14	15.05	1.71	43.92	42.60
488	26.60		9.01	61.42				33.76	48.75	15.22	1.77	45.44	42.11
489	26.60		7.70	61.12				34.89	47.86	15.82	1.70	47.51	41.10
490	27.63		7.36	63.27				32.19	47.40	15.43	1.70	43.96	40.81
491	26.58		6.76	63.46				28.97	47.07	15.11	1.47	53.18	43.78
492	26.13		7.11	62.30				27.03	48.41	14.52	1.62	46.75	40.28
493	22.94		11.73	63.05				28.60	51.87	14.00	1.61	46.74	40.79
494	25.95		25.90	62.69				27.48	51.90	14.64	1.66	45.45	42.03
495	25.45		28.54	66.67				24.61	54.27	14.75	1.57	30.54	34.19
496	24.19		32.24	65.43				33.94	50.80	13.69	1.65	32.07	34.36
497	21.29		24.00	63.29				36.42	49.12	13.15	1.93	26.37	25.23
498	28 40		13 76	65.96				35.86	51.58	12 87	1 79	26.28	41.54
499	27.12		3.06	66.32				33.63	48.39	12.63	1.54	31.30	35.37
500	28.24		4.07	67.24				36.02	51.24	11.05	1.28	34.98	38.83
501	29.22		3 20	67.02				41.82	45.33	12.34	3.08	49.31	44 65
502	29.46		3 43	62 42				41.50	49.92	13.21	5.51	59 78	49.55
503	28.36		2 46	59.94				40.51	52.96	12.65	2.53	59.84	37.92
504	27.31		0.98	61 15				40.37	54 59	13.90	1 45	55.54	41.98
505	27 74		0.66	62 41				38.60	53 53	13 78	1 19	49 11	42.68
506	24.97		0.56	60.27				38.84	54 04	13.80	1 21	44 46	49.87
507	25.02		0.39	62 11				37.07	54 21	13.60	1.59	36.32	44 71
508	24 91		0.42	64 01				37 99	51 45	13.05	1 27	41 82	41 07
509	25.04		0.40	63.17				41.67	51.82	11.90	1.17	38.42	37.34
510	27 81		0.63	62 94				39.61	52 78	11 82	1.38	37.92	38 19
511	28.12		0.48	61.22				36.69	51.04	12.72	1.39	41.75	44.99
512	27.34		0.63	57.53				31.94	52.77	11.85	1.39	37.30	45.81
513	27 95		1 12	55 40				37 45	53 29	12 71	1.50	39 72	38.34
514	27.36		1.53	55.28				34 27	54 58	12.92	1.50	36.38	41 20
515	27 51		1.31	51 76				36.09	55.83	11 98	1 44	38 62	46 61
516	26 64		1.50	44 66				34 21	55 27	12 01	1 16	33.38	46 69
517	25.52		1.00	25.87				36.30	54 66	12.01	1.10	39.48	42.99
518	24 87		1 68	23.80				40.04	53 89	12 69	1 17	45.36	46 14
519	24 43		1 64	26.00				44.33	54 85	11 78	1 46	42.51	35.70
520	23.71		2.28	24.45				38.13	54.16	12.08	1.46	44.67	47.02
521	23.79		2.07	47.17				34.62	53.60	12.50	1.29	44.92	51.07
522	27.71		1.31	40.73				33.28	52,99	12.62	1.06	46.44	50.60
523	29.67		1.03	44.52				35.68	51.77	11.60	0.89	52.98	49.62
524	31.80		0.39	39.88				32.31	50.47	12.47	1.06	48.63	51.09
525	27.92		0.31	40.89				35.43	52.13	11.49	0.98	49.82	42.06
526	32 59		0.35	27 67				35 24	54 64	11 60	0.86	47 94	43.58
527	32.62		0.39	28.38				33.33	53.59	12.10	1.02	55.92	46.55
528	31 73		0.43	32.97				35 23	54 45	12.83	1 07	54 55	52 79
529	28.67		0.43	56.23				35.73	54.51	14.01	1.00	47.42	46.75
530	29.64		0.59	55.59				38.48	55.54	13.70	1.05	44.87	43.67
531	30.08		0.64	54 80				42 45	57 89	14 34	0.94	40.30	47.39
532	32.12		0.62	53.70				42.82	54.98	14.20	0.95	36.12	48.86

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
533	29.32		0.69	54.13				40.39	56.90	13.55	0.88	30.31	43.88
534	28.73		0.56	51.62				40.80	57.46	12.96	0.85	41.06	67.06
535	35.21		0.70	50.58				40.10	56.70	13.45	0.91	37.84	41.91
536	36.72		1.27	45.96				40.33	57.00	12.55	0.86	24.51	50.73
537	36.33		0.94	49.52				40.04	51.21	14.45	1.14	31.15	43.56
538	35.49			46.70				42.95	56.64	14.15	1.16	43.93	54.11
539	35.01			44.99				44.19	57.10	14.34	1.29	26.92	40.00
540	34.76			41.07				42.00	56.52	12 50	1.10	33.00	50.00
541	35.34			37.51				44.03	53.01	12.30	1.00	32.99	10.09
543	36 77			34 16				40.34	54 24	11 19	1.00	40.29	52 91
544	37.37			27.36				42.02	51.82	10.19	1.20	46 11	39.96
545	37.56			28.33				41.50	51.75	10.38	1.19	42.42	53.02
546	36.02			35.72				40.05	49.79	10.25	1.00	40.84	57.50
547	33.56			28.22				39.35	51.00	10.52	0.97	50.72	50.39
548	33.61			22.61				35.84	55.17	9.22	1.06	45.52	26.87
549	34.50			17.14				34.82	57.99	10.52	1.06	39.88	24.25
550	32.63			11.97				36.05	55.27	11.16	1.05	40.95	35.69
551	33.01			10.37				36.33	56.92	9.56	1.13	45.95	56.45
552	31.73			9.97				40.19	54.99		1.31	39.80	62.56
553	30.52			10.20				40.29	54.38	9.28	0.85	39.54	62.39
554	30.82			8.97				40.36	52.82	9.96	1.13	38.04	58.87
555	29.71			3.07				39.89	54.17	10.14	1.19	35.95	36.64
556	31.33			5.01				40.00	54.33	10.39	0.91	39.63	64.22
557	32.79			11.62				38.24	53.21	10.47	0.98	40.91	58.80
558	31.68			10.74				39.10	51.10	10.26	0.89	42.64	62.33
559	32.82			0.93				34.41	50.10	11.89	0.01	40.40	52 07
000	32 70			9.40				31.7/	10.01	12.44	1.05	00.09 11 2F	56 FF
562	33.19			9.29				26.78	49.91	13 10	1.00	38 78	52.83
563	33.29			6.61				25.00	48.03	13.10	1.03	38.41	60.54
564	31.57			6.01				26.60	46.50	12 70	1.02	37 27	59.69
565	31.01			6.81				31.57	42.88	12.20	1.00	35.55	40.39
566	31.06			6.13				31.25	38.11	12.07		38.79	61.89
567	31.68			4.99				37.33	45.64	12.11		35.10	60.17
568	32.65			0.39				35.43	46.51	11.78		32.98	53.69
569	34.51			0.40				33.11	46.71	11.65		33.30	62.99
570	34.79			0.36				38.01	42.69	12.24		37.48	45.10
571	31.93			0.27				34.93	45.65	12.11		35.39	51.04
572	32.27			0.25				29.37	45.38	11.95		34.84	27.39
573	32.46			0.30				28.80	48.23	11.52		34.29	43.03
574	32.76			0.25				38.11	43.17			35.09	47.85
575	32.79			0.29				40.36	46.12			35.02	55.88
576	33.77			0.30				39.86	46.11			35.73	54.88
577	33.27			0.29				39.33	41.43			40.15	53.26
578	32.89			0.21				38.92	45.13			47.67	52.92
580	33.01			0.27				38.20	43.05			39.00	54.49
581	34.07			0.24				37.80	42.11			30.68	50.76
582	33.77			0.21				37.76	38.93			44 77	50.00
583	33.33							37.23	45.12			48.63	44.67
584	32.73							37.20	-			48.36	47.71
585	32.86							40.60				37.74	17.44
586	33.81							36.30				33.20	40.32
587	33.33							37.22				36.74	55.20
588	34.17							32.69				32.57	54.60
589	33.53							32.17				34.97	42.32
590	32.89							32.69				25.40	30.74
591	33.41							36.41				35.68	45.74
592	33.67											46.11	33.78
593	33.51											40.95	35.41
594	34.00											30.13	42.00
595	33.00											20.40	42.00
590	34.14											36 71	
598	32.43											38.77	
599	32.73											35.72	
600	33.56											36.57	
601	33.02											40.90	
602	33.25											39.66	
603	32.85											41.37	
604	33.98											47.26	
605	35.19											47.39	
606	34.44											42.01	
607	33.58											44.34	
608												47.08	
609												42.08	

