THE UNIVERSITY OF VERMONT COLLEGE OF ENGINEERING \& MATHEMATICAL SCIENCES

Shortest Path

CS 124 / Department of Computer Science

Shortest path

- Vehicle routing
- Network design
- Telecommunications
- Optimization

Weighted network of characters in Victor Hugo's Les Misérables, from the Stanford GraphBase, Knuth, 1993. Image generated with Gephi.

Shortest path

Shortest path

Shortest path

Shortest path

Shortest path

- Shortest paths from some node V_{0} to all other nodes
- Shortest path from some node V_{0} to one other node, V_{1}

Shortest path, undirected, unweighted

Shortest path, undirected, unweighted

Shortest path, undirected

Shortest path

Shortest path

Shortest path

Shortest path

Shortest path

Shortest path

Shortest path

Shortest path: Dijkstra's algorithm

Dijkstra's algorithm

Given some graph, $G=(V, E)$, and some starting node $S \in V$, Dijkstra's algorithm will find the shortest paths (or paths with minimum weight) from S to all other nodes in V.

Note that G must not contain any negative weight edges.

Dijkstra

Mark all nodes as unvisited (add to set U)

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Initialize distances

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Calculate distances to unvisited neighbors

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Calculate distances to unvisited neighbors

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Calculate distances to unvisited neighbors

Unvisited set
$\begin{aligned} & U=\{A, B, C, D, \\ & F, H, J, K, L\}\end{aligned}$

Dijkstra

Calculate distances to unvisited neighbors

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Mark A as visited (remove from U)

Unvisited set
$U=\{B, C, D$,
F, H, J, K, L\}

Dijkstra

Choose next node from which to explore

Unvisited set
$U=\{B, C, D$,
F, H, J, K, L\}

Dijkstra

Explore from J , and calculate distances

Unvisited set
$\mathrm{U}=\{\mathrm{B}, \mathrm{C}, \mathrm{D}$, F, H, J, K, L\}

Dijkstra

Explore from J , and calculate distances

Unvisited set
$U=\{B, C, D$, F, H, J, K, L\}

Dijkstra

Mark J as visited (remove from set U)

Unvisited set
$U=\{B, C, D$, F, H, K, L\}

Dijkstra

Choose next node from which to explore

Unvisited set
$U=\{B, C, D$, F, H, K, L\}

Dijkstra

Explore from B and calculate distances

Unvisited set
$U=\{B, C, D$, F, H, K, L\}

Dijkstra

Unvisited set

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from B and calculate distances

Dijkstra

Unvisited set

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from B and calculate distances

Dijkstra

Unvisited set

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from B and calculate distances

Dijkstra

Unvisited set

$$
\begin{aligned}
U= & \{C, D, \\
& F, H, K, L\}
\end{aligned}
$$

Mark B as visited (remove from set U)

Dijkstra

Choose the next node from which to explore
Unvisited set

$$
\begin{aligned}
\mathrm{U}= & \{\mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Dijkstra

Unvisited set

$$
\begin{aligned}
\mathrm{U}= & \{\mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from H and calculate distances

Dijkstra

Unvisited set

$$
\begin{aligned}
\mathrm{U}= & \{\mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from H and calculate distances

Dijkstra

$$
\begin{aligned}
& \text { Unvisited set } \\
& \begin{array}{c}
U=\{C, D, \\
F, K, L\}
\end{array}
\end{aligned}
$$

Mark H as visited (remove from set U)

Dijkstra

Unvisited set

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{C}, \mathrm{D} \\
&\mathrm{F}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Choose next node from which to explore

Dijkstra

Unvisited set

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{C}, \mathrm{D} \\
&\mathrm{F}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from L and calculate distances

Dijkstra

Unvisited set

$$
\begin{aligned}
\mathrm{U}= & \{\mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from L and calculate distances

Dijkstra

Unvisited set

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{C}, \mathrm{D} \\
&\mathrm{F}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Explore from L and calculate distances

Dijkstra

Mark L as visited (remove from set U)

Unvisited set
$U=\{C, D$,
F, K\}

Dijkstra

Choose next node from which to explore

Unvisited set
$\mathrm{U}=\{\mathrm{C}, \mathrm{D}$,
F, K\}

Dijkstra

Unvisited set $U=\{C, D$,
$F, K\}$

Dijkstra

Unvisited set $U=\{C, D$,
$F, K\}$

Dijkstra

Mark F as visited

Unvisited set
$U=\{C, D, K\}$

Dijkstra

Unvisited set
$U=\{C, D, K\}$

Dijkstra

Unvisited set
$U=\{C, D, K\}$

Dijkstra

Mark K as visited (remove from set U)

Unvisited set
$U=\{C, D\}$

Dijkstra

Mark C as visited (remove from set U)

Unvisited set
$\mathrm{U}=\{\mathrm{D}\}$

Dijkstra

Explore from D and calculate distances.

