
Introduction to C++ (part 1)
(00:00)

Introduction to C++

Our objective here is to demonstrate how to define and implement a class in C++.

Ease transition with comparison between C++ and
Java

We assume you've taken CS 110 or the equivalent and therefore have some familiarity with
Java. So we'll start with a quick look at an implementation of a simple node class for linked
lists in Java, then we'll code up a class in C++ to represent data about computer science
lecturers, and we'll perform a little comparison between the two.

First, let's look at 	Node.java	. This is a class that's intended to represent nodes in a singly-
linked list.

(Open 	Node.java	 in IDE)

If you haven't seen linked lists before, don't fret. A linked list is merely a collection of nodes in
which each node contains some information and a pointer or reference to the next node in the
list. You may think of this data structure as beads on a string, with each bead pointing to the
next bead on the string.

So each node will require a minimum of two fields: one to hold some data and one to hold
some kind of reference to the next node in the list. Let's look at the code.

Not surprisingly, we begin with a class declaration with the class keyword and an identifier
"Node". Then we declare two private fields: 	item	, which is a generic object, and 	next	 which
is a 	Node	 object.

public	class	Node	{
				private	Object	item;
				private	Node	next;
...
}



	item	 will hold the "data", and 	node	 will hold a reference to the next node.

Then we declare a number of public methods.

First there's a constructor for the 	Node	 object. We pass to the constructor an item which is
assigned to the 	item	 field. The 	next	 field is given the value 	null	.

public	Node(Object	newItem)	{
				item	=	newItem;
				next	=	null;
}	

There's another constructor that takes two parameters, 	newItem	 and 	nextNode	, and
populates the 	item	 and 	next	 fields accordingly.

public	Node(Object	newItem,	Node	nextNode)	{
				item	=	newItem;
				next	=	nextNode;
}

Then we have some accessors — that is "setters" and "getters" for setting and getting values
of the two private fields.

public	void	setItem(Object	newItem)	{
				item	=	newItem;
}

public	Object	getItem()	{
				return	item;
}	

public	void	setNext(Node	nextNode)	{
				next	=	nextNode;
}	

public	Node	getNext()	{
				return	next;
}

This material should be familiar to you, and you'll no doubt notice some similarities as we work
in C++.

Now let's see how we'd code up a "Lecturer" class in C++.



Implementation of 	Lecturer	 class

(02:45)

As we said, we're going to write a class that represents data regarding computer science
lecturers — name, office, and courses taught. This will consist of an implementation of a
	Lecturer	 class, and a little program to test and verify its function. In doing so, we will learn
how to

write a class in C++ — with the usual constructors and accessors,
override operators, and
read data from a file.

Along the way, we'll learn quite a bit about programming in C++.

Let's begin.

In this example, we're going to define our class in a header file. C++ projects are structured a
little differently from projects in Java. Generally we put our class declarations — or what's
called "the interface" — in a header file with a 	.h	 extension, and class implementation in
another file with a 	.cpp	 extension. For this course, most of the implementation will go in
header files also. This is for a number of reasons: primarily for simplicity's sake and also
because we will be using what are called Templates (we'll learn about these later). Templated
code is generally implemented in the header file.

So we'll use the header file for class declarations and implementation, and then we'll write
programs in other files (with 	.cpp	 extensions) that make use of the classes thus defined.

(03:36)

Let's start with the header file. We'll call this 	lecturer.h	.

(Open new file in IDE for "live" coding.)

Guards

We begin our header file with some preprocessor directives called "guards", these are to make
sure that a file in a project isn't included more than once. If you're using CLion, these will be
created for you automatically. These values come from the name of the project, "lecturer", and
the name of the file "lecturer.h", hence 	LECTURER_LECTURER_H	 — but there's nothing magical
about this. We could use any definition and it would be OK, so long as it were unique within
the project. Since there's no reason to change these, let's leave them as they are.



#ifndef	LECTURER_LECTURER_H
#define	LECTURER_LECTURER_H

#endif	//	LECTURER_LECTURER_H

You'll notice preprocessor directives begin with a hash symbol. Now, this guard simply tells
C++ that if 	LECTURER_LECTURER_H	 is already defined to skip everything in this file, otherwise, if
this is the first time this file is included, read everything within the guard. All of our code will go
within this guard.