Depth (cm)	AM	BB	СН	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
610												43.44	
611												40.68	
612												32.38	
613												33.47	
615												32.81	
616												30.18	
617												28.03	
618												32.43	
619												30.34	
620												28.04	
622												28.66	
623												26.96	
624												28.29	
625												28.42	
626												28.13	
627												28.63	
629												19.63	
630												22.17	
631												27.18	
632												32.84	
633												20.82	
634												35.22	
636												23.47	
637												19.32	
638												32.94	
639												35.03	
640												29.12	
641												33.33	
642												37.05	
643												33.82	
645												32.98	
646												29.28	
647												24.13	
648												30.51	
649												31.65	
650												42.18	
652												33.58	
653												39.45	
654												37.57	
655												41.55	
656												39.35	
657												36.89	
650												36 91	
660												36.91	
661												43.36	
662												42.02	
663												49.64	
664												49.32	
666												38 27	
667												37.31	
668												31.49	
669												31.29	
670												31.70	
671												30.47	
673												24.50	
674												14.22	
675												17.68	
676												18.32	
677												18.68	
678												23.01	
679												23.19	
681												19 40	
682												22.78	
683												21.71	
684												24.12	
685												25.63	
686					1							21.63	

Depth (cm)	AM	BB	CH	DU	DM	EC1	EC2	EL1	EM	MO1	MO2	TH	VA
687												23.51	
688												26.70	
689												10.70	
690												9.50	
691												11.40	
692												15.73	
693												15.27	

APPENDIX E: CORE LAYER BOUNDARIES

All core depths shown are in centimeters. Boundaries occur after the centimeter shown, and pairs of depths describe a layer. Layers alternate between terrigenous and gyttja; the Note column shows whether the first layer indicated is terrigenous (T) or gyttja (G). For example, in MS for the first core shown, the first layer occupies the 1st through 6th centimeters and is terrigenous; the second layer (cm 7-13) is gyttja, etc. LOI layers usually alternate between gyttja and low-LOI layers. Layers with significantly high LOI values are noted with H; significantly low-LOI layers bounding high-LOI layers are noted with L (in all other cases, gyttja layers bound both low- and high-LOI layers).

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Amherst	0 T	0 T	0 T	01	0 T
Amherst	6	6	4	6	6
Amherst	13	16.5	16	16	16
Amherst	18	18	17.5	18	18
Amherst	128	127	49.5	26	118
Amherst	134	130	50	27	119
Amherst	305	412	127	33 H	127
Amherst	329	415	127.5	35	129
Amherst	360	607	607	115	209
Amherst	385	001	001	119	210
Amherst	393			121 H	252
Amherst	413			126	254
Amherst	490			127	267
Amherst	500			129	269
Amherst	505			132 H	301
Amherst	513			133	336
Amherst	517			209	369
Amherst	526			210	384
Amherst	607			252	397
Amherst				254	411
Amherst				267	492
Amherst				269	493
Amherst				301	495
Amherst				336	497
Amherst				337	505
Amherst				339	509
Amherst				369	516
Amherst				384	521
Amherst				397	532
Amherst				411	534
Amherst				429 H	554
Amherst				430	555
Amherst				492	607
Amherst				493	
Amherst				495	
Amherst				497	
Amherst				505	
Amherst				509	
Amherst				516	
Amherst				521	
Amherst				532	
Amherst				534	
Amherst				535 H	
Amherst				536	
Amherst				543 H	
Amherst				545	
Amherst				554	
Amherst				555	
Amherst				607	

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Echo 1	0 G	0 T	0 T	0 L	0 T
Echo 1	4	30	32	30	30
Echo 1	32	32	33	38	32
Echo 1	39	34 25	34	39	34
Echo 1	58	48.5	36	45	39
Echo 1	62	50.5	37.5	64 H	42
Echo 1	80	54.5	38	65	45
Echo 1	88	55.5	38.5	76	54
Echo 1	97	60.5	39.5	81	55
Echo 1	112	63.5	40	82	59
Echo 1	128	60 66	41 /3	85 121	63.5
Echo 1	153	67	48	124	64.5
Echo 1	168	69	49.5	127	66
Echo 1	178	115	51	129	67
Echo 1	186	117	54	137 H	72
Echo 1	189	119	55	142	73
Echo 1	197	122	59 62	161	84
Echo 1	213	124.5	63.5	174 H	86
Echo 1	229	126.5	64.5	175	105
Echo 1	233	129	66	186 H	114
Echo 1	246	130	67	189	115
Echo 1	256	155	72	195	122
Echo 1	266	167	73 77	196 204 L	125
Echo 1	293	202	84	204 11	127.5
Echo 1	297	213	86	208 H	163.5
Echo 1	312	222	105	209	167
Echo 1	326	231.5	114	240 H	190
Echo 1	375	234.5	115	242	197
Echo 1	381	239	122	246	214
Echo 1	403	241	127 5	266	231.5
Echo 1	432	252	129	270 H	234
Echo 1	438	265	163.5	271	238
Echo 1	444	272	167	272	240
Echo 1		289	188	296	246
Echo 1		298.5	195	297	252
Echo 1		313.0	215	314	200
Echo 1		444	246	379	295
Echo 1			253	380	298.5
Echo 1			265	382	314
Echo 1			275	383	325
Echo 1			297	393	376
Echo 1			290 314 5	394 402	393
Echo 1			316	403	394
Echo 1			317.5	431	431
Echo 1			329	433	433
Echo 1			444	435	439
Echo 1				436	440
Echo 1				439	442
Echo 1				442	444
Echo 1				443	
Echo 1				444	
Echo 2	0 Т	0 Т	0 Т	0 G	0 Т

