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Cover tours

A random cover tour in a (directed) graph is a random walk

which, at each step, travels with equal probability to any

(out-)neighbor of its current vertex and ends once every vertex

has been visited.

Cycles and complete graphs have the property that a random

cover tour, starting at any vertex, is equally likely to end at any

other vertex.

Ronald Graham asked if there are any other such graphs.
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Undirected graphs

We denote by L(u , v) the event that v is the last vertex visited

by a random cover tour of a graph G starting at vertex u .

Lemma (Lov�asz-Winkler, 1993)

If G is connected and uv ̸∈ E(G), then there is a neighbor x

of u such that P(L(x , v)) ⩽ P(L(u , v)). Further, this
inequality is strict if there is a cover tour of G from u to v

which does not revisit u.

Theorem (Lov�asz-Winkler, 1993)

Cycles and complete graphs are the only undirected graphs

with the property that P(L(u , v)) = P(L(u ,w)) for any three

distinct vertices u, v, and w.
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Directed graphs

We denote by L(u , v) the event that v is the last vertex visited

by a random cover tour of a digraph G starting at vertex u .

Lemma (B.-Horn-Rombach, 2023)

If G is strongly connected and uv ̸∈ E(G), then there is an

out-neighbor x of u such that P(L(x , v)) ⩽ P(L(u , v)).
Further, this inequality is strict if there is a cover tour from

u to v which does not revisit u.

Theorem (B.-Horn-Rombach, 2023)

Cycles and complete graphs∗ are the only directed graphs

with the property that P(L(u , v)) = P(L(u ,w)) for any three

distinct vertices u, v, and w.

∗with all edges considered bidirected



Proof of theorem

It su�ces to show that, in any digraph with the property that

P(L(u , v)) = P(L(u ,w)) for any three distinct vertices u , v ,

and w , every edge is bidirected.

By our lemma, if G is a digraph with the above property, and if

T is a cover tour in G from u to v , then either uv ∈ E(G) or

u appears at least twice in T .
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Proof of theorem

Suppose, for a contradiction, that uv ̸∈ E(G) but vu ∈ E(G).

Consider a cover tour T from u to v of minimum length.
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Proof of theorem

Let v1 be the last new vertex visited by the walk which �rst

takes vu then follows T .
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Proof of theorem

Let v1 be the last new vertex visited by the walk which �rst

takes vu then follows T .

Minimality of T =⇒ v1 appears only once =⇒ vv1 ∈ E(G).
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Proof of theorem

We now show that v1v ∈ E(G) by �nding a cover tour from v1

to v which visits v1 only once.
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Proof of theorem

We now show that v1v ∈ E(G) by �nding a cover tour from v1

to v which visits v1 only once.

Part (I) starts at v1
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Proof of theorem

We now show that v1v ∈ E(G) by �nding a cover tour from v1

to v which visits v1 only once.

Part (I) starts at v1 and stops at v2.
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Proof of theorem

Part (II) starts at v2 and ends the cover tour at v .
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Proof of theorem

If there is an unseen vertex in B and C , Part (I) becomes:
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Proof of theorem

Any remaining unseen vertices have one copy in A and another

in B or C . Let y be the last unseen vertex in A.
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Proof of theorem

If y has a copy in B , Part (II) becomes:
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Proof of theorem

Otherwise, y has a copy in C . Part (II) becomes:
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Proof of theorem

Similarly, we have vi+1vi ∈ E(G) for each i ∈ {1, . . . , k }.
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Proof of theorem

In fact, the edge v1v and each vi+1vi is in T , by minimality.

But u appears twice in T , and not twice in C , a contradiction.
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Thank you!
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