
CS 124 / University of Vermont

MEMORY
Stack and heap

1

Stack and heap
There are two pools of memory available to use for every program you create:
the stack and the heap.

Stack memory is what we have been using to store variables so far.

Heap memory is larger, uses the keywords "new" and "delete", and can only be
accessed through pointers. Typically, it is used with large amounts of data.

2

Stack memory
Frame

Frame

Frame

…

Frame
{StackThe stack is a LIFO data structure. Each scope

(think: curly braces) has its own stack frame.

For example, a stack frame contains all the data
for one function call. This includes the parameters
that are passed in with the function call, the
variables declared within the function, and the
return address.

A new scope will add a frame to the stack. It will
remain there until the scope ends and it is popped
off the stack. Anything stack-allocated will be
deallocated automatically when the stack frame is
popped.

3

Stack overflow

4

Stack overflow

5

🅇

Stack overflow

6

The memory available for the stack is fixed, and the stack cannot grow or
shrink. Because memory is limited it's possible to cause a stack overflow if
stack memory demands increase too much. This is bad.

Working with large data structures or deep recursion are two things that can
cause a stack overflow.

When working with large data structures, or data structures we'd like to be able
to grow and shrink arbitrarily, we can use the heap and thus avoid the risk of
stack overflow.

Heap memory
Heap memory is manually allocated and deallocated using the keywords
"new" and "delete."

If you do not deallocate, it leads to memory leaks (that's bad). So always
deallocate.

Heap memory is used...

• when you want the variable to exist outside the scope of where it was
created

• when your variables take up too much memory and you risk stack
overflow, and

• when your data structures change size dynamically.

7

Stack vs heap
A comparison

8

Stack Heap

automatically managed you must manage

fast a little slower

local variables only variables accessed via pointers

stack size is limited size limited only by RAM

can't resize variables variables can be resized

can't become fragmented can become fragmented

Stack memory

9

As we said, what we've been doing so far is using stack memory.  
 
Let's look at an example: an implementation of the greatest common
divisor function we saw in the video on modular arithmetic.

Greatest common divisor (Euclid's algorithm)

10

int gcd(int a, int b) {
 while (b != 0) {
 int remainder = a % b;
 a = b;
 b = remainder;
 }
 return a;
};

Greatest common divisor (Euclid's algorithm)

11

int gcd(int a, int b) {
 while (b != 0) {
 int remainder = a % b;
 a = b;
 b = remainder;
 }
 return a;
};

Function parameters,
e.g., a, b

Return address

…

…

Locally declared
variables, e.g., remainder

…

…

What would happen?

12

int gcd(int a, int b) {
 while (b != 0) {
 int remainder = a % b;
 a = b;
 b = remainder;
 }
 remainder = 0; // WHAT HAPPENS HERE?
 return a;
};

What would happen?

13

int gcd(int a, int b) {
 while (b != 0) {
 int remainder = a % b;
 a = b;
 b = remainder;
 }
 remainder = 0; // WHAT HAPPENS HERE?
 return a;
};

What would happen?

14

int gcd(int a, int b) {
 while (b != 0) {
 int remainder = a % b;
 a = b;
 b = remainder;
 }
 remainder = 0; // WHAT HAPPENS HERE?
 return a;
};

Compiler error: undeclared identifier 'remainder'

Memory overview

15

Frame

Frame

Frame

…

Frame

Heap

Globals

Program

{Stack
Memory

Heap memory, stack, globals, and program all
have their own separate regions in memory. 
 
Apart from the heap this is all managed for you.

However, you — the programmer — are
responsible for allocating and deallocating objects
on the heap.

Allocating on the heap

16

Object* n = new Object; // allocated on heap

Another illustration

17

int main() {
 int a = 1; // allocated on stack
 int b = 2; // allocated on stack
 std::cout << "The address of a is " << &a << std::endl;
 std::cout << "The address of b is " << &b << std::endl;
 int* p = new int; // allocated on heap
 *p = 3; // accessed via a pointer
 std::cout << "p is a pointer with address "
 << p << std::endl;
 std::cout << "The value of p is " << *p << std::endl;
 delete p; // destroyed
}

Another illustration: output

18

The address of int a is 0x7ffee962d7e8

The address of int b is 0x7ffee962d7e4

p is a pointer to an int with address 0x7fac7c405900

The value of the int stored at address p is 3

Stack vs heap
A comparison

19

Stack Heap

automatically managed you must manage

fast a little slower

local variables only variables accessed via pointers

stack size is limited size limited only by RAM

can't resize variables variables can be resized

can't become fragmented can become fragmented