Includes

First, we add preprocessor directives to include components of the C++ standard library that
we'll be using here. This is much like importing packages in Java, or importing modules in
Python. You can guess what many of these are from their names:

#include	<fstream>
#include	<iostream>
#include	<iomanip>
#include	<string>
#include	<vector>

	fstream	 is used for streaming data to and from files. We'll need this, since we'll be
reading data from file.
	iostream	 is used for basic streaming I/O.
	iomanip	 is used for manipulating and formatting I/O. We'll use this for formatting output
and making tables.
	string	 is for dealing with strings.
	vector	 is for dealing with vectors — that is, arrays. We'll be using a vector to store
	Lecturer	 records.

So we'll need all of these. You'll see when and where these are being used when we get to the
relevant portions of code.

Now on to the class definition.

Class definition

(06:38)



The initial declaration shouldn't surprise you.

class	Lecturer	{

};

By convention, we name our classes with initial caps.

Then we have five private fields: 	name	, 	office	, 	course1	, 	course2	, and 	course3	. The first,
name, will hold the lecturer's name.

class	Lecturer	{
private:
				std::string	name;
				std::string	office;
				int	course1;
				int	course2;
				int	course3;
...				
};

Office will hold the lecturer's office address. The remaining three fields will hold identifiers for
the courses taught by each lecturer. Notice that we've preceded these with a 	private:	
access specifier. This indicates these fields are private members of the class. Notice also that
we prefixed 	string	 with 	std::	. This indicates that we're using the standard string library
that was included earlier with 	#include	<string>	.

Next we have public member methods.

(8:06)

Here we'll use the 	public:	 access specifier.
Public member methods will include the constructors, setters and getters, and other functions
we'll get to a little later.

Let's start with the constructors.

Here we have two. One to handle new objects without any parameters supplied — a kind of
default — and the other to construct new 	Lecturer	 objects when a complete set of
parameters are passed in. Here's the first constructor:



public:
				//	Constructors
				Lecturer()	{
								name	=	"Jane	Doe";
								office	=	"Innovation	E200";
								course1	=	course2	=	course3	=	0;
				}

Notice here that we provide default values for 	name	 and 	office	, and we set all three courses
taught to zero. Notice the shorthand used to do this.

Next we define a constructor for the more typical case — where we wish to automatically
populate our new object with data.

Lecturer(std::string	name,	std::string	office,
								int	course1,	int	course2,	int	course3)	{
				this->name	=	name;
				this->office	=	office;
				setCourse1(course1);
				setCourse2(course2);
				setCourse3(course3);
}

Notice that we have to specify the types of all parameters. What do we do with these
parameters? Here we assign the input string — the parameter 	name	 — to the field 	name	.
Notice how we do this. What is 	this	? What is that arrow?

Every object in C++ has access to itself via a pointer called 	this	. 	this	 points to the object
itself and all members can be accessed using 	this	 and the arrow operator.

So 	this->name	=	name;	 can be read as "assign the value of the input parameter 	name	 to the
member field called 	name	 within the current object." The current object is referred to as
	this	.

We do the same thing for 	office	.

Now notice that we're going to use setter methods to set the information about which courses
are taught by a given lecturer. Why are we going to do this? You'll see in just a moment.

(12:02)

Notice that there are three fields for the courses taught by a lecturer. Each one will have its
own setter. Now, the reason we're using a setter is we want to make sure that the course



number can't be negative. We'll see two ways to do this. First, let's implement the setter for
	course1	.

void	setCourse1(int	course1)	{
				//	Do	not	accept	negative	course	number
				if	(course1	<	0)	{
								this->course1	=	0;
				}	else	{
								this->course1	=	course1;
				}
}

Notice that this method does not return a value so we start the declaration with the keyword
	void	. We've given the setter a name 	setCourse1	 and it takes one parameter — an integer
called 	course1	. Now what happens? If 	course1	 is negative we set the value of the field to 0.
Notice we use 	this	 and the arrow operator to access the target member. If the input
parameter 	course1	 is non-negative we assign its value to the field 	course1	. That's it.