Core	MS	Note XR	Note VL	Note LOI Not	e COMP Note
Echo 2	9	5	5	1	5
Echo 2	12	8	8	3	8
ECNO 2 Echo 2	14 17	11	10	6 H 7	10
Echo 2	17 28	12	13	/ Q	10
Echo 2	20	14	14	10	15 5
Echo 2	42	16.5	16	15	16
Echo 2	48	18	21	16	21
Echo 2	61	18.5	23	18 H	23
Echo 2	90	29	27	20	27
Echo 2	93	33.5	32	21	32
Echo 2	96	35.5	42	22	42
Echo 2	112	47	46	25 H	46
Echo 2	116	62	53.5	27	53.5
Echo 2	140	83	59	28	59
Echo 2	145	92	62.5	32	62.5
ECNO 2	172	95	83	40	83 04 F
ECHO 2 Echo 2	1/0	110.5	94.5 05 5	40 57 ロ	94.0 05 5
Echo 2	185	5.211 1/2	90.0 110	ว/ 52	90.0 110
Echo 2	206	142	111	61	111
Echo 2	220	171	141.5	64	141.5
Echo 2	244	173.5	143.5	66 H	143.5
Echo 2	248	179	170	67 L	170
Echo 2	346	184	172	72	172
Echo 2	352	203	172.1	73	172.1
Echo 2	360	217	173	83	173
Echo 2	363	233	179.5	93	179.5
Echo 2	398	234	183.5	96	183.5
Echo 2		242.3	203	100	195
Echo 2		259 5	258 5	136	201
Echo 2		260.5	259	144	219
Echo 2		289	288	152 H	223
Echo 2		290	289	153	225
Echo 2		309.5	319	168	232
Echo 2		310.5	322.5	174	233
Echo 2		314.5	324	179	241.5
Echo 2		315.5	327	182	243
Echo 2		316.5	335	183 H	250
Echo 2		317.5	340	184	251
Echo 2		322 279 F	343 210	190	∠00 280
Echo 2		332	360 5	201	203
Echo 2		335	362	219	294
Echo 2		340	398	223	297
Echo 2		342.5		225	298
Echo 2		345.5		239	309.5
Echo 2		351		242	310.5
Echo 2		357		250 H	314.5
Echo 2		358		251	315.5
Echo 2		364		288	319
Echo 2		366		289	322.5
Echo 2		375		293 H	324
ECHO 2 Echo 2		3/6		294 207 ロ	১∠/ २२२
Echo 2		319		291 FT 202	334
Echo 2		300		290 320	339
Echo 2		391.5		323	341
Echo 2		392		339	344
Echo 2		393		340	349

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Echo 2 Echo 2		395 396 397 398		344 349 359 362 383 384 391 392 396 398	359 362 373 374 377 378 383 384 391 392 397 398
Elligo 1 Elligo 1	0 G 32 43 53 66 90 124 149 165 174 186 193 204 288 308 315 327 380 400 418 428 436 442 458 468 487 498 545 559 565	0 G 18 23 35 38 56 57 59 60 61 63 66.5 67 73 74 100 105 178.5 179.5 201 202 220 222 294 295 389 390 420 421 465 466 524 525 562 563 571 573 591	0 G 17 26 34.5 36.5 54.5 66.5 199 200.5 218 220 320 323 387.5 388 458.5 466 470.5 476 494 496 523 524 591	$\begin{array}{c} 0 \\ 1 \\ 74 \\ 77 \\ 18 \\ 82 \\ 10 \\ 94 \\ 95 \\ 96 \\ 100 \\ 101 \\ 106 \\ 110 \\ 101 \\ 106 \\ 110 \\ 111 \\ 114 \\ 115 \\ 116 \\ 118 \\ 119 \\ 122 \\ 124 \\ 126 \\ 132 \\ 133 \\ 176 \\ 180 \\ 188 \\ 189 \\ 195 \\ 201 \\ 216 \\ 220 \\ 223 \\ 224 \\ 226 \\ 189 \\ 195 \\ 201 \\ 216 \\ 220 \\ 223 \\ 224 \\ 226 \\ 189 \\ 195 \\ 201 \\ 216 \\ 220 \\ 223 \\ 224 \\ 226 \\ 189 \\ 220 \\ 223 \\ 224 \\ 226 \\ 189 \\ 220 \\ 223 \\ 224 \\ 226 \\ 189 \\ 227 \\ 238 \\ 240 \\ 244 \\ 245 \\ 257 \\ 195 \\ 257 \\ 257 \\ 258 \\ 257 \\ 195 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\ 257 \\ 258 \\$	0 G 17 26 35 38 55.5 65.5 73 74 95 105 110 111 132 133 176 179 195 201 210 211 210 211 216 220 223 224 238 240 244 245 281 282 290 244 245 281 282 290 294 297 301 320 323 389 390 418 421 436 438 458 458 458.5 463.5 466 470.5

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Elligo 1				289 H	476
Elligo 1				290	489
Elligo 1				294	495
Elligo 1				297	511
Elligo 1				301	512
Elligo 1				304	523
Elligo 1				308 H	524
Elligo 1				310	548
Elligo 1				319	549
Elligo 1				324	559
Elligo 1				388	566
Elligo 1				391	571
Elligo 1				417	573
Elligo 1				421	587
Elligo 1				424 H	590
Elligo 1				428	591
Elligo 1				435	
Elligo 1				438	
Elligo 1				460 H	
Elligo 1				461	
Elligo 1				464 L	
Elligo 1				466 H	
Elligo 1				467	
Elligo 1				468 H	
				470	
				471	
Elligo 1				472 478 H	
Elligo 1				470 11	
Elligo 1				479	
Elligo 1				495	
Elligo 1				500 H	
Elligo 1				502	
Elligo 1				508 H	
Elligo 1				509	
Elligo 1				511	
Elligo 1				512	
Elligo 1				518 H	
Elligo 1				519	
Elligo 1				523	
Elligo 1				524	
Elligo 1				526	
Elligo 1				527	
Elligo 1				531 H	
Elligo 1				532	
Elligo 1				538 H	
Elligo 1				539	
				540 H	
				041 549	
				540	
Elligo 1				559	
Elligo 1				566	
Elligo 1				571	
Elligo 1				573	
Elligo 1				574 H	
Elliao 1				575	
Elligo 1				587	
Elligo 1				590	
Elligo 1				591	

