
AVL Tree

CS 124 / Department of Computer Science

Complexity of search

Complete or perfect tree?  
O(log N)

Pathological tree?  
O(h) = O(N - 1) = O(N)

AVL Tree
• An AVL tree is a binary search tree with one additional property: 
 
 For each node in the tree, the height of left and right  
 subtrees can differ by at most 1.

• Why "AVL"? Named after its inventors, Adelson-Velsky and Landis (1962).

• With this property, AVL trees are "self-balancing." This preserves the O(log N)
time for search, insertion and deletion, by avoiding pathological structures
and substructures.

AVL Tree Example
17

12

2

24

9 15 20 26

25 3010 19

17

12

2

24

9 20 26

25 3010 19

AVL Tree Counter-example

17

12

2

24

9 20 26

25 3010 19

AVL Tree Counter-example

Which of these are AVL trees?
12

14

15

3

7

9

308

12

13

15

11 14

20

30

35

10 25

0 15

Which of these are AVL trees?
12

14

15

3

7

9

308

12

13

15

11 14

20

30

35

10 25

0 15

Which of these are AVL trees?
12

14

15

3

7

9

308

12

13

15

11 14

20

30

35

10 25

0 15

✓

Which of these are AVL trees?
12

14

15

3

7

9

308

12

13

15

11 14

20

30

35

10 25

0 15

✓

✓

Which of these are AVL trees?
12

14

15

3

7

9

308

12

13

15

11 14

20

30

35

10 25

0 15

✓

✓

Self-balancing: Preserving the AVL property
• What does it mean to be "self-balancing"?

• Recall we have methods for handling insertions and deletions for binary
search trees that preserve the properties of a binary search tree.

• Similarly, AVL trees have methods for handling insertions and deletions that
preserve its BST properties and keep it balanced, preserving the AVL
property.

Self-balancing: Preserving the AVL property

12

13

15

11 14

12

13

15

11 14 16

Self-balancing: Preserving the AVL property

12

13

15

11 14 16

9

Self-balancing: Preserving the AVL property

12

13

15

11 14 16

9

Self-balancing: Preserving the AVL property

12

13

15

11 14 16

9

Self-balancing: Preserving the AVL property

Self-balancing: Preserving the AVL property

12

13

1511

14 169

Self-balancing: Preserving the AVL property

13

1511

14 169

Self-balancing: Preserving the AVL property

13

1511

14 169

10

Self-balancing: Preserving the AVL property

13

1511

14 169

10

Self-balancing: Preserving the AVL property

13

1511

14 169

10

Self-balancing: Preserving the AVL property

11

13

1510

14 169

AVL: General Algorithm
• Perform the insertion or deletion you would as for a BST.

• Check to see if the AVL property holds -- that is, for each node in the tree, the
height of its left and right subtrees differ by at most one.

• If the tree does not have the AVL property, find the lowest node in the tree
that has subtrees differing in height by more than one -- this is the "problem
node"

• Perform necessary rotation(s).

AVL: General Algorithm

• Examine the path from the "problem node" to its most distant leaf.

• "Zig-zig": If the path goes in the same direction for the first two generations
(i.e., both left children or both right children), do a single rotation.

• "Zig-zag": If the path follows different directions (i.e., a left child then a right
child, or vice versa), do a double rotation.

• If there are multiple leaves that are farthest from the problem node and both
paths are possible, either rotation will work to make the tree AVL again.

Determining the necessary rotation

Self-balancing: Preserving the AVL property
Another example

3

4

72

6 151

5 14 16

Self-balancing: Preserving the AVL property
Another example

3

4

72

6 151

5 14 16

13

Self-balancing: Preserving the AVL property
Another example

3

4

72

6 151

5 14 16

13

Self-balancing: Preserving the AVL property
Another example

3

4

72

6 151

5 14 16

13

Self-balancing: Preserving the AVL property
Another example

3

4

72

6 151

5 14 16

13

Self-balancing: Preserving the AVL property
Another example

3

4

7

2 6

15

1 5

14 16

13

Some visualisations: a helpful tool

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