Now let's look at another way, using the ternary operator. Most languages have a ternary
operator, and you may have seen this before. It's just a more compact way of implementing
the same behavior as we did in the setter for 	course1	.

void	setCourse2(int	course2)	{
				//	Ternary	operator
				//	Is	course2	<	0?	If	so,	set	to	0.	If	not,	set	to	course2.
				this->course2	=	(course2	<	0)	?	0	:	course2;
}

To the right of the assignment operator, we have a condition 	(course2	<	0)	 if this is true, we
assign the value immediately following the question mark. Otherwise we assign the value
following the colon. This is a convenient shorthand, and if you haven't seen it before you
should familiarize yourself with it.

Let's do the same thing in the setter for course3.

void	setCourse3(int	course3)	{
				//	Ternary	operator
				this->course3	=	(course3	<	0)	?	0	:	course3;
}

Now let's take care of setters for 	name	 and 	office	, used to update these values outside of



object construction.

void	setName(std::string	name)	{
				this->name	=	name;
}

void	setOffice(std::string	office)	{
				this->office	=	office;
}

That's all there is to these, and we're done with the setters.

(16:17)

The getters are straightforward. We'll use the 	const	 keyword to indicate that these methods
never modify the class's fields.

std::string	getName()	const	{
				return	name;
}

std::string	getOffice()	const	{
				return	office;
}

int	getCourse1()	const	{
				return	course1;
}

int	getCourse2()	const	{
				return	course2;
}

int	getCourse3()	const	{
				return	course3;
}

What happened to 	this	 and the arrow operator? It turns out that we don't need it here. In
fact, in most cases it's really only needed when we wish to be explicit or avoid ambiguity. Why
did we use it before? Let's go back to some of that code.

Lecturer(std::string	name,	std::string	office,
								int	course1,	int	course2,	int	course3)	{
				this->name	=	name;
				this->office	=	office;



				setCourse1(course1);
				setCourse2(course2);
				setCourse3(course3);
}

Notice that the variables passed to the constructor — 	name	 and 	office	 — have the same
names as member fields. So here it's important to disambiguate. So we use 	this	 and the
arrow operator.

Going back to our getters, we see we don't have that problem, so we omit 	this	 and the
arrow operator, and everything works just fine. This is more concise and readable and I think
preferred by most C++ programmers (though you'll find some programmers — and
workplaces — with different opinions).

Comparison with Java

So now that we've completed the constructors and accessors for this class, let's do a little
comparison with 	Node.java	 before we move on.

(19:14)

For a constructor, in C++ we have

public:
...

Lecturer(std::string	name,	std::string	office,
								int	course1,	int	course2,	int	course3)	{
				this->name	=	name;
				this->office	=	office;
				setCourse1(course1);
				setCourse2(course2);
				setCourse3(course3);
}

and in Java,

public	Node(Object	newItem,	Node	nextNode)	{
				item	=	newItem;
				next	=	nextNode;
}



(split screen and show highlighted code side by side).

In C++ we use the public access specifier, 	public	 followed by a colon and then anything that
follows has public access. In Java we use the public keyword before each public method in
the class definition. But other than that, these are pretty similar.

In the Java constructor, we distinguish between input parameters and member fields by using
different names. We could have done the same in C++, by the way, and avoided the use of
	this	 and the arrow operator. For example, we could have named the parameters
	lecturerName	 and 	lecturerOffice	 and that would have worked just fine — avoiding the
conflict.

In both languages we need to specify the type of our parameters in the method definition. In
both cases, we don't specify the return type because it's a constructor — we know this
because the name of the method matches the name of the class.

So there are many similarities between the two languages with regard to the constructors.
Now let's look at some accessors.

Here's a setter in C++,

public:
...

void	setOffice(std::string	office)	{
				this->office	=	office;
}

and one in Java,

public	void	setItem(Object	newItem)	{
				item	=	newItem;
}

Notice these are very similar. If our field had been a string in Java we would have indicated
this by specifying 	String	 type. In our C++ setter, we could have renamed the input parameter
	office	 and avoided the use of 	this	 and the arrow operator. But it's plain to see there's
considerable similarity.

The same holds for getters. Here's a getter in C++,



public:
...
std::string	getOffice()	const	{
				return	office;
}

and here's one in Java,

public	Object	getItem()	{
				return	item;
}	

apart from the 	const	 keyword in C++ — which is not used in Java — these are near identical.

So we see there are a lot of similarities between the two languages — at least in these cases.

Now let's take a break, and in the next video, we'll move on to the rest of our implementation
of the 	Lecturer	 class in C++.