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Elligo 2	NA	0 G 11	NA	NA	INA
Elligo 2		20			
Elligo 2		192.5			
Elligo 2		195.5			
Elligo 2		312			
Elligo 2		314			
Elligo 2		439			
Elligo 2		441.5			
Elligo 2		446.5			
Elligo 2		449			
Elligo 2		450			
Elligo 2		451.5			
Elligo 2		471			
Elligo 2		474			
Elligo 2		476			
		4/ð 196			
Elligo 2		400 188			
Elligo 2		514			
Elligo 2		516			
Elligo 2		525.5			
Elligo 2		527			
Elligo 2		531.5			
Elligo 2		535			
Elligo 2		563			
Elligo 2		564			
Elligo 2		565.5			
Elligo 2		566.5			
Elligo 2		5/4			
Elligo 2		576.5			
Elligo Z		501			
Dunmore	0 G	0 G	0 G	0 G	0 G
Dunmore	21	101.5	44.5	45	44.5
Dunmore	30	103	48.5	46	48.5
Dunmore	65	105.5	67	100	67
Dunmore	70	112	69	103	69
Dunmore	98	137.5	100.5	104	100.5
Dunmore	115	140.5	102.5	112	102.5
Dunmore	141	148	104	114	104
Dunmore	162	156	108.5	116	109
Dunmore	187	1/9	108.0	144	112
Dunmore	202	100	111	100 101 ロ	114
Dunmore	233	197 5	130	182	130
Dunmore	263	200	143	197	144
Dunmore	269	200	164	199	153
Dunmore	273	239.5	178	223 H	178
Dunmore	277	243.5	179	224	179
Dunmore	286	245	193	234	195
Dunmore	291	247.5	199	246	199
Dunmore	304	268	238	264	238
Dunmore	314	270.5	241	268	241
Dunmore	323	307.5	243.5	303	243.5
Dunmore	329	308	246	306	246
Dunmore	348	314.5	265.5	307	265.5
Dunmore	364	316	268	315	268
Dunmore	384	325.5	305	321	304.5
Dunmore	396	327.5	305.5	328	305
Dunmore	410	354	312	349	312

0	MO Note	VD Nata			
Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Dunmore	414	355	313	357	313
Dunmore	426	308.0	324	308	324
Dunmore	430	309.0 264	3∠0.3 251 5	303 442 LI	3∠0.0 251 5
Dunmore	449	304	351.5	413 H	351.5
Dunmore	400	305.5	352.5	414	352.5
Dunmore	463	368	357.5	422	357.5
Dunnore	470	309	301	423	301
Dunnore		300 202 F	303	420 F	303
Dunmoro		393.0	201 5	420	207
Dunmoro		432	202	427	320
Dunmore		460	305	433	301 5
Dunmore		400	397	434	393
Dunmore		110	406	435 H	395
Dunmore			416	441	397
Dunmore			422	442 H	406
Dunmore			428	443	416
Dunmore			433	444 H	422
Dunmore			442.5	445	428
Dunmore			445.5	448	433
Dunmore			446.5	454	442.5
Dunmore			452.5	470	445.5
Dunmore			453	-	446.5
Dunmore			467.5		452.5
Dunmore			469.5		453
Dunmore			470		467.5
Dunmore					469.5
Dunmore					470
	. –	. –	. –		. –
Emerald	01	01		0 L	
Emeraid	18	8	18.5	17	17
Emerald	269	271	269	19	19
Emerald	2/0	274	270	20	20
Emerald	242	33Z	333.0 225 5	209	209
Emerald	592	337	500.0	270	270
Emerald	505	381	565	320	337
Emerald		583		350 H	375
Emerald		505		352	376
Emerald				370	565
Emerald				378	566
Emerald				380 H	583
Emerald				383	
Emerald				565	
Emerald				566	
Emerald				583	
. .	- -	a -	- -	<u>.</u>	c -
Beebe	0 T	ΟT	0 T	0 L	0 T
веере	9.5	6	8	8	8
веере	32.3	36	33	25	33
Beebe	51.3	66	52	26	52
Beebe	70.3	73	54.5	28	54.5
Beebe	76.95	77	56	29	56
Beebe	122.55	88	57	30	57
Beebe	133.95	89	58	53	58
Beebe	140.6	121.5	74	55	74
Beebe	153.9	134	75	59	75
Beebe	164	140	88	67 H	88
Beebe	168	161	90	68	90
Beebe	1//	164.5	120	69 H	121.5
Beebe	183	167.5	121	70	134

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Beebe	203	177	122	72	138
Beebe	211	186	134.5	73	158
Beebe	227	204	139	120	161
Beebe	232	211	139.5	136	163.5
Beebe	244	220.5	141	138	164.5
Beebe	249	221.5	151	158	168
Beebe	264	227	152.5	161	178
Beebe	272	231	157.5	162	183
Beebe	307	243	161	164 L	204
Beebe	310	247	164.5		210
Beebe	318	200	168	168	220.5
Beebe	340	300	178	177	221.3
Beebe	347	301	183	182	230
Beebe	•	302.5	204	183	243
Beebe		303	210	185	247
Beebe		304.5	245.5	193 H	257
Beebe		305	247.5	196	262
Beebe		309	258	202	267
Beebe		310.5	261	208	269
Beebe		314.5	283.5	227	283.5
Beebe		317.5	284.5	228	284.5
Beebe		336.5	308	229 H	309
Beebe		337.5	309	231	310.5
Beebe		346	315	234 H	314.5
Beebe		347	310	230 227 LI	317.5
Beebe			335 5	237 П	335 5
Beebe			330	230 247 H	330
Beebe			339.5	248	339.5
Beebe			346	250 H	346
Beebe			347	251	347
Beebe				254	
Beebe				255	
Beebe				256	
Beebe				257	
Beebe				258	
Beebe				261	
Beebe				267	
Beebe				269	
Beebe				271 1	
Beebe				272 274 H	
Beebe				274 11	
Beebe				283 H	
Beebe				284	
Beebe				308	
Beebe				309	
Beebe				314	
Beebe				315	
Beebe				316	
Beebe				317	
Beebe				331 H	
Beebe				334	
Beebe				330 H	
Becho				313	
Reebe				343	
Beehe				347	
20000				017	
Vail	0 G	0 G	0 G	0 G	0 G

Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
Vail	24	191	200	34	34
Vail	29	193	202	35	35
Vail	51	199	207.5	53	53
Vail	55	204	208.5	54	54
Vail	57	209	235.5	81	81
Vail	67	211	236.5	82	82
Vail	81	262	240.5	83	83
Vail	99	264	241.5	87	87
Vail	128	313	249.5	113	113
Vall	129	320	262	114	114
Vall	134	351	311.5	147	147
Vali Vail	1/3	303 410	340	140	140
Vail	151	412	349 5	156	156
Vail	152	426	408.5	159	159
Vail	156	427	413.5	162	162
Vail	157	434	431	163	163
Vail	172	435	431.5	169	169
Vail	188	436.5	434	190	190
Vail	209	437.5	434.5	192	192
Vail	243	450.5	496	198	198
Vail	262	451	496.5	202	202
Vail	309	465.5	501.5	207	207
Vail	321	466	502	208	208
Vail	344	470	512	210 H	235.5
Vail	356	470.5	512.5	211	236.5
Vail	357	4/2	518	248	240.5
Vall	358	472.5	518.5	202	241.5
Vall	279	400.0	522 5	305	249.0
Vail	380	400	542	310	202
Vail	389	490.0	542 5	318	306
Vail	405	498	547	348	310
Vail	415	498.5	549	350	318
Vail	428	499	553.5	358 H	348
Vail	437	499.5	554	359	350
Vail	445	500.5	564	400 H	358
Vail	452	501	564.5	401	359
Vail	462	503.5	584.5	406	409
Vail	472	504	585	414	414
Vail	492	504.5	592.5	417 H	423
Vail	504	505	593	418	424
Vall	54Z	520	595	419 H	431
Vall	572	520.5		420	432
Vail	595	525		423	434
Vail	000	532.5		428 H	443
Vail		533		429	444
Vail		534		430 H	449
Vail		534.5		431 L	450
Vail		545.5		432	467
Vail		546		434	468
Vail		550		435	469
Vail		552		443	470
Vail		555		444	496
Vail		556		446 H	497
Vail		566		448	498
Vail		566.5		467	499
vall		200.D		400 460	502 502
vali Vail		571		409 470	503
van		011			000

