
CS 124 / Department of Computer Science

QUICKSORT

Quicksort
Like merge sort, quicksort is a "divide-and-conquer" algorithm.

Divide-and-conquer algorithms break a problem down recursively and then
combine the results of subproblems to produce the final result.

Recursion
• Recursive functions call themselves.

• Recursive functions require a base case or base cases to prevent infinite
digress.

• Examples seen earlier in the course:

• Merge sort

• Fibonacci

• Factorial

• Shamos' subsequence sum

Quicksort
// pseudo-code (see: Stephens, p. 145)

quicksort(vector, start, end)  
 pick an element to divide the array (a.k.a. "pivot") 
 move items less than the pivot to the left of the pivot  
 move items greater than or equal to the pivot to the right of the pivot  
 let p be the index of the pivot  
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

Quicksort
// pseudo-code (see: Stephens, p. 145)

quicksort(vector, start, end)  
 pick an element to divide the array (a.k.a. "pivot") 
 move items less than the pivot to the left of the pivot  
 move items greater than or equal to the pivot to the right of the pivot  
 let p be the index of the pivot  
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

Quicksort
Animation

Animation source: Wikipedia

Quicksort
// pseudo-code (see: Stephens, p. 145)

quicksort(vector, start, end)  
 pick an element to divide the array (a.k.a. "pivot") 
 move items less than the pivot to the left of the pivot  
 move items greater than or equal to the pivot to the right of the pivot  
 let p be the index of the pivot  
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

This is the basic idea, but there are lots of implementation details to consider!

Quicksort
partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

Quicksort

5
partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

Quicksort

5

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

9

pivot = 9

i

j

Quicksort

5

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

9

pivot = 9

i

j

Quicksort

5

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

9

pivot = 9

i

j

Quicksort

9

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

5

pivot = 5

i

j

Quicksort

9

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

5

pivot = 5

i

j

Quicksort

5

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

9

pivot = 5

i

j

Quicksort

6

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

3

pivot = 4

i

j

8 4

Quicksort

6

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

3

pivot = 4

i

j

8 4

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

6

pivot = 4

i

j

8 4

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

6

pivot = 4

i

j

8 4

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

6

pivot = 4

i

j

8 4

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

6

pivot = 4

i

j

8 4

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

4

pivot = 4

i

j

8 6

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

4

pivot = 4

i

j

8 6

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

4

pivot = 4

i

j

8 6

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

4

p

8 6

Quicksort

3

partition(vector, start, end)  
 pivot = vector[end] 
 i = start  
 for j from start to end  
 if vector[j] < pivot then  
 swap vector[i] and vector[j] 
 i = i + 1 
 swap vector[i] and vector[end] 
 return i

quicksort(vector, start, end) 
 if start < end then  
 p = partition(vector, start, end) 
 quicksort(vector, start, p - 1) 
 quicksort(vector, p + 1, end)

4

p

8 6

Quicksort
Quicksort has many different implementations and performance varies
significantly with implementation.

• How do we choose a pivot (divider)? There are many schemes.

• Quicksort doesn't do well on sorted lists or when there are many repeated
values. Quicksort can have worst-case complexity of O (n2).

• In the best cases, with a good implementation, quicksort outperforms
merge sort (and heap sort, which we'll see a little later).

• Sometimes it is implemented in a hybrid form, with insertion sort used when
subproblems become small.

Merge sort
Recursion depth = log (n)

Quicksort
Typical case Recursion depth ≅log (n)

Quicksort
Worst case

a b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o p

recursion depth = n

Quicksort
Choosing a pivot

Method Pro Con

Choose element at one
end of the vector

Works pretty well in most cases; super
easy implementation

Can be horrible with sorted or
partially sorted list

Pick at random Works pretty well in most cases Cost of choosing at random; not
really worth the trouble

Median-of-three
Works pretty well in most cases and
not too costly; reduces likelihood of
worst-case performance

A little overhead (three extra
comparisons and up to three extra
swaps)

Quicksort
Median-of-three

// pseudo-code, given some vector v, and start and end indices

middle = (start + end) / 2;  
if element indexed by middle is less than element indexed by start  
 swap middle and start  
if element indexed by end is less than element indexed by start  
 swap end and start  
if element indexed by middle is less then element indexed by end  
 swap middle and end  
let the pivot be the element now at the end position

Quicksort
Median-of-three

Quicksort
Median-of-three

Quicksort
Median-of-three

Quicksort
Median-of-three

Quicksort
Median-of-three

Quicksort
Median-of-three

Quicksort
Median-of-three

Quicksort
Median-of-three

pivot

Quicksort Complexity
The partition function must process O (n) elements, and the recursion depth is
typically O (log n), hence O (n log n). This is the best case and average case. 
 
The worst case is, as we have seen, when we have a linear chain of partitions,
and a recursion depth of O (n). Again, the partition function processes O (n)
elements so we have O (n2).

However, we can avoid worst-case performance in many situations by choosing
our pivot well. This is why many implementations of quicksort use the median-
of-three approach, or something similar. 
 

Quicksort Stability
Is quicksort stable? MAYBE

Quicksort hybrid
It is not uncommon that quicksort is hybridized with another algorithm --
typically insertion sort.

When we have small vectors, we've seen that swapping an element with
itself is not uncommon. One way to address this is to use insertion sort
for vectors below a certain size, say around ten elements. This gives
quicksort a modest speedup in many cases.

Comparison

Algorithm Time
complexity

Space
complexity Stable Comment

Bubble sort O (n2) O (1) yes can tell if list is already sorted

Selection
sort O (n2) O (1) no performs fewest swaps

Insertion sort O (n2) O (1) yes ignores unsorted portion of vector

 / can process data on-line

Merge sort O (n log n) O (n) yes recursive divide-and-conquer

Quicksort O (n log n) O (1) no recursive divide-and-conquer

Comparison

Summary
• Quicksort is a recursive divide-and-conquer algorithm.

• Quicksort has O (n log n) time complexity.

• Quicksort has O (1) space complexity.

• Quicksort in its original design is not stable, but at the expense of
increasing space complexity it can be implemented as a stable
algorithm.

