
Shortest Path

CS 124 / Department of Computer Science Image copyright © Michelin (map #741, Africa North and West)



Shortest path
• Vehicle routing


• Network design


• Telecommunications


• Optimization

Weighted network of characters in Victor Hugo's Les Misérables, from the Stanford GraphBase, Knuth, 1993. Image generated with Gephi.



Shortest path



Shortest path



Shortest path

Benin City

Ubiaja

Enugu

Onitsha

Abakaliki

Ogoja

Calabar

OtuUgep

Owerri

Aba

Port Harcourt

Warri

101

90

136

139

290

85

72

60

65

129

108

42

82

82

100

72

120

97

164



Shortest path

Benin City

Ubiaja

Enugu

Onitsha

Abakaliki

Ogoja

Calabar

OtuUgep

Owerri

Aba

Port Harcourt

Warri

101

90

136

139

290

85

72

60

65

129

108

42

82

82

100

72

120

97

164



Shortest path
• Shortest paths from some node V0 to all other nodes


• Shortest path from some node V0 to one other node, V1



Shortest path, undirected, unweighted

B C D

A H F

J K L



Shortest path, undirected, unweighted

B C D

A H F

J K L

1

1

2

2

2

3

3

40



Shortest path, undirected

B C D

A H F

J K L

1

1

2

2

2

3

3

40

1

1
1

1

1
1

1
1

1

1 1

1



Shortest path

B C D

A H F

J K L

1

1 1
1

1 1

1
1 1

1

1

1

1

11

11

1

1 1

1 1



Shortest path

B C D

A H F

J K L

1 1

1 1

11

1 1 1
1

1 1



Shortest path

B C D

A H F

J K L

0

1

1

2

2 3

3

4

4

1 1

1 1

11

1 1 1
1

1 1



Shortest path

B C D

A H F

J K L

7 3

9 2

5 4

11

71
6

8 3



Shortest path

B C D

A H F

J K L

7 3

9 2

5 4

11

71
6

8 3



Shortest path

B C D

A H F

J K L

7 3

9 2

5 4

11

71
6

8 3



Shortest path

B C D

A H F

J K L

7 3

9 2

5 4

11

71
6

8 3



Shortest path: Dijkstra's algorithm



Dijkstra's algorithm
Given some graph, G = (V, E), and some starting node S ∈ V, Dijkstra's 
algorithm will find the shortest paths (or paths with minimum weight) from 
S to all other nodes in V.


Note that G must not contain any negative weight edges.



Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

Mark all nodes as unvisited (add to set U)Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

Initialize distances

0

∞ ∞ ∞

∞

∞ ∞

∞

∞

Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

Calculate distances to unvisited neighbors

0

∞ ∞ ∞

∞

∞ ∞

∞

∞

Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

Calculate distances to unvisited neighbors

0

∞ ∞ ∞

∞

∞ ∞

∞

∞

Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

Calculate distances to unvisited neighbors

0

7 ∞ ∞

∞

∞ ∞

∞

∞

Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

Calculate distances to unvisited neighbors

0

7, A ∞ ∞

∞

6, A ∞

∞

∞

Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, J, K, L}

Mark A as visited (remove from U)

0

∞ ∞

∞

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, J, K, L}

Choose next node from which to explore

0

∞ ∞

∞

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, J, K, L}

Explore from J, and calculate distances

0

∞ ∞

∞

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, J, K, L}

Explore from J, and calculate distances

0

∞ ∞

11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

Mark J as visited (remove from set U)

0

∞ ∞

11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

Choose next node from which to explore

0

∞ ∞

11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

Explore from B and calculate distances

0

∞ ∞

11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

Explore from B and calculate distances

0

16, B ∞

11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

Explore from B and calculate distances

0

16, B ∞

10 < 11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

Explore from B and calculate distances

0

16, B ∞

10, B

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, H, K, L}

Mark B as visited (remove from set U)

0

16, B ∞

10, B

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, H, K, L}

Choose the next node from which to explore

0

16, B ∞

10, B

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, H, K, L}

Explore from H and calculate distances

0

16, B ∞

10, B

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, H, K, L}

Explore from H and calculate distances

0

16, B ∞

10, B

∞

∞

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K, L}

Mark H as visited (remove from set U)

0

16, B ∞

10, B

∞

∞

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K, L}

Choose next node from which to explore

0

16, B ∞

10, B

∞

∞

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K, L}

Explore from L and calculate distances

0

16, B ∞

10, B

∞

∞

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K, L}

Explore from L and calculate distances

0

16, B ∞

10, B

15, L

∞

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K, L}

Explore from L and calculate distances

0

16, B ∞

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K}

Mark L as visited (remove from set U)

0

16, B ∞

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K}

Choose next node from which to explore

0

16, B ∞

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K}

Explore from F and calculate distances

0

16, B ∞

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K}

Explore from F and calculate distances

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D, K}

Mark F as visited

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D, K}

Choose next node from which to explore

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D, K}

Explore from K and calculate distances

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D}

Mark K as visited (remove from set U)

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D}

Choose next node from which to explore

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D}

Explore from C and calculate distances

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D}

Explore from C and calculate distances

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {D}

Mark C as visited (remove from set U)

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {D}

Explore from D and calculate distances.