Core	MS Note XR Note	VL Note	LOI Note	COMP Note
Vail	571.5		475 H	510
Vail	572.5		476	512
Vail	573		494	513
Vail	574		497	518
Vail	574.5		498	519
Vail	585.5		499	524
Vail	586.5		501 H	525
Vail	590.5		502 L	532
Vail	591		503	533
Vail	591.5		505 H	534
Vail	592		506	535
Vail	593.5		508	536
Vail	594		510	537
Vail	594.5		512	543
Vail	595		513	544
Vail	595.5		518	547
Vail	596		519	549
Vail			520 H	554
Vail			521	555
Vail			524	564
Vail			525	565
Vail			527 H	569
Vail			528	570
Vail			532 L	572
Vail			533 H	573
Vall			534 L	585
Vall			535	586
Vall			536 L	590
Vall			537 F	591
Vall			530	592 502
Vall			545	595
Vail			544 545 L	595
Vall			545 11	
Vail			547	
Vail			550	
Vail			551 H	
Vail			554 1	
Vail			555 H	
Vail			556	
Vail			557 H	
Vail			559	
Vail			562 H	
Vail			564 L	
Vail			565 H	
Vail			567	
Vail			568 H	
Vail			569 L	
Vail			570	
Vail			571	
Vail			573	
Vail			578 H	
Vail			579	
Vail			582	
Vail			583	
Vail			584 L	
Vail			586 H	
Vail			588 L	
Vail			590	
Vail			591	
Vail			595	

Core	MS Note	e XR Note	VL Note	LOI Note	COMP Note
Thirteenth	0 G	0 G	0 G	0 G	0 G
Thirteenth	15	17	19	15 H	19
Thirteenth	25	24	23	17	23
Thirteenth	99	101	101	21	33
Thirteenth	107	105	105	23	34
Thirteenth	150	180.5	181.5	34 H	101
Inirteenth	153	184	188	35	105
Thirteenth	103	100	217	95 1	140
Thirteenth	216	217.5	213	98	182
Thirteenth	221	219.5	243	100	188
Thirteenth	240	241	256.5	101	217
Thirteenth	247	244	258	105	219
Thirteenth	255	256	302.5	108 H	241
Thirteenth	259	259	309	110	243
Thirteenth	302	311	397	111 H	256.5
I hirteenth	304	312	405	113	258
Thirteenth	320	401	407	145	302.5
Thirteenth	320	406 5	400	140 152 L	309
Thirteenth	410	503	455	154	401
Thirteenth	437	508	492	170 H	437
Thirteenth	439	515	500	171	439
Thirteenth	456	532.5	530	173 H	456
Thirteenth	460	541.5	537.5	175	459
Thirteenth	481	542.5	559	181 H	496
Thirteenth	485	546.5	561	182 L	503
I hirteenth	494	555	563	184	512
Thirteenth	501 512	557 567	505	213 H 214	518
Thirteenth	518	570.5	504	214	537 5
Thirteenth	531	579	609	219	540
Thirteenth	543	595	610	222 H	542
Thirteenth	575	616	622	225	559
Thirteenth	600	619	623	236 H	561
Thirteenth	614	628.5	672	237	563
Thirteenth	656	631	674	388	565
Thirteenth	667	633	676.5	411	578
Thirteenth	693	639 645	677.5 685.5	437 H 441	594 616
Thirteenth		653	693	44 I 444 H	619
Thirteenth		660	000	445	628.5
Thirteenth		662		446 H	631
Thirteenth		663.5		447	633
Thirteenth		667.5		456	639
Thirteenth		669		459	645
Thirteenth		679		490 H	653
Thirteenth		682.5		491	672
Thirteenth		687		494 500 H	676 5
Thirteenth		693		505	677.5
Thirteenth				506	685.5
Thirteenth				507	693
Thirteenth				513	
Thirteenth				514	
Thirteenth				515	
Thirteenth				516	
I hirteenth				522 H	
Thirteenth				523 526 Н	
				520 11	

	Core	MS Note	XR Note	VL Note	LOI Note	COMP Note
-	Thirteenth				528	
	Thirteenth				531	
	Thirteenth				533	
	Thirteenth				535	
	Thirteenth				537	
	Thirteenth				538 H	
	Thirteenth				539	
	Thirteenth				540	
	Thirteenth				542	
	Thirteenth				546 H	
	Thirteenth				547	
	Thirteenth				558 H	
	Thirteenth				560	
	Thirteenth				577 H	
	Thirteenth				578	
	Thirteenth				581 H	
	Thirteenth				584	
	Thirteenth				585	
	Thirteenth				586	
	Thirteenth				587	
	Thirteenth				588	
	Thirteenth				580	
	Thirteenth				500	
	Thirteenth				501 H	
	Thirteenth				592	
	Thirteenth				502	
	Thirteenth				596	
	Thirteenth				603 H	
	Thirteenth				605	
	Thirteenth				607 H	
	Thirteenth				608	
	Thirteenth				611	
	Thirteenth				612	
	Thirteenth				614	
	Thirteenth				631	
	Thirteenth				632	
	Thirteenth				633	
	Thirteenth				634	
	Thirteenth				637	
	Thirteenth				630	
	Thirteenth				640	
	Thirteenth				645	
	Thirteenth				6/0	
	Thirteenth				662 H	
	Thirteenth				665	
	Thirteenth				667	
	Thirteenth				602	
	milleenin				095	
	Chanel	ОТ	0.6	0.6	0.6	0.6
	Chapel	12	30	26	18	18
	Chapel	27	37	20	10	10
	Chapel	42	18	46	26	26
	Chapel	42 57	40 50	40 50 5	20	20
	Chapel	57	59.5	58.5	34 71 ⊔	34 19
	Chapel	76	50.5	67	71 II 72	40 50
	Chapel	70	77	76.5	76	58 5
	Chapel	05	78	78	78	61
	Chapel	90 103	84	85	84	76.5
	Chapel	163	87	88	88	78
	Chapel	165	07	90 F	00	25 25
	Chapel	17/	5∠ 102	103	103	88
	Chaper	1/7	102	100	100	00

