
Complexity Practice
What is the complexity of the following function?

int	sumOfCubes(int	n)	{
				int	partialSum	=	0;
				for	(int	i	=	1;	i	<=	n;	++i)	{
								partialSum	+=	i	*	i	*	i;
				}
				return	partialSum;
}

Even though we're calculating a sum of cubes, this runs in linear time. Why? Well, simple
arithmetic calculations run in constant time, and we have a single loop, to perform a simple
calculation for all values from one to n. So this runs in linear time. If n is 10, this loop will
perform 10 iterations.

What about performing a calculation on a 2-D array? Recall the pixel-averaging problem we
discussed earlier? Let's look at a somewhat simpler problem, just taking the sum of elements
in a 2-D array — that is, a matrix.

int	twoDArraySum(std::vector<std::vector<int>>	a)	{
				int	result	=	0;
				for	(int	i	=	0;	i	<	a.size();	i++)	{
								std::vector<int>	row	=	a[i];
								for	(int	j	=	0;	j	<	a[i].size();	j++)	{
												result	=	result	+	row[j];
								}
				}
				return	result;
}

What's the complexity here? O(n2) because we have nested loops. Let's assume we have a
square matrix. The outer loop executes n times — once for each row in the matrix. But for
each time the outer loop executes, the inner loop executes n times, that is, once for each
column within each row. That's n × n steps. Notice that it's the fact that the loops are nested
that makes the complexity O(n2).

Same result, different complexity



Maximum Subsequence Sum Problem

Suppose you have a sequence of integers (in a vector) and you want to know the maximum
sum of any contiguous subsequence. For example, the maximum subsequence sum of

	-2,	11,	-4,	13,	-5,	-2	

is 20 (the 11, -4, 13 subsequence).

Here we present four different algorithms for solving this problem. Let's analyze the complexity
of each.

/**
	*	Algorithm	1	"Brute	force"
	*/
int	maxSubSum1(const	std::vector<int>	&a)	{
				int	maxSum	=	0;
				for	(int	i	=	0;	i	<	a.size();	++i)	{		//	left	boundary
								for	(int	j	=	i;	j	<	a.size();	++j)	{		//	right	boundary
												int	thisSum	=	0;
												for	(int	k	=	i;	k	<=	j;	++k)	{
																thisSum	+=	a[k];
												}
												if	(thisSum	>	maxSum)	{
																maxSum	=	thisSum;
												}
								}
				}
				return	maxSum;
}

Algorithm 1 is a brute force approach, and with three loops the worst case is of order O(n3).
For each i we iterate through all possible j >= i and then all i ≤ k ≤ j. So subsequences are
evaluated for all k between the left boundary, i, and the right boundary, j. While this is
guaranteed to find the largest subsequence sum, it is very inefficient and duplicates many
calculations. Because there are three nested loops, this runs in order O(n3) time.

/**
	*	Algorithm	2
	*/
int	maxSubSum2(const	std::vector<int>	&a)	{
				int	maxSum	=	0;
				for	(int	i	=	0;	i	<	a.size();	++i)	{
								int	thisSum	=	0;



								for	(int	j	=	i;	j	<	a.size();	++j)	{
												thisSum	+=	a[j];
												if	(thisSum	>	maxSum)	{
																maxSum	=	thisSum;
												}
								}
				}
				return	maxSum;
}

This is an improved version of algorithm 1, which eliminates some of the redundant calculation
and eliminates one loop. With two nested loops, this will run in order O(n2) time.