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {}

Mark D as visited (remove from set U)

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {}

Done!

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {}

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {}

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {}

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?



Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?


We always chose the node with the smallest distance.



Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?


We always chose the node with the smallest distance.


Can you think of a data structure that's handy for always extracting the 
smallest value?



Dijkstra's algorithm

What did you notice about how we chose the nodes to visit?


We always chose the node with the smallest distance.


Can you think of a data structure that's handy for always extracting the 
smallest value?


A minimum priority queue!



Dijkstra's algorithm: pseudocode
function dijkstra(G, S)  // G is the graph; S is the starting node 
    for each node V in G 
        arrived_from[V] = null 
        if V = S 
             distance[V] = 0 
        else 
            distance[V] = infinite 
        add V to priority queue Q 

    while Q is not empty 
        V = get min from Q 
        for each unvisited neighbor N of V 
            distance = distance[V] + distance to N 
            if distance < distance[N]  // We've found a shorter distance 
                distance[N] = distance 
                arrived_from[N] = V



Dijkstra's algorithm

Dijkstra's algorithm works for any directed graph so long as all weights 
are non-negative



Dijkstra's algorithm

Dijkstra's algorithm works for any directed graph so long as all weights 
are non-negative

Worst case complexity (using min priority queue)



Dijkstra's algorithm

Dijkstra's algorithm works for any directed graph so long as all weights 
are non-negative

Worst case complexity (using min priority queue)

Greedy algorithm. Always chooses the best (shortest) distance found so far.



Dijkstra's algorithm

Greedy approach. We always use the best (shortest) distance we've 
calculated so far, and we never go back -- once a node is marked as 
visited we never revisit it.



Dijkstra

Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

0

∞ ∞ ∞

∞

∞ ∞

∞

∞

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {A, B, C, D, 
         F, H, J, K, L}

0

7, A ∞ ∞

∞

6, A ∞

∞

∞

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {B, C, D, 
         F, H, K, L}

0

∞ ∞

11, J

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, H, K, L}

0

16, B ∞

10, B

∞

∞

∞

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K, L}

0

16, B ∞

10, B

∞

∞

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set
U = {C, D, 
         F, K}

0

16, B ∞

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D, K}

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {C, D}

0

16, B 20, F

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {D}

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra

Unvisited set

U = {}

0

16, B 18, C

10, B

15, L

13, L

12, H

7, A

6, A

B C D

A H F

J K L

7 3

9 2

5 7

1

25
6

8 3



Dijkstra's algorithm

Why doesn't Dijkstra's algorithm work with negative weights?



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0

∞

∞
∞

U = {A, B, C, D}



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0

7, A

5, A
9, A

U = {B, C, D}



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0

7, A

5, A
9, A

U = {B, C, D}



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0
U = {C, D}

7, A

5, A
9, A



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0
U = {D}

7, A

5, A
9, A



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0
U = {}

7, A

5, A
9, A



Dijkstra's algorithm

A

B

C

D

9
5

7

-8

4

5

0
U = {}

7, A

5, A
9, A



Dijkstra's algorithm: Can we do better?

Worst case complexity (using min priority queue)



Dijkstra's algorithm: Can we do better?
B C D

A H F

J K L

7 3

9 2

5 4

11

7
6

8 3

1

B C DA H FJKL
7 9

2

6

3

5

4

7 3 8

1

11



Dijkstra's algorithm: Can we do better?

B C DA H FJKL
7 9

2

6

3

5

4

7 3 8

1

11



Dijkstra's algorithm: Can we do better?

B C DA H FJKL
7 9

2

6

3

5

4

7 3 8

1

11



Dijkstra's algorithm

Worst case complexity directed graph with cycles (using min priority queue)

Worst case complexity directed acyclic graph (using topological sort)



Dijkstra's algorithm

Greedy approach. Grab the best answer so far; never backtrack.


Dynamic programming. Save partial solutions along the way and 
reconstruct complete solutions from the partial solutions.




Dijkstra's algorithm

Greedy approach. Grab the best answer so far; never backtrack.


Dynamic programming. Save partial solutions along the way and 
reconstruct complete solutions from the partial solutions.


What to do about negative weights?



Dijkstra's algorithm

Greedy approach. Grab the best answer so far; never backtrack.


Dynamic programming. Save partial solutions along the way and 
reconstruct complete solutions from the partial solutions.


What to do about negative weights? Bellman-Ford algorithm.


