
CS 124 / Department of Computer Science

COMPLEXITY
EXAMPLES and CALCULATIONS



In this video...
In this video lecture we'll present 


• concrete examples of different algorithms with different run-time 
complexities,


• rules of thumb for calculating Big O for a given algorithm, and


• rules for combining bounds.


But first a quick review.



Complexity measures



Describing bounds
Some common terminology

2N Exponential

N3 Cubic
Polynomial

N2 Quadratic

N log N

N Linear

log2 N Log squared

Sublinearlog N Log

c Constant



Measures of complexity



Big O is an upper bound



Ω is a lower bound



Θ is a tight bound



Dominating terms and ignoring constants



Dominating terms and ignoring constants



Dominating terms and ignoring constants



Dominating terms and ignoring constants



Examples
O(1): Constant time
Some functions or algorithms run in constant time, O(1). This means that 
their run time does not vary with the size of the input or that the size of the 
input is fixed.


For example:


• Node::getItem() method (seen in earlier lectures)


• Retrieving a value from an array by its index.


• Most arithmetic calculations, e.g., computing the average of two 
doubles.



Examples
O(log N): Logarithmic time

Some functions or algorithms run in logarithmic time, O(log N). This 
means that their run time increases slowly, with the log of the size of 
the input.


For example:


• Binary search of a sorted list or binary search tree (BST)


Here, the number of steps required to complete a search increases by 
one with each doubling of the size of the input.



Let's say we wanted to find if a number exists in this sorted list. 


We could perform a linear search, checking each element one at a time 
from left to right. But that might take eight comparisons. There are eight 
elements in the list, and each comparison counts for a step in our 
algorithm, therefore linear search has complexity O(N).

Examples
O(log N): Binary search of sorted list

7 19 23 30 42 43 49 55



But we can do better. Say we're looking to see if 42 is in this list. First we 
check to see if it's in the first half.

Examples
O(log N): Binary search of sorted list

7 19 23 30 42 43 49 55

Then we find it's not in the first half, so we know if it's in the list it must be 
in the second half. So next we can search the first half of the second half.



Checking the first half of the second half, we find that this contains 
values greater than 30 and less than or equal to 43.

Examples
O(log N): Binary search of sorted list

7 19 23 30 42 43 49 55

7 19 23 30 42 43 49 55

So we halve our search space again, and check.



We found the target in the list in three steps. This should come as no 
surprise, since we started with eight sorted elements and halved the 
search space each time. Note that 8 = 23.

Examples
O(log N): Binary search of sorted list

In the worst case this search might have taken (log N) + 1 steps 
(searching for the value 55). But we've seen that extra step doesn't 
really matter, and that we ignore such constants. So in this case, 
complexity is O(log N).

7 19 23 30 42 43 49 55



If we were to double the size of the input, our search would take just one 
more step. So again, our run time complexity is O(log N).


In general, any algorithm that continually halves its search or working 
space will run in O(log N) time. 

 
Just as an aside, what do you think would be the best case for binary 
search of a sorted list?

Examples
O(log N): Binary search of sorted list



The best case is where the search target is at index⎣N / 2⎦within the list. 
This is the first element to be checked in a binary search.

Examples
O(log N): Binary search of sorted list



The best case is where the search target is at index⎣N / 2⎦within the list. 
This is the first element to be checked in a binary search.


So in the best case, the search time is O(1) even though the average and 
worst cases are of order O(log N)!


 
We'll revisit best case analysis at various points during the course. But for 
now, let's move on and look at some other algorithms.

Examples
O(log N): Binary search of sorted list



Examples
O(N): Summing an array / looping over an array

Some functions run in O(N) or what we call linear time. In these cases, the run 
time varies directly with the size of the input.


A typical example of an O(N) function is summing all the values in an integer 
array.


In general, this will hold for any algorithm that has to loop through  
the length of an array and perform some simple calculation. 



Examples
O(N log N): Divide and conquer algorithms

A typical example of a class of algorithms with complexity O(N log N) is 
"divide and conquer" algorithms. These algorithms split a problem instance 
into two halves, solve each half, and then combine the results.


We'll defer discussion and analysis of this important class of algorithms until 
a little later in the course.




Examples
O(N2): Quadratic time

In general, any algorithm with two nested loops will run in quadratic 
time. That is, it will have complexity of O(N2).


Let's look at an example to see why this is so.




Examples
O(N2): Quadratic time
Let's say we wanted to calculate the average color of a collection of pixels.

The pixels would be stored in a two-dimensional array. To perform the 
calculation, we'd have to iterate through each row, and then through each 
column within each row. With M rows and N columns we'd need to check  
M ⨉ N pixels. Assuming a square array this would be N2 pixels.




Examples
O(N2): Quadratic time

So for each pixel, we'd sum the RGB values, and then divide by the total 
number of pixels. Calculating the sum would take constant time, 
calculating the average from the sum would take constant time. 


So what varies with the input is the number of pixels we need to check. 
Hence, this executes in O(N2) time. 
 



Examples
Exponential time: recursive Fibonacci

The example of recursive calculation of a Fibonacci number we saw in an 
earlier lecture runs in exponential time.


(We warned you about inappropriate use of recursion!)


Now this is a little different. What does it mean for this to be exponential? 
There's no data being processed.




Examples
Exponential time: recursive Fibonacci

Here's the recursive Fibonacci algorithm we saw earlier:


int fibonacci(int x) { 
    if (x == 0) || (x == 1) { 
        return(x); 
    } else { 
        return(fibonacci(x - 2) + fibonacci(x - 1)); 
    } 
} 



Examples
Exponential time: recursive Fibonacci

Now let's count the number of recursive calls needed to calculate 
the nth Fibonacci number.


F0 and F1 require zero recursive calls. These just return a value right 
away. Calculating F2 requires two recursive calls, one to get the 
value of F0 and another to get the value of F1.


Let's keep track with a table.




Examples
Exponential time: recursive Fibonacci

n number of recursive calls

0 0

1 0

2 2

3 4

4 8

5 14

6 24

7 40

8 66



Examples
Exponential time: recursive Fibonacci

n number of recursive calls

9 108

10 176

11 286

12 464

13 752

14 1,218

15 1,972

16 3,192

17 5,166



Examples
Exponential time: recursive Fibonacci

We can see that the number of recursive calls needed to calculate the nth 
Fibonacci number explodes exponentially. In fact, using the algorithm 
shown it would take 331,160,280 recursive calls to calculate F40!


Since the amount of work done increases exponentially with the input n, 
we say this is an exponential time algorithm.



Combining bounds


