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Complexity of search

Complete or perfect tree?  
O(log N)

Pathological tree?  
O(h) = O(N - 1) = O(N)



AVL Tree
• An AVL tree is a binary search tree with one additional property: 
 
         For each node in the tree, the height of left and right  
         subtrees can differ by at most 1.


• Why "AVL"? Named after its inventors, Adelson-Velsky and Landis (1962).


• With this property, AVL trees are "self-balancing." This preserves the O(log N) 
time for search, insertion and deletion, by avoiding pathological structures 
and substructures.
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Which of these are AVL trees?
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Self-balancing: Preserving the AVL property
• What does it mean to be "self-balancing"?


• Recall we have methods for handling insertions and deletions for binary 
search trees that preserve the properties of a binary search tree.


• Similarly, AVL trees have methods for handling insertions and deletions that 
preserve its BST properties and keep it balanced, preserving the AVL 
property.
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AVL: General Algorithm
• Perform the insertion or deletion you would as for a BST.


• Check to see if the AVL property holds -- that is, for each node in the tree, the 
height of its left and right subtrees differ by at most one.


• If the tree does not have the AVL property, find the lowest node in the tree 
that has subtrees differing in height by more than one -- this is the "problem 
node"


• Perform necessary rotation(s).



AVL: General Algorithm

• Examine the path from the "problem node" to its most distant leaf.


• "Zig-zig": If the path goes in the same direction for the first two generations 
(i.e., both left children or both right children), do a single rotation. 


• "Zig-zag": If the path follows different directions (i.e., a left child then a right 
child, or vice versa), do a double rotation.


• If there are multiple leaves that are farthest from the problem node and both 
paths are possible, either rotation will work to make the tree AVL again.

Determining the necessary rotation
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Another example
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Some visualisations: a helpful tool

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html


