THE UNIVERSITY OF VERMONT COLLEGE OF ENGINEERING \& MATHEMATICAL SCIENCES

Introduction to Graphs

Introduction to graphs

TBH, we've already had an introduction to graphs.

Introduction to graphs

TBH, we've already had an introduction to graphs.
Trees are graphs.

Introduction to graphs

Terms we've introduced before

- Node (or vertex)
- Edge
- Degree (\# of edges incident to a node)
- Path
- Cycle

What is a tree?

A tree is a structure consisting of nodes (a.k.a. vertices) and edges.

What is a tree?

These are the nodes...

What is a tree?

...and these are the edges.

Introduction to graphs

What is a tree?

There must be exactly path between any pair of nodes.

What is a tree?

Here's one path from A to M passing through B and G...

What is a tree?

...and here's another passing through D and H .

What is a tree?

However, there must be only one path between any pair of nodes.

Introduction to graphs

If we relax the condition that there must be exactly one path between any pair of nodes, then we have a graph.

All trees are graphs but not all graphs are trees.
Trees are acyclic, connected graphs.

Introduction to graphs

If we relax the condition that there must be exactly one path between any pair of nodes, then we have a graph.

All trees are graphs but not all graphs are trees.
Trees are acyclic, connected graphs.

Graphs may or may not contain cycles.
Graphs may or may not be connected.

Introduction to graphs

$\mathrm{V}=\{$ set of all nodes (or vertices) $\}$
$E=\{$ set of all edges $\}$
$|\mathrm{V}|=$ number of nodes in a graph
|E| = number of edges in a graph

Introduction to graphs

$\mathrm{V}=\{$ set of all nodes (or vertices) $\}$
$E=\{$ set of all edges $\}$
Should have used script \mathcal{V} and \mathcal{E} to distinguish from labels of vertices in graph, e.g., \mathcal{E} is set of all edges, E is the label of one of the vertices in the graph. My bad.
$|\mathrm{V}|=$ number of nodes in a graph

|E| = number of edges in a graph $|E|$

Introduction to graphs

$V=\{A, B, C, D, E, F\}$
$E=\{$ set of all edges $\}$
$|\mathrm{V}|=$ number of nodes in a graph

$|E|=$ number of edges in a graph

Introduction to graphs

$$
\begin{aligned}
V= & \{A, B, C, D, E, F\} \\
E= & \{A B, A F, B C, B F, C F, \\
& C E, C D, D E, D F\}
\end{aligned}
$$

$|\mathrm{V}|=$ number of nodes in a graph

$|E|=$ number of edges in a graph

Introduction to graphs

$$
\begin{aligned}
V= & \{A, B, C, D, E, F\} \\
E= & \{A B, A F, B C, B F, C F, \\
& C E, C D, D E, D F\}
\end{aligned}
$$

$|\mathrm{V}|=$ number of nodes in a graph

$|E|=$ number of edges in a graph

Introduction to graphs

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}\} \\
\mathrm{E}= & \{\mathrm{AB}, \mathrm{AF}, \mathrm{BC}, \mathrm{BF}, \mathrm{CF}, \\
& \mathrm{CE}, \mathrm{CD}, \mathrm{DE}, \mathrm{DF}\} \\
|\mathrm{V}|= & 6
\end{aligned}
$$

|E| = number of edges in a graph

Introduction to graphs

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}\} \\
\mathrm{E}= & \{\mathrm{AB}, \mathrm{AF}, \mathrm{BC}, \mathrm{BF}, \mathrm{CF}, \\
& \mathrm{CE}, \mathrm{CD}, \mathrm{DE}, \mathrm{DF}\} \\
|\mathrm{V}|= & 6 \\
|\mathrm{E}|= & 9
\end{aligned}
$$

Introduction to graphs

Introduction to graphs

Graphs may include self-loops

Introduction to graphs

What does it mean to be adjacent?
A direct path exists from one node to another (not passing through any other node)

Introduction to graphs

Introduction to graphs

Introduction to graphs

Introduction to graphs

in degree $=3$

out degree $=4$

Introduction to graphs

What kind of data structure should we use to represent a graph?