Core	MS Note	XR Note	VI Note	I OI Note	COMP Note
Chapel	177	114.5	105.5	104	90.5
Chapel	205	115	106.5	105	103
Chapel	211	159.5	109	107	105.5
Chapel	215	165	111	109	106.5
Chapel	237	274	113.5	110	109
Chapel	255	275	114.5	117	111
Chapel	262	299.5	117	118 H	113.5
Chapel	265	300	131	124	114.5
Chapel	273	309	133	126 H	117
Chapel	308	310	135	128	131
Chapel	311	321.5	137.5	129 H	133
Chapel	320	324	143	130	135
Chapel	326	343	154	132	137.5
Chapel	381	343.5	163	135	143
Chapel	387	382	176.5	137	154
Chapel	403	384	177.5	140	163
Chapel	412	404	178.5	141 H	176.5
Chapel	426	406 5	179	143	177.5
Chapel	435	408.5	179.5	145	178.5
Chapel	445	411	180	156 H	179
Chanel	449	429	188	158	179.5
Chapel	460	432	189	159	180
Chapel	483	445.5	196.5	164	188
Chapel	488	447.5	197	235	189
Chapel	400	456	207	237	196.5
Chapel	501	458	208	268	197
Chapel	515	450	211 5	274	207
Chapel	528	483	212.5	307	208
Chapel	537	488	212.0	308	211 5
Chapel	007	494 5	219.5	321	212.5
Chapel		499.5	223	324	212.0
Chapel		536	224	341	219.5
Chapel		537	225 5	342	210.0
Chapel		001	226	373 H	220
Chapel			220	374	225 5
Chapel			232	404	220.0
Chapel			233	404	220
Chapel			204.0	400 407 H	232
Chapel			236	408	234 5
Chanel			236.5	400	235
Chapel			200.0	410	236
Chapel			272.0	423 H	236 5
Chapel			240 5	425 11	230.5
Chapel			200.0	420	242.3
Chapel			203	430	243
Chapel			270.5	431 450 L	200.0
Chapel			271	430 FI	203
Chapel			210	401 AEE LI	270.0
Chapel			2/4	400 H	271
Chapel			290	400 L	213
Chapel			299	493	2/4
Chapel			300	490	∠98 200
Chapel			310.5	530	299
Chapel			321.5	537	306
Chapel			322		310.5
Chapel			324		321.5
Chapel			324.5		322
Chapel			372		324
Chapel			375		324.5
Chapel			382		341
Chapel			383		342
Chapel			401.5		372

Core	MS Note	XR Note	VI Note	I OL Note	COMP Note
Chapel	MO NOLE	AN NUC	411	LOI NOLE	375
Chapel			422		382
Chapel			430		383
Chapel			443		404
Chapel			447.5		406.5
Chapel			449.5		408.5
Chapel			451		411
Chapel			454.5		422
Chapel			456.5		430
Chapel			461.5		443
Chapel			482		447.5
Chapel			493		449.5
Chapel			494.5		451
Chapel			503.5		454.5
Chapel			512		456.5
Chapel			517.5		461.5
Chapel			518.5		482
Chapel			521		493
Chapel			521.5		494.5
Chapel			522		503.5
Chapel			537		512
Chapel					517.5
Chapel					518.5
Chapel					521 521 5
Chapel					521.5 522
Chapel					537
Chaper					557
Morey 1	0 G	0 G	0 G	0 G	0 G
Morey 1	59	56	12	55	12
Morey 1	60	58	13	56	13
Morey 1	110	113	54.5	57	42
Morey 1	111	115	58	58	43
Morey 1	144	293	113.5	128	54.5
Morey 1	145	296	114.5	129	58
Morey 1	192	342	251	340	113.5
Morey 1	193	345	253.5	341	114.5
Morey 1	290	355	290	499	128
Morey 1	291	360	293	500	129
Morey 1	340	470	573	551	290
Morey 1	341	472		552	293
Morey 1	499	4//		573	342
Morey 1	500	478			345
Morey 1	528	573			300
Morey 1	529				360
Moroy 1	552				470 170
Moroy 1	572				41Z 100
Morev 1	575				499 500
Morey 1					551
Morey 1					557
Morey 1					573
Morey 1					0.0
Morey 2	0 Т	0 T	0 Т	0 G	0 Т
Morey 2	25	4	16	7	16
Morey 2	120	8	120	16	53
Morey 2	140	13	129	22 H	54
Morey 2	279	14.5	217	26	120
Morey 2	287	16	224	53	129
Morey 2	290	120	261	54	217
Morey 2	319	129	277	118	224