/**
	*	Algorithm	3	"Divide	and	conquer"
	*/
int	maxSumRec(const	std::vector<int>	&a,	int	left,	int	right)	{
				//	base	case	for	recursion,	when	we	have	one	element
				if	(left	==	right)	{
								if	(a[left]	>	0)	{
												return	a[left];
								}	else	{
												return	0;
								}
				}
				//	divide	into	two	halves
				int	center	=	(left	+	right)	/	2;
				//	get	the	max	subsequence	sum	from	each	of	the	two	halves
				int	maxLeftSum	=	maxSumRec(a,	left,	center);		//	recursive	call
				int	maxRightSum	=	maxSumRec(a,	center	+	1,	right);		//	recursive	call

				//	starting	from	the	center	and	working	toward	left	boundary
				int	maxLeftBorderSum	=	0,	leftBorderSum	=	0;
				for	(int	i	=	center;	i	>=	left;	--i)	{
								leftBorderSum	+=	a[i];
								if	(leftBorderSum	>	maxLeftBorderSum)	{
												maxLeftBorderSum	=	leftBorderSum;
								}
				}
				//	starting	from	the	center	and	working	toward	right	boundary
				int	maxRightBorderSum	=	0,	rightBorderSum	=	0;
				for	(int	j	=	center	+	1;	j	<=	right;	++j)	{
								rightBorderSum	+=	a[j];
								if	(rightBorderSum	>	maxRightBorderSum)	{
												maxRightBorderSum	=	rightBorderSum;
								}
				}
				int	combined	=	maxLeftBorderSum	+	maxRightBorderSum;

				//	return	the	max	of	the	three	subsequence	sums
				return	std::max(maxLeftSum,	std::max(maxRightSum,	combined));
}



Though this seems more complex, this is substantially more efficient than either of the two
previous algorithm. It uses a recursive "divide and conquer" approach, and accordingly runs in
O(n log(n)) time. This algorithm is due to Shamos.

Remember what we learned about recursive functions at the beginning of the course, and
notice that this function has a base case, where 	left	==	right	 — In the base case, we return
the value of the one-element subsequence if it is greater than zero, or zero otherwise. This
algorithm also has two recursive calls, so it is multiply recursive.

We call this "divide and conquer" because it divides the problem into two smaller instances,
solves each, and then combines the result. This is where the recursive cases come in. The
working portion of the sequence is divided into halves, and then each half becomes input to a
recursive call.

The remaining code addresses the case where a subsequence may straddle the boundary
between left and right halves. So the function takes the maximum of three results, left, right,
and "middle" — so to speak.

This may seem complicated, but it is far more efficient than either of the two previous
algorithms.

Because we divide recursively the problem in halves, then solve each half and combine the
results, this runs in O(n log(n)) time.

/**
	*	Algorithm	4
	*/
int	kadanesAlgo(const	std::vector<int>	&a)	{
				int	bestSum	=	0;
				int	currentSum	=	0;
				for	(int	i	=	0;	i	<	a.size();	++i)	{
								currentSum	=	std::max(0,	currentSum	+	a[i]);
								bestSum	=	std::max(bestSum,	currentSum);
				}
				return	bestSum;
}

Kadane's algorithm wins the prize. It is a very elegant solution that runs in linear O(n) time. This
is the fastest possible. Discussion of why this algorithm works is a little beyond the scope of
this class, but feel free to puzzle over it. Notice that there is only one loop through the array,
and thus its complexity is linear.



So we see our algorithms vary from cubic O(n3) to linear O(n) time.

Does more code mean greater complexity? No. Shamos' divide and conquer algorithm is the
longest -- in terms of code -- but is far, far more efficient than the brute force or improved
brute force approaches which have fewer lines of code. So we cannot equate complexity with
the number of lines of code.

Time Complexity

Now, in our discussions so far, we've been discussing time complexity.

If we double the input, how much longer will the program take to run?
If we double the input, how many more statements do we need to execute?

But there are other ways we can measure complexity.

Auxiliary complexity

One alternative measure of complexity is called "auxiliary complexity". Auxiliary complexity
measures the amount of temporary memory needed by the algorithm. We may ask: If we
double the input, how much more temporary
memory does the algorithm allocate? Be aware
that auxiliary complexity does not include the inputs to the algorithm.

