
Splay Trees

CS 124 / Department of Computer Science

Locality of reference

• "Locality of reference" is just a fancy way of saying that we tend to use
certain stuff more frequently within a certain period of time or within a certain
place.

• This is also called the "principle of locality."

• Maybe June's desk looks a mess, but the papers she's working on are right
on top.

• This is the idea behind caching. Put stuff we use frequently in a handy place.
Chances are good we'll use it again soon.

Splay Trees

• To leverage this "locality of reference", Sleator and Tarjan introduced splay
trees in 1985. 

"A splay tree is a self-balancing binary search tree with
the additional property that recently accessed elements
are quick to access again. It performs basic operations
such as insertion, look-up and removal in O(log N)
amortized time."*

 
* https://en.wikipedia.org/wiki/Splay_tree

Example

3

4

72

6 151

5 14 16

13

Example

3

4

72

6 151

5 14 16

13

Example

3

4

72

6 151

5 14 16

13

Splay Trees

• Splay tree will move the currently accessed or inserted
node to the root of the tree on each access or insertion.

• Upon deletion, splay tree will first splay the target node to
the root, then delete it, then it will join the two separated
subtrees.

Tree Rotation
Zig, Zig-Zig, and Zig-Zag

Case Description Action / rotation

Zig The parent of x is the root Rotate the edge joining x and the
root

Zig-Zig The parent of x is not the root, and  
the parent of x and x are both left (or right children)

Rotate the edge joining parent and
grandparent of x; then rotate the
edge joining x and its parent

Zig-Zag
The parent of x is not the root, and

x is a left child and its parent is a right child  
(or vice-versa)

Rotate the edge joining x and its
parent; then again rotate the edge
joining x and its new parent
("double rotation")

Case: Zig
Target node is child of root

A

γ

βα

X A

γβ

α

X

Case: Zig-Zig
Target node is not child of root; two edges same direction

B

X δ

γ

βα

A BX

δγβα

A

B

X

δγ

β

α

A

First, rotate the edge between X's parent and X's
grandparent

Case: Zig-Zig
Target node is not child of root; two edges same direction

B

X δ

γ

βα

A BX

δγβα

A

B

X

δγ

β

α

A

Then rotate the edge connecting X
and its parent

Case: Zig-Zig
Target node is not child of root; two edges same direction

B

X δ

γ

βα

A BX

δγβα

A

B

X

δγ

β

α

A

Note: Some textbooks and instructors treat this combination 
as a single rotation. That's OK as long as you don't get confused.

Case: Zig-Zag
Target node is not child of root; two edges, different directions

B

X δ

γβ

α

A

B

A δ

γ

βα

X BA

δγβα

X

First, rotate the edge between X and X's parent. 
Notice that this will leave X with a new parent.

Case: Zig-Zag
Target node is not child of root; two edges, different directions

B

X δ

γβ

α

A

B

A δ

γ

βα

X BA

δγβα

X

Then rotate the edge connecting X
and its new parent

Case: Zig-Zag
Target node is not child of root; two edges, different directions

B

X δ

γβ

α

A

B

A δ

γ

βα

X BA

δγβα

X

It is because we rotate the edge between X and its  
parent twice that we call this a "double rotation."

Example
A

B

X δ

γβ

α

Example
A

B

X δ

γβ

α

Example

A

B

X δ

γβ

α

AB

δγβα

X

Example

A

B

X δ

γβ

α

AB

δγβα

X

Example
A

X δ

γ

βα

B

Example
A

X δ

γ

βα

B

A

X

δγ

β

α

B

Example
A

B δ

γ

βα

X

Example
A

B δ

γ

βα

X AB

δγβα

X

Splay Trees
Deletion of nodes

• First, splay the target node to the root, and delete the target node.

• Three cases.

• There are no remaining nodes.

• There is only one subtree remaining. Make the root of this subtree the root
of the tree.

• There are two subtrees to be joined. Find the largest element in the left
subtree and splay it to the root of the left subtree. Then join the right
subtree as a child of the root in the left subtree.

Delete 10

8

5

4

3

6

17

9

11

10

8

5

4

3

6

17

9 11

10

Delete 10

8

5

4

3

6

17

9 11

10 8

5

4

3

6

17

9 11

Delete 10

8

5

4

3

6

17

9 11

8

5

4

3

6

17

9

11

Delete 10

8

5

4

3

6

17

9

11

8

5

4

3

6

17

9

11

What's the downside?

• "Cache misses." After we move a node to the root, there's no guarantee that
it will be referenced again in the near term. So in a sense, we've wasted the
effort of moving it to the root. This happens with caching. I assume you've
heard of cache hits and cache misses. Sometimes you guess wrong. It
happens.

• Unbalanced trees. While in general, splay trees tend to be reasonably well
balanced, there is nothing that prevents them from becoming unbalanced,
and under certain sequences of additions, deletions, and accesses, a splay
tree can become very imbalanced.

• Extra work. We splay on each operation, so there's computational overhead
in maintaining a splay tree.

Unbalanced Trees

Unbalanced Trees

20

30

40

50

60

Splay Trees: Typical Behavior

• Barring pathological sequences, splay trees perform well, expecially if the
principle of locality applies and frequent accesses are made to values in the
root position. In this sense, a splay tree behaves like a cache.

• Here we introduce the concept of amortization. Notice that unless we access
the root, the tree is modified with each operation. If we amortize this cost --
that is, spreading the cost across a large number of accesses -- performance
approaches O(log N). Though a single access could be O(N) in the worst case
for any single operation, overall performance is much closer to O(log N).

