
CS 124 / Department of Computer Science

COMPLEXITY
AN INTRODUCTION



What is complexity?
We write computer programs to perform calculations and solve 
problems.  
 
But what is the use of a program that takes a year to perform a 
calculation? 
 
How does execution time vary with the size of the input?


How do we compare the efficiency of two algorithms? 
 
Is there a theoretical limit to the complexity of a problem?


Can we do better?



What is complexity?
Is the run time of our program simply due to the way we've written 
our code? 
 
Or is there something in the nature of the problem that places limits 
on the run time?


Is the performance of our code close to some theoretical limit?



What is complexity?
Is the problem we're trying to solve tractable? That is, can it be 
solved in some "reasonable" amount of time? 
 
If not, we call the problem "intractable", and we must resort to 
approximations, heuristics, or restrict the problem to special cases 
that are tractable.



Algorithm analysis
We attempt to answer these questions through a process called 
algorithm analysis — whether by calculation, estimation, or 
theoretical consideration.



Algorithm analysis
As you can see, complexity and algorithm analysis are at the heart 
of computer science.


But we'll need some tools to formalize the notion of complexity.


Importantly, we'll need ways to establish bounds on computation 
resources — whether these are time or space (memory or storage).



Describing bounds
We may ask ourselves: 
 
As the size of the input to a problem grows, what is the upper limit, 
or bound, on the time it takes to calculate a solution?


For this we use what is called Big-O notation — also called 
asymptotic notation.


If we say the complexity of a problem is O(N2), it means that the 
maximum time it takes to calculate a solution grows with the 
square of the size of the input.



Describing bounds



Describing bounds

O(c)



Describing bounds

exponential



Describing bounds



Describing bounds
Some common terminology

2N Exponential

N3 Cubic
Polynomial

N2 Quadratic

N log N

N Linear

log2 N Log squared

Sublinearlog N Log

c Constant



A little formalization



A little formalization



A little formalization



Other kinds of bounds



Other kinds of bounds



Other kinds of bounds



Other kinds of bounds



Summary of kinds of bounds

O(f(N)) upper bound

Ω(g(N)) lower bound

Θ(h(N)) tight bound

o(p(N)) strict upper bound



More to follow...
In subsequent video lectures we'll present 


• concrete examples of different algorithms with different run-time 
complexities,


• rules of thumb for calculating Big O for a given algorithm,


• rules for combining bounds, and


• a discussion of space complexity,


...and more.