Unvisited set
$\mathrm{U}=\{\mathrm{D}\}$

Dijkstra

Mark D as visited (remove from set U)

Unvisited set
$U=\{ \}$

Dijkstra

Unvisited set
$U=\{ \}$

Dijkstra

Unvisited set
$\mathrm{U}=\{ \}$

Dijkstra

Unvisited set
$U=\{ \}$

Dijkstra

Unvisited set
$\mathrm{U}=\{ \}$

Dijkstra

Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?

Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?
We always chose the node with the smallest distance.

Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?
We always chose the node with the smallest distance.
Can you think of a data structure that's handy for always extracting the smallest value?

Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?
We always chose the node with the smallest distance.
Can you think of a data structure that's handy for always extracting the smallest value?

A minimum priority queue!

Dijkstra's algorithm: pseudocode

function dijkstra(G, S) // G is the graph; S is the starting node for each node V in G arrived_from[V] = null
if $V=S$
distance[V] $=0$
else
distance[V] = infinite add V to priority queue Q

```
while Q is not empty
    V = get min from Q
    for each unvisited neighbor N of V
    distance = distance[V] + distance to N
    if distance < distance[N] // We've found a shorter distance
                distance[N] = distance
                arrived_from[N] = V
```


Dijkstra's algorithm

Dijkstra's algorithm works for any directed graph so long as all weights are non-negative

Dijkstra's algorithm

Dijkstra's algorithm works for any directed graph so long as all weights are non-negative

Worst case complexity (using min priority queue)

$$
\mathcal{O}((|V|+|E|) \log |V|)
$$

Dijkstra's algorithm

Dijkstra's algorithm works for any directed graph so long as all weights are non-negative

Worst case complexity (using min priority queue)

$$
\mathcal{O}((|V|+|E|) \log |V|)
$$

Greedy algorithm. Always chooses the best (shortest) distance found so far.

Dijkstra's algorithm

Greedy approach. We always use the best (shortest) distance we've calculated so far, and we never go back -- once a node is marked as visited we never revisit it.

Dijkstra

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Unvisited set
$U=\{A, B, C, D$,
F, H, J, K, L\}

Dijkstra

Unvisited set
$U=\{B, C, D$, F, H, K, L\}

Dijkstra

Unvisited set

$$
\begin{aligned}
\mathrm{U}= & \{\mathrm{C}, \mathrm{D}, \\
& \mathrm{F}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}\}
\end{aligned}
$$

Dijkstra

Unvisited set
$\mathrm{U}=\{\mathrm{C}, \mathrm{D}$,
F, K, L\}

Dijkstra

Unvisited set
$U=\{C, D$,
F, K\}

Dijkstra

Unvisited set
$U=\{C, D, K\}$

Dijkstra

Unvisited set
$U=\{C, D\}$

Dijkstra

Unvisited set
$U=\{D\}$

Dijkstra

Unvisited set
$\mathrm{U}=\{ \}$

Dijkstra's algorithm

Why doesn't Dijkstra's algorithm work with negative weights?

Dijkstra's algorithm

$$
\mathrm{U}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}
$$

Dijkstra's algorithm

$$
U=\{B, C, D\}
$$

Dijkstra's algorithm

$$
U=\{B, C, D\}
$$

Dijkstra's algorithm

$$
U=\{C, D\}
$$

Dijkstra's algorithm

$$
U=\{D\}
$$

Dijkstra's algorithm

$$
U=\{ \}
$$

Dijkstra's algorithm

$$
U=\{ \}
$$

Dijkstra's algorithm: Can we do better?

Worst case complexity (using min priority queue)

$$
\mathcal{O}((|V|+|E|) \log |V|)
$$

Dijkstra's algorithm: Can we do better?

Dijkstra's algorithm: Can we do better?

Dijkstra's algorithm: Can we do better?

Dijkstra's algorithm

Worst case complexity directed graph with cycles (using min priority queue)

$$
\mathcal{O}((|V|+|E|) \log |V|)
$$

Worst case complexity directed acyclic graph (using topological sort)

$$
\mathcal{O}(|V|+|E|)
$$

Dijkstra's algorithm

Greedy approach. Grab the best answer so far; never backtrack.
Dynamic programming. Save partial solutions along the way and reconstruct complete solutions from the partial solutions.

Dijkstra's algorithm

Greedy approach. Grab the best answer so far; never backtrack.
Dynamic programming. Save partial solutions along the way and reconstruct complete solutions from the partial solutions.

What to do about negative weights?

Dijkstra's algorithm

Greedy approach. Grab the best answer so far; never backtrack.
Dynamic programming. Save partial solutions along the way and reconstruct complete solutions from the partial solutions.

What to do about negative weights? Bellman-Ford algorithm.