Space Complexity

Another alternative measure is space complexity. With regard to space complexity, we ask:

If we double the input, how much more memory does the algorithm use?
If we double the input, how much more space does the algorithm allocate?
Space complexity does include the input variables.

Let's look at some examples and analyze them in terms of time, space, and auxiliary
complexity. What is the time complexity of the following code? Auxiliary complexity? Space
complexity? 

int	sum(int	a,	int	b,	int	c)	{	
				int	sum	=	a	+	b	+	c;	
				return	sum;	
}



The time complexity here is constant: O(1). What's the auxiliary complexity? Well, that
excludes input, so what other memory must we allocate? We allocate space for an integer,
	sum	, to hold the result. That's it. So auxiliary complexity is also constant, O(1). What's the
space complexity? No matter what the inputs, this algorithm will always require space for four
integers, so again, space complexity is constant, O(1).

What is the time complexity of the following code? Auxiliary complexity? Space complexity? 

int	sum(std::vector<int>	nums)	{	
				int	sum	=	0;	
				for	(int	i	=	0;	i	<	nums.size();	++i){	
								sum	+=	nums[i];	
				}	
				return	sum;	
}

Here we take a vector of integers as an input and calculate the sum. The time complexity is
linear, since we are making simple arithmetic calculations on each iteration of a one-
dimensional vector.

How much auxiliary space is needed? Well, the algorithm must allocate space for the 	sum	
variable, and for the loop index, 	i	. That's constant, regardless of the input. We could also
include the space needed to hold the size of the vector as well, and whatever space is needed
to determine the size of the vector, but again that's constant, and does not change the result.

How much space is needed overall? That's just the auxiliary space needed plus the size of the
input. Since the size of the input dominates, the complexity is linear, O(n).

Complexities with Multiple Variables

Sometimes there are two independent variables at play that will affect the complexity of the
algorithm. For example, having two vectors of different sizes.
In this case, you will need two variables to describe the complexity, e.g. O(N + K), O(N × K),
O(NK), etc. If it is not clear what the variables represent, you will need to state it explicitly.

What is the time complexity of the following code? Auxiliary complexity? Space complexity? 

vector<vector<int>>	mult(vector<int>	nums1,	vector<int>	nums2)	{	



				vector<vector<int>>	product;	
				product.resize(nums1.size());	
				for	(int	i	=	0;	i	<	nums1.size();	++i)	{	
								product[i].resize(nums2.size());	
								for	(int	j	=	0;	j	<	nums2.size();	++j)	{	
																product[i][j]	=	nums1[i]	*	nums2[j];	
								}	
				}	
				return	product;	
}

Let's think about what's going on here. We're taking two integer vectors as inputs, and we're
calculating a 2D matrix of the element-wise products of the two vectors. So if we have M
elements in 	nums1	 and N elements in 	nums2	 our result — product — will be an M × N matrix.
Each element in the answer matrix will be the product of corresponding entries in the two
inputs.

Here's an example: If 	nums1	=	{1,	2,	3,	4}	 and 	nums2	=	{5,	0,	2}	, then 	product	 will look
like this:

5 0 2

10 0 4

15 0 6

20 0 8

So time complexity will depend on the size of the two input vectors, that is O(M × N).

What is the auxiliary complexity? Well, we'll need to allocate an M × N matrix to hold the
result, and integers 	i	 and 	j	 to control our loops, and something to hold the results of the
size calculations. But apart from the M × N matrix, these other items are constant and do not
vary with input. Accordingly, M × N dominates, and auxiliary complexity is O(M × N).

Space complexity also includes the input vectors, one of size M, and the other of size N, but
these scale in a linear fashion and again, M × N dominates. Hence, the space complexity is
O(M × N).

This concludes our discussion for now, but rest assured, we'll be spending plenty of time on
complexity throughout the course.

An annotated transcript and source code to accompany this video have been posted on



Blackboard.