Core MRS Note XR Note VL Note LOI Note CUMP Note Morey 2 440 284 286.5 125 271 Morey 2 468 298 299.5 127 285 Morey 2 468 298 299.5 127 285 Morey 2 500 321 303.5 221 299 Morey 2 506 323 305 284 300 Morey 2 556 406 451.5 295 321 Morey 2 556 406 451.5 295 323 Morey 2 413 470 564 356 Morey 2 415 495.5 451.5 Morey 2 415 495.5 451.5 Morey 2 416 501.5 501.5 Morey 2 416 504 470 Morey 2 416 60 0 0 0 0 M						
Worey 2 440 282 263 125 277 Morey 2 468 298 299.5 127 285 Morey 2 468 298 299.5 127 285 Morey 2 500 321 303.5 220 H 286.5 Morey 2 506 323 305 284 303 5 Morey 2 532 354 356 285 303.5 321 Morey 2 566 406 451.5 295 321 Morey 2 413 470 564 356 Morey 2 4114 472.5 358 358 358 358 Morey 2 416 501.5 454 470 3664 472.5 Morey 2 564 472.5 358 359.5 356 Morey 2 564 472.5 366 472.5 366 Duck 104 215.5 43 4 4 4 49<	Core	NOTE NOTE	XK Note	VL Note	LOI Note	COMP Note
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Morey 2	430 440	202 281	285 286 5	120 126	∠/1 277
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Morey 2	468	298	299.5	127	285
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Morey 2	474	304	300	220 H	286.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Morey 2	500	321	303.5	221	299
Morey 2 532 354 356 285 303.5 Morey 2 546 356 358 294 305 Morey 2 556 406 451.5 295 321 Morey 2 4113 470 564 336 Morey 2 4114 472.5 358 Morey 2 4115 495.5 451.5 Morey 2 4116 501.5 454 Morey 2 416 501.5 454 Morey 2 416 501.5 454 Morey 2 564 472.5 501.5 Morey 2 564 472.5 501.5 Morey 2 564 472.5 564 Duck 104 215.5 43 4 4 Duck 105 226 146 44 49 Duck 167 226 146 44 49 Duck 167 143 61 61 Duck <td>Morey 2</td> <td>506</td> <td>323</td> <td>305</td> <td>284 H</td> <td>300</td>	Morey 2	506	323	305	284 H	300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Morey 2	532	354	356	285	303.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Morey 2	546	356	358	294	305
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Morey 2	556	406	451.5	295	321
Morey 241347056436Morey 2414472.5358Morey 2415495.5451.5Morey 2419564470Morey 2564472.5Morey 2564472.5Morey 2564472.5Morey 2564501.5Morey 2564564Duck104215.5434Duck104215.5434Duck114216.5494343Duck1572261464449Duck16822714760 H66Duck196279150.563 H63Duck196279150.563 H63Duck267479191107107Duck267479191107107Duck277487192.5113 H113Duck267479191107107Duck277487192.5113 H113Duck303533278123 H123Duck333551314127129Duck342559323128130Duck363561326129 H146Duck363561314127129Duck363561326139 H146Duck3555151951	Morey 2	564	411	454	433	323
Morey 2414472.5358Morey 2415495.5451.5Morey 2419564470Morey 2564472.5Morey 2564472.5Morey 2564472.5Morey 2564501.5Morey 2564472.5Morey 2564472.5Morey 2564472.5Morey 2564472.5Morey 256444Duck104215.5434Duck114216.54943Add 44922614644Applex114216.56161Duck18822714760 HDuck18622714760 HDuck186279150.563 HDuck186279150.563 HDuck22746617164Duck226479191107Duck277487192.5113 HDuck267479191107Duck225548307125Duck333551331130Duck363561326129 HDuck363561326129 HDuck363561333130Duck433572392.5133Duck454459146Duck535515195 <td>Morey 2</td> <td></td> <td>413</td> <td>470</td> <td>564</td> <td>356</td>	Morey 2		413	470	564	356
Morey 2 415 495.5 451.5 Morey 2 416 501.5 454 Morey 2 564 470 Morey 2 564 472.5 Morey 2 564 495.5 Morey 2 564 495.5 Morey 2 564 564 Duck 0.6 0.6 0.4 0.7 Duck 104 215.5 43 4 4 Duck 114 216.5 49 43 43 Duck 157 226 146 44 49 Duck 157 226 146 60 H 60 Duck 183 277 149.5 61 61 Duck 183 277 149.5 61 61 Duck 227 466 171 64 64 Duck 234 470 176 103 103 Duck 267 479 191 <	Morey 2		414	472.5		358
Morey 2 416 501.3 434 Morey 2 564 472.5 Morey 2 564 495.5 Morey 2 501.5 Morey 3 43 Duck 104 215.5 43 Duck 114 216.5 49 43 Duck 183 277 147.5 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 233 277 181 113 113 Duck 267 479 191 107 107	Norey 2		415	495.5		451.5
Morey 2 419 564 470 Morey 2 564 495.5 Morey 2 564 495.5 Morey 2 564 564 Duck 104 215.5 43 4 4 Duck 104 215.5 43 4 4 Duck 114 216.5 49 43 43 Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 227 466 176 103 103 Duck 227 466 171 64 64 Duck 227 479 191 107 107 Duck 234 470 176 113 H 113 Duck 267 479	Norey 2		416	501.5		454
Morey 2 404 412.3 Morey 2 501.5 Morey 2 501.5 Morey 2 564 Duck 104 215.5 43 4 4 Duck 104 215.5 43 4 4 Duck 114 226 146 44 49 Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 61 Duck 196 279 150.5 63 H 63 63 Duck 234 470 176 103 103 103 Duck 234 470 176 103 103 103 Duck 237 446 171 64 64 Duck 234 470 176 103 103 103 Duck 200 521 276 114 114 114 114 1425 125 <	Morey 2		419	304		470
Morey 2 430.3 Morey 2 501.5 Morey 2 564 Duck 104 215.5 43 4 4 Duck 104 215.5 43 4 4 Duck 114 216.5 49 43 43 Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 277 487 192.5 113 H 113 Duck 277 487 192.5 113 H 113 Duck 277 487 192.5 113 H 113 Duck 303 533 278 123 H 123 Duck 325 548 307	Morey 2		504			472.5
Morey 2 561.3 Duck 0 G 0 G 0 G 0 L 0 T Duck 104 215.5 43 4 4 Duck 114 216.5 43 4 4 Duck 114 216.5 49 43 43 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 227 470 176 103 103 Duck 277 487 192.5 113 H 113 Duck 277 487 192.5 113 H 113 Duck 200 521 276 114 114 Duck 303 533 278 123 H 123 Duck 363 561	Morey 2					490.0 501 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Morey 2					564
Duck 0 G 0 G 0 G 0 G 0 L 0 T Duck 104 215.5 43 4 4 Duck 114 216.5 49 43 43 Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 227 466 171 64 64 Duck 277 487 192.5 113 H 113 Duck 277 487 192.5 113 H 113 Duck 303 533 278 123 H 123 Duck 333 551 314 127 129 Duck 342 559 323 128	Morey Z					007
Duck 104 215.5 43 4 4 Duck 114 216.5 49 43 43 Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 227 479 191 107 107 Duck 277 487 192.5 113 H 113 Duck 277 487 192.5 113 H 113 Duck 303 533 278 123 H 123 Duck 303 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146	Duck	0 G	0 G	0 G	0 L	0 T
DUCK 114 216.5 49 43 43 Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 234 470 176 103 103 Duck 267 479 191 107 107 Duck 267 479 191 107 107 Duck 267 479 192.5 113 H 113 Duck 303 533 278 123 H 123 Duck 303 551 314 127 129 Duck 363 561 326 129 H 146 Duck 363 561 326 129 H 146	Duck	104	215.5	43	4	4
Duck 157 226 146 44 49 Duck 168 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 227 466 171 64 64 Duck 267 479 191 107 107 Duck 267 479 192.5 113 H 113 Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 303 551 314 127 129 Duck 363 561 326 129 H 146 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147	Duck	114	216.5	49	43	43
Duck 166 227 147 60 H 60 Duck 183 277 149.5 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 234 470 176 103 103 Duck 267 479 191 107 107 Duck 277 487 192.5 113 H 113 Duck 277 487 192.5 113 H 113 Duck 303 533 278 123 H 123 Duck 303 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149	Duck	157	226	146	44 60 H	49
Duck 183 277 149.3 61 61 Duck 196 279 150.5 63 H 63 Duck 227 466 171 64 64 Duck 234 470 176 103 103 Duck 267 479 191 107 107 Duck 267 479 192.5 113 H 113 Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 333 551 314 127 129 Duck 363 561 326 129 H 146 Duck 363 561 326 129 H 146 Duck 408 563.5 333 132 149.5 Duck 417 564.5 333 132 149	Duck	108	227	147	60 H	6U 61
