
CS 124 / Department of Computer Science

BINARY HEAP
AN INTRODUCTION

17

18 21

30 26 23 42

33 31 29 75



Motivation
A binary heap is a widely used data structure.


• Heapsort algorithm (Williams 1964)


• Graph algorithms (e.g., shortest path, spanning tree)


• Priority queue (which itself has abundant applications)




What is a binary heap?
A binary heap is a binary tree with heap properties:


• The tree is complete. This means that each level is full with the 
possible exception of the last level, which may be incomplete, but 
should be filled from left to right. This is called the structure property 
(sometimes called the shape property).


• With the exception of the root, every node must be ordered with 
respect to its parent. This is called the heap order property (or simply 
the heap property).


That's it!


3



Heap order property
When implementing a binary heap, we can choose one of two 
orderings — but once we choose, we must remain consistent.

4

• Minimal value is at the root, 
and child nodes must have 
values greater than or equal to 
that of the parent node.

• Maximal value is at the root, 
and child nodes must have 
values less than or equal to 
that of the parent node.

5

17 21

79

42 33



Heap order property
It is important to keep in mind the distinction between a binary heap 
and a binary search tree (BST). They are not the same thing.  
 
A binary search tree requires that values of a left subtree must be 
ordered with respect to the right subtree. This is not the case with 
binary heaps. The heap order property is a little more relaxed.

5

Binary heap ≠ binary search tree



Example
5

17 21

18 26 23 42

30 31 29 75 33 41

6



5

17 21

18 26 23

30 31 29 75 33 41

Non-example

7



5

17 21

18 26 23

30 31 29 75 33 41

Non-example

Tree is not 
complete; 
structure 
property is 
violated.

8



5

15 21

18 15 23 42

30 31 33 41

Non-example

9



5

15 21

18 15 23 42

30 31 33 41

Non-example

Last level not filled 
left to right; 
structure property 
is violated.

10



5

17 21

18 15 23 42

30 31 29 75 33 41

Non-example

11



5

17 21

18 15 23 42

30 31 29 75 33 41

Non-example

12



5

17 21

18 15 23 42

30 31 29 75 33 41

Non-example

13



5

17 21

18 15 23 42

30 31 29 75 33 41

Non-example

Value is less than 
value of parent; 
heap-order property 
is violated.

14



Number of nodes in a binary heap
Recall that the height of a tree, h, is the length of the longest path from 
the root node to a leaf node.  
 
Recall also that the structure property of a binary heap requires that the 
tree be complete. A complete binary tree must have between 2h and 
2h+1 -1 nodes.


Given a tree of N nodes, its height is ⎣log2N⎦.


15



5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41

How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


16



How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


17

20 = 1 node in this level

}

1 element in array

5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41



How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


18

21 = 2 nodes in this level

}

2 elements in array

5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41



How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


19

22 = 4 nodes in this level

4 elements in array

5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41



How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


20

Up to 23 = 8 nodes in this level

8 elements in array

5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41



How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


21

5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41



5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41

How can we represent a binary heap?
Because a binary heap has a highly regular structure, we can represent 
it with an array.


22



5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41

How can we find a node's children?
Node at index i has children at indices 2i and 2i+1.


23



How can we find a node's parent?
Unless we're at the root, given a node with index, i, a node's parent is at index i / 2, 
if i is even. If a node's index is odd, the node's parent is at index (i - 1) / 2.


24

5 17 21 18 26 23 42 30 31 29 75 33 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

17 21

18 26 23 42

30 31 29 75 33 41



How can we modify a binary heap?
As a static object, a binary heap is of little utility. We need to be able to 
modify it by inserting and deleting nodes. But we must insert and 
delete in ways that preserve the required properties.  
 
Let's look at the following operations:


• Insert


• Delete minimum


When inserting and deleting we use one of two strategies to preserve 
structure and heap-order property. We use the metaphor of a "bubble" 
percolating up or percolating down within the heap.


25



5

17 21

18 26 23 42

30 31 29 75 33

Insert value (14)

26



5

17 21

18 26 23 42

30 31 29 75 33

Insert value (14)

Create a "bubble" 
at the first open 
position

27



5

17 21

18 26 42

30 31 29 75 33 23

Insert value (14)

Percolate up

28



5

17

18 26 21 42

30 31 29 75 33 23

Insert value (14)

Percolate up

29



5

17 14

18 26 21 42

30 31 29 75 33 23

Insert value (14)

14 can go here

30



5

17 21

18 26 23 42

30 31 29 75 33

Delete minimum

31



17 21

18 26 23 42

30 31 29 75 33

Delete minimum

Create empty 
bubble at root

Where can 
this go?

32



17

21

18 26 23 42

30 31 29 75 33

Delete minimum

Percolate down

33



17

18 21

26 23 42

30 31 29 75 33

Delete minimum

Percolate down

34



17

18 21

30 26 23 42

31 29 75 33

Delete minimum

Percolate 
down

35



17

18 21

30 26 23 42

33 31 29 75

Delete minimum

33 can 
go here

36



7

19 19

29 26 23 42

30 31 29 75 33 41

Delete minimum

37

50

?



7

19 19

29 26 23 42

30 31 29 75 33 41

Delete minimum

38

50

19



What's a binary heap good for?
We've already mentioned that binary heap is used in Williams' heapsort 
algorithm and is used in many graph algorithms.


Because a binary heap maintains the smallest value at the root, it is 
well-suited as a data structure for a priority queue. 
 
With the ordering we've chosen here, jobs or processes with lower 
numbers have higher priority, and we can consume the binary heap by 
continuing to remove the lowest valued node (at the root).


39



Summary
• Binary heap is a complete binary tree with the heap-order property. 


• Structure property and heap-order property must be preserved.


• Binary heap can be represented with an array.


• We modify the heap by creating bubbles and percolating up or down 
until a new (or orphaned) value can find a suitable node in the tree.


• Insert and delete operations have O(log N) complexity.


• Binary heaps are well-suited to priority queue and other applications.


40


