THE UNIVERSITY OF VERMONT COLLEGE OF ENGINEERING \& MATHEMATICAL SCIENCES

Shortest Path

Bellman-Ford Algorithm

CS 124 / Department of Computer Science

Shortest path

Dijkstra's algorithm doesn't work if there's an edge in the graph with negative weight.

Lowest-cost path with negative weights

What can be done?

What can be done?
 Bellman-Ford algorithm

Bellman-Ford

Given some graph, $G=(V, E)$, and some starting node $S \in V$, the BellmanFord algorithm will find the shortest paths (or paths with minimum weight) from S to all other nodes in V.

Note that G must not contain any negative weight cycles.

Shortest Path / Lowest Cost Path

Algorithm

Worst-case complexity

$$
\mathrm{O}((|\mathrm{~V}|+|\mathrm{E}|) \log |\mathrm{V}|)
$$

Bellman - Ford
Dijkstra

$$
\mathrm{O}(|\mathrm{~V}| \mathrm{x}|\mathrm{E}|)
$$

Restrictions

Edge weights must be non-negative

No negative cycles

What is a negative cycle?

Bellman-Ford: pseudocode

```
function bellman_ford(G, S) // G is the graph; S is the starting node
    for each node V in G
        arrived_from[V] = null
        if V = S
            distance[V] = 0
        else
            distance[V] = infinite
repeat |V| - 1 times or until no distances are updated
    for each edge (U, V) in E
            distance = distance[U] + weight of edge
            if distance < distance[V] // We've found a shorter distance
                distance[V] = distance
                arrived_from[V] = U
for each edge (U, V) in E
    if distance[V] > distance[U] + weight of edge
        return "ERROR: negative weight cycle"
```


Bellman-Ford: pseudocode

```
function bellman_ford(G, S) // G is the graph; S is the starting node
    for each node V in G
        arrived_from[V] = null
        if V = S
            distance[V] = 0
        else
            distance[V] = infinite
repeat |V| - 1 times or until no distances are updated
    for each edge (U, V) in E
            distance = distance[U] + weight of edge
            if distance < distance[V] // We've found a shorter distance
                distance[V] = distance
                arrived_from[V] = U
for each edge (U, V) in E
    if distance[V] > distance[U] + weight of edge
        return "ERROR: negative weight cycle"
```


Bellman-Ford: pseudocode

```
function bellman_ford(G, S) // G is the graph; S is the starting node
    for each node V in G
        arrived_from[V] = null
        if V = S
            distance[V] = 0
        else
            distance[V] = infinite
repeat |V| - 1 times or until no distances are updated
    for each edge (U, V) in E
            distance = distance[U] + weight of edge
            if distance < distance[V] // We've found a shorter distance
                distance[V] = distance
                arrived_from[V] = U
for each edge (U, V) in E
    if distance[V] > distance[U] + weight of edge
        return "ERROR: negative weight cycle"
```


Bellman-Ford

Bellman-Ford

First iteration

Bellman-Ford

Second iteration

Bellman-Ford

Third iteration

Bellman-Ford

Check for negative cycles

Bellman-Ford

Done!

Bellman-Ford

Why do we need up to $|\mathrm{V}|-1$ iterations?

Bellman-Ford

Why do we need up to $|\mathrm{V}|-1$ iterations? If we have $|\mathrm{V}|$ nodes, then the shortest path can have no more than $|\mathrm{V}|-1$ edges. When we iterate, at the k th iteration, we know we've covered all shortest paths up to length k. To consider all possible shortest paths, we need $k=|\mathrm{V}|-1$.

Bellman-Ford

Why do we need up to $|\mathrm{V}|-1$ iterations? If we have $|\mathrm{V}|$ nodes, then the shortest path can have no more than $|\mathrm{V}|-1$ edges. When we iterate, at the k th iteration, we know we've covered all shortest paths up to length k. To consider all possible shortest paths, we need $k=|\mathrm{V}|-1$.

How does the check for negative cycles work?

Bellman-Ford

Why do we need up to $|\mathrm{V}|-1$ iterations? If we have $|\mathrm{V}|$ nodes, then the shortest path can have no more than $|\mathrm{V}|-1$ edges. When we iterate, at the k th iteration, we know we've covered all shortest paths up to length k. To consider all possible shortest paths, we need $k=|\mathrm{V}|-1$.

How does the check for negative cycles work? Once we've processed the graph with $|\mathrm{V}|-1$ iterations, we check weights. For each edge (U, V) if the distance to V is greater than the sum of the distance to U plus the edge weight from $\mathrm{U}->\mathrm{V}$, then we know we have a negative cycle.

Bellman-Ford

Why do we need up to $|\mathrm{V}|-1$ iterations? If we have $|\mathrm{V}|$ nodes, then the shortest path can have no more than $|\mathrm{V}|-1$ edges. When we iterate, at the k th iteration, we know we've covered all shortest paths up to length k. To consider all possible shortest paths, we need $k=|\mathrm{V}|-1$.

How does the check for negative cycles work? Once we've processed the graph with $|\mathrm{V}|-1$ iterations, we check weights. For each edge (U, V) if the distance to V is greater than the sum of the distance to U plus the edge weight from $\mathrm{U}->\mathrm{V}$, then we know we have a negative cycle.

Bellman-Ford

Negative cycle detection

initial state

after 1 iteration
-4, B

after 2 iterations

Bellman-Ford
 for edge (U, V),
 if distance[V] > distance[U] + weight of edge then we have a negative cycle

Negative cycle detection

initial state

after 1 iteration

after 2 iterations

$$
4>-7+3
$$

Bellman-Ford

Why do we need up to $|\mathrm{V}|-1$ iterations? If we have $|\mathrm{V}|$ nodes, then the shortest path can have no more than $|\mathrm{V}|-1$ edges. When we iterate, at the k th iteration, we know we've covered all shortest paths up to length k. To consider all possible shortest paths, we need $k=|\mathrm{V}|-1$.

How does the check for negative cycles work? Once we've processed the graph with $|\mathrm{V}|-1$ iterations, we check weights. For each edge (U, V) if the distance to V is greater than the sum of the distance to U plus the edge weight from $\mathrm{U}->\mathrm{V}$, then we know we have a negative cycle.

Shortest Path

Restrictions

Algorithm

Worst-case complexity

Dijkstra
Bellman - Ford

$$
\mathrm{O}((|\mathrm{~V}|+|\mathrm{E}|) \log |\mathrm{V}|) \quad \mathrm{O}(|\mathrm{~V}| \mathrm{x}|\mathrm{E}|)
$$

Edge weights must be non-negative

No negative cycles