Duck 130 213 130.5 0511 053 Duck 227 466 171 64 64 Duck 267 479 191 107 107 Duck 267 479 191 107 107 Duck 267 479 191 107 107 Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 363 561 326 129 H 146 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 408 563.5 333 132 149.5 Duck 417 564.5 333 132 149.5 Duck 431 581 395 146 17	Duck	105	270	149.5	63 H	63
Duck 234 470 176 103 103 Duck 267 479 191 107 107 Duck 277 487 192.5 113 H 113 Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 325 548 307 125 125 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 403 564.5 333 132 149.5 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 <	Duck	227	466	171	64	64
Duck 267 479 191 107 107 Duck 277 487 192.5 113 H 113 Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 333 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 150.5 133 150.5 Duck 423 577 392.5 133 150.5 146 171 Duck 431 581 395 146 171 192.5 Duck 530 483 194 H 194 194 194 194	Duck	234	470	176	103	103
Duck 277 487 192.5 113 H 113 Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 333 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 417 564.5 333 132 149.5 Duck 417 564.5 333 132 149.5 Duck 431 581 395 146 171 Duck 431 581 395 146 171 Duck 530 483 194 H 194 <td>Duck</td> <td>267</td> <td>479</td> <td>191</td> <td>107</td> <td>107</td>	Duck	267	479	191	107	107
Duck 290 521 276 114 114 Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 333 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 436 459 147 176 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck <t< td=""><td>Duck</td><td>277</td><td>487</td><td>192.5</td><td>113 H</td><td>113</td></t<>	Duck	277	487	192.5	113 H	113
Duck 303 533 278 123 H 123 Duck 325 548 307 125 125 Duck 333 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 436 459 147 176 Duck 483 194 H 194 Duck 535 515 195 195 Duck 543 524.5 199 201 Duck 543 528.5	Duck	290	521	276	114	114
Duck 325 548 307 125 125 Duck 333 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 423 572 392.5 133 150.5 Duck 423 571 395 146 171 Duck 431 581 395 146 171 Duck 489 460 170 H 191 Duck 530 483 194 H 194 Duck 543 524.5 199 201 Duck 543 524.5 199 201 Duck 581	Duck	303	533	278	123 H	123
Duck 333 551 314 127 129 Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 456 459 147 176 Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 581 528.5 200 H 214 Duck 556 224 224 Duck	Duck	325	548	307	125	125
Duck 342 559 323 128 130 Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 436 459 147 176 Duck 456 459 147 176 Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 535 515 195 195 Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 581 528.5 200 H 214 Duck 581 5256 225 225 <td< td=""><td>Duck</td><td>333</td><td>551</td><td>314</td><td>127</td><td>129</td></td<>	Duck	333	551	314	127	129
Duck 363 561 326 129 H 146 Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 456 459 147 176 Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 534 523.5 198 200 Duck 541 523.5 199 201 Duck 581 526.5 200 H 214 Duck 581 526 224 224 Duck 581 276 H 276 Duck 581 276 H 276 Duck 581 276 H 277	Duck	342	559	323	128	130
Duck 408 563.5 331 130 147 Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 456 459 147 176 Duck 480 460 170 H 191 Duck 524 471 171 192.5 Duck 535 515 195 195 Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 543 524.5 199 201 Duck 543 524.5 199 201 Duck 581 5265 2200 H 214 Duck 581 276 H 276 Duck 581 276 H 276 Duck 581 276 H 277 Duck 581 327 314 Duck 327	Duck	363	561	326	129 H	146
Duck 417 564.5 333 132 149.5 Duck 423 572 392.5 133 150.5 Duck 431 581 395 146 171 Duck 456 459 147 176 Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 535 515 198 200 Duck 543 524.5 199 201 Duck 541 528.5 200 H 214 Duck 581 5265 224 224 Duck 581 276 H 276 Duck 581 276 H 276 Duck 581 276 H 277 Duck 581 327 314 Duck 327 314 323	Duck	408	563.5	331	130	147
Duck 423 572 392.5 135 130.5 Duck 431 581 395 146 171 Duck 456 459 147 176 Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 534 523.5 198 200 Duck 543 524.5 199 201 Duck 543 528.5 200 H 214 Duck 581 556 224 224 Duck 581 556 224 224 Duck 565 225 225 Duck 581 276 H 276 Duck 581 276 H 277 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck	417	572	333	132	149.5
Duck 451 361 395 140 171 Duck 456 459 147 176 Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 535 515 198 200 Duck 543 524.5 199 201 Duck 543 528.5 200 H 214 Duck 581 556 224 224 Duck 581 276 H 276 Duck 581 276 H 276 Duck 581 276 H 277 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck	423	591	392.0	133	150.5
Duck 489 460 170 H 191 Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 543 524.5 199 201 Duck 543 528.5 200 H 214 Duck 581 526 224 224 Duck 581 276 H 276 Duck 581 276 H 277 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck	451	501	395 450	140	176
Duck 524 471 171 192.5 Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 543 524.5 199 201 Duck 581 528.5 200 H 214 Duck 581 556 224 224 Duck 565 225 225 Duck 581 276 H 276 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck	489		460	170 H	191
Duck 530 483 194 H 194 Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 543 524.5 199 201 Duck 581 528.5 200 H 214 Duck 581 556 224 224 Duck 565 225 225 Duck 581 276 H 276 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck	524		471	171	192.5
Duck 535 515 195 195 Duck 541 523.5 198 200 Duck 543 524.5 199 201 Duck 581 528.5 200 H 214 Duck 581 556 224 224 Duck 565 225 225 Duck 581 276 H 276 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck	530		483	194 H	194
Duck541523.5198200Duck543524.5199201Duck581528.5200 H214Duck549201215Duck556224224Duck565225225Duck581276 H276Duck322307Duck327314Duck332 H323	Duck	535		515	195	195
Duck543524.5199201Duck581528.5200 H214Duck549201215Duck556224224Duck565225225Duck581276 H276Duck322307Duck327314Duck332 H323	Duck	541		523.5	198	200
Duck581528.5200 H214Duck549201215Duck556224224Duck565225225Duck581276 H276Duck277277Duck322307Duck327314Duck332 H323	Duck	543		524.5	199	201
Duck549201215Duck556224224Duck565225225Duck581276 H276Duck277277Duck322307Duck327314Duck332 H323	Duck	581		528.5	200 H	214
Duck556224224Duck565225225Duck581276 H276Duck277277Duck322307Duck327314Duck332 H323	Duck			549	201	215
Duck565225225Duck581276 H276Duck277277Duck322307Duck327314Duck332 H323	Duck			556	224	224
Duck581276 H276Duck277277Duck322307Duck327314Duck332 H323	Duck			565	225	225
Duck 277 277 Duck 322 307 Duck 327 314 Duck 332 H 323	Duck			581	276 H	276
Duck 322 307 Duck 327 314 Duck 332 H 323	Duck				277	277
Duck 327 314 Duck 332 H 323	Duck				322	307
Duck 332 H 323	DUCK				327	ა14 202
	DUCK				332 H	323
Duck 333 320	Duck				345	320
Duck 3/6 222	Duck				340	222
Duck 348 345	Duck				348	345

Core	MS Note	XR Not	e VL	Note	LOI Note	COMP	Note
Duck					349	346	
Duck					350 L	348	
Duck					352 H	353	
Duck					353	355	
Duck					355 H	357	
Duck					356 L	365	
Duck					357	366	
Duck					365	371	
Duck					366	374	
Duck					371 H	380	
Duck					372 L	381	
Duck					373	391	
Duck					374 H	392	
Duck					375	397	
Duck					380 H	398	
Duck					381	400	
Duck					391 H	402	
Duck					392	409	
Duck					397 H	410	
Duck					398	457	
Duck					400	458	
Duck					402	461	
Duck					409	462	
Duck					410	474	
Duck					457	483	
Duck					458	515	
Duck					461	523.5	
Duck					462	524.5	
Duck					474	528.5	
Duck					483	543	
Duck					514	545	
Duck					528	549	
Duck					535	556	
Duck					536	565	
Duck					537	581	
Duck					581		