On the last new vertex visited by a random walk in a directed graph

Calum Buchanan
University of Vermont

SAMSA 2023

Joint work with Paul Horn and Puck Rombach
Result of collaboration at 2021 Masamu Advanced Studies Institute

Cover tours

A random cover tour in a (directed) graph is a random walk which, at each step, travels with equal probability to any (out-)neighbor of its current vertex and ends once every vertex has been visited.

Cover tours

A random cover tour in a (directed) graph is a random walk which, at each step, travels with equal probability to any (out-)neighbor of its current vertex and ends once every vertex has been visited.

Cycles and complete graphs have the property that a random cover tour, starting at any vertex, is equally likely to end at any other vertex.

Ronald Graham asked if there are any other such graphs.

Undirected graphs

We denote by $L(u, v)$ the event that v is the last vertex visited by a random cover tour of a graph G starting at vertex u.

Undirected graphs

We denote by $L(u, v)$ the event that v is the last vertex visited by a random cover tour of a graph G starting at vertex u.

Lemma (Lovász-Winkler, 1993)
If G is connected and $u v \notin E(G)$, then there is a neighbor x of u such that $\mathbb{P}(L(x, v)) \leqslant \mathbb{P}(L(u, v))$. Further, this inequality is strict if there is a cover tour of G from u to v which does not revisit u.

Undirected graphs

We denote by $L(u, v)$ the event that v is the last vertex visited by a random cover tour of a graph G starting at vertex u.

Lemma (Lovász-Winkler, 1993)
If G is connected and uv $\notin E(G)$, then there is a neighbor x of u such that $\mathbb{P}(L(x, v)) \leqslant \mathbb{P}(L(u, v))$. Further, this inequality is strict if there is a cover tour of G from u to v which does not revisit u.

Theorem (Lovász-Winkler, 1993)
Cycles and complete graphs are the only undirected graphs with the property that $\mathbb{P}(L(u, v))=\mathbb{P}(L(u, w))$ for any three distinct vertices u, v, and w.

Directed graphs

We denote by $L(u, v)$ the event that v is the last vertex visited by a random cover tour of a digraph G starting at vertex u.

Lemma (B.-Horn-Rombach, 2023)
If G is strongly connected and uv $\notin E(G)$, then there is an out-neighbor x of u such that $\mathbb{P}(L(x, v)) \leqslant \mathbb{P}(L(u, v))$.
Further, this inequality is strict if there is a cover tour from u to v which does not revisit u.

Theorem (B.-Horn-Rombach, 2023)
Cycles and complete graphs* are the only directed graphs with the property that $\mathbb{P}(L(u, v))=\mathbb{P}(L(u, w))$ for any three distinct vertices u, v, and w.

[^0]
Proof of theorem

It suffices to show that, in any digraph with the property that $\mathbb{P}(L(u, v))=\mathbb{P}(L(u, w))$ for any three distinct vertices u, v, and w, every edge is bidirected.

Proof of theorem

It suffices to show that, in any digraph with the property that $\mathbb{P}(L(u, v))=\mathbb{P}(L(u, w))$ for any three distinct vertices u, v, and w, every edge is bidirected.

By our lemma, if G is a digraph with the above property, and if T is a cover tour in G from u to v, then either $u v \in E(G)$ or u appears at least twice in T.

Proof of theorem

Suppose, for a contradiction, that $u v \notin E(G)$ but $v u \in E(G)$.
Consider a cover tour T from u to v of minimum length.

Proof of theorem

Let v_{1} be the last new vertex visited by the walk which first takes $v u$ then follows T.

Proof of theorem

Let v_{1} be the last new vertex visited by the walk which first takes $v u$ then follows T.
Minimality of $T \Longrightarrow v_{1}$ appears only once $\Longrightarrow v v_{1} \in E(G)$.

Proof of theorem

Let v_{1} be the last new vertex visited by the walk which first takes $v u$ then follows T.
Minimality of $T \Longrightarrow v_{1}$ appears only once $\Longrightarrow v v_{1} \in E(G)$.

Proof of theorem

Let v_{1} be the last new vertex visited by the walk which first takes $v u$ then follows T.
Minimality of $T \Longrightarrow v_{1}$ appears only once $\Longrightarrow v v_{1} \in E(G)$.

Proof of theorem

Let v_{1} be the last new vertex visited by the walk which first takes $v u$ then follows T.
Minimality of $T \Longrightarrow v_{1}$ appears only once $\Longrightarrow v v_{1} \in E(G)$.

Proof of theorem

We now show that $v_{1} v \in E(G)$ by finding a cover tour from v_{1} to v which visits v_{1} only once.

Proof of theorem

We now show that $v_{1} v \in E(G)$ by finding a cover tour from v_{1} to v which visits v_{1} only once.
Part (I) starts at v_{1}

Proof of theorem

We now show that $v_{1} v \in E(G)$ by finding a cover tour from v_{1} to v which visits v_{1} only once.
Part (I) starts at v_{1} and stops at v_{2}.

Proof of theorem

Part (II) starts at v_{2} and ends the cover tour at v.

Proof of theorem

If there is an unseen vertex in B and C, Part (I) becomes:

Proof of theorem

Any remaining unseen vertices have one copy in A and another in B or C. Let y be the last unseen vertex in A.

Proof of theorem

If y has a copy in B, Part (II) becomes:

Proof of theorem

Otherwise, y has a copy in C. Part (II) becomes:

Proof of theorem

Similarly, we have $v_{i+1} v_{i} \in E(G)$ for each $i \in\{1, \ldots, k\}$.

Proof of theorem

In fact, the edge $v_{1} v$ and each $v_{i+1} v_{i}$ is in T, by minimality. But u appears twice in T, and not twice in C, a contradiction.

Thank you!

References

图 C. Buchanan, P. Horn, P. Rombach, On the last new vertex visited by a random walk in a directed graph, Discrete Math. Lett., Vol. 11, (2023) 96-98.
直 L. Lovász, P. Winkler, A note on the last new vertex visited by a random walk, J. Graph Theory, Vol. 17, No. 5, (1993) 593-596.

[^0]: *with all edges considered bidirected