Introduction to graphs

Adjacency list

Adjacency matrix
Incidence matrix

Introduction to graphs

Adjacency list

Adjacency matrix
Incidence matrix

Introduction to graphs

Adjacency list

Adjacency matrix
Incidence matrix

Introduction to graphs

Adjacency list

A	
B	
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	B, D
B	
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	
E	
F	

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	
F	

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	C, E

Introduction to graphs

\boldsymbol{l}	Adjacency list
A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	C, E

Introduction to graphs

$\sqrt{ }$	\checkmark	Adjacency list
	A	B, D
\checkmark	B	A, C, E
\checkmark	C	B, E, F
\checkmark	D	A, E
\checkmark	E	B, D, C, F
	F	C, E

Introduction to graphs

\checkmark		Adjacency list
\checkmark	A	B, D
\checkmark	B	A, C, E
\checkmark	C	B, E, F
\checkmark	D	A, E
\checkmark	E	B, D, C, F
\checkmark	F	C, E

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	C, E

Introduction to graphs

Space: $O(|V|+|E|)$

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	C, E

Introduction to graphs

Space: $O(|V|+|E|)$

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	C, E

Introduction to graphs

Adjacency list

A	B, D
B	A, C, E
C	B, E, F
D	A, E
E	B, D, C, F
F	C, E

Space: $O(|\mathrm{~V}|+|\mathrm{E}|)$ Query: $O(\mathrm{VV})$

Introduction to graphs

Space: $O\left(|\mathrm{~V}|^{2}\right)$
Query: O (1)

Adjacency matrix

	A	B	C	D	E	F
A	0	1	0	1	0	0
B	1	0	1	0	1	0
C	0	1	0	0	1	1
D	1	0	0	0	1	0
E	0	1	1	1	0	1
F	0	0	1	0	1	0

Introduction to graphs

Adjacency list

A	
B	
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	B
B	
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	B
B	C
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	B
B	C
C	E, F
D	
E	
F	

Introduction to graphs

Adjacency list

A	B
B	C
C	E,F
D	A
E	
F	

Introduction to graphs

Adjacency list

A	B
B	C
C	E, F
D	A
E	B, D
F	

Introduction to graphs

Adjacency list

A	B
B	C
C	E, F
D	A
E	B, D
F	E

Introduction to graphs

Adjacency list

A	
B	
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	$\{B, 6\}$
B	
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	$\{B, 6\}$
B	$\{C, 9\}$
C	
D	
E	
F	

Introduction to graphs

Adjacency list

A	$\{B, 6\}$
B	$\{C, 9\}$
C	$\{E, 2\},\{F, 8\}$
D	
E	
F	

Introduction to graphs

Adjacency list

A	$\{B, 6\}$
B	$\{C, 9\}$
C	$\{E, 2\},\{F, 8\}$
D	$\{A, 4\}$
E	
F	

Introduction to graphs

Adjacency list

A	$\{B, 6\}$
B	$\{C, 9\}$
C	$\{E, 2\},\{F, 8\}$
D	$\{A, 4\}$
E	$\{B, 3\},\{D, 7\}$
F	

Introduction to graphs

Adjacency list

A	$\{B, 6\}$
B	$\{C, 9\}$
C	$\{E, 2\},\{F, 8\}$
D	$\{A, 4\}$
E	$\{B, 3\},\{D, 7\}$
F	$\{E, 5\}$

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A						
B						
C						
D						
E						
F						

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B						
C						
D						
E						
F						

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B	0	0	9	0	0	0
C						
D						
E						
F						

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B	0	0	9	0	0	0
C	0	0	0	0	2	8
D						
E						
F						

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B	0	0	9	0	0	0
C	0	0	0	0	2	8
D	4	0	0	0	0	0
E						
F						

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B	0	0	9	0	0	0
C	0	0	0	0	2	8
D	4	0	0	0	0	0
E	0	3	0	7	0	0
F						

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B	0	0	9	0	0	0
C	0	0	0	0	2	8
D	4	0	0	0	0	0
E	0	3	0	7	0	0
F	0	0	0	0	5	0

Introduction to graphs

Adjacency matrix

	A	B	C	D	E	F
A	0	6	0	0	0	0
B	0	0	9	0	0	0
C	0	0	0	0	2	8
D	4	0	0	0	0	0
E	0	3	0	7	0	0
F	0	0	0	0	5	0

Introduction to graphs

Which data structure is "best"?

Introduction to graphs

Which data structure is "best"? It depends!

Introduction to graphs

Which data structure is "best"? It depends!

	Adjacency list	Adjacency matrix
Space	$O(\|\mathrm{~V}\|+\|\mathrm{E}\|)$	$O\left(\mid \mathrm{V}^{2}\right)$
Add vertex	$O(1)$	$O\left(\mid \mathrm{V}^{2}\right)$
Add edge	$O(1)$	$O(1)$
Adjacency query	$O(\|\mathrm{~V}\|)$	$O(1)$

