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Chapter 1 
Introduction 

 

In the United States, transportation accounts for 31% of all U.S. greenhouse gas emissions 
and 180% of all domestic crude oil production1. Electrification of the transportation sector is one 
potential path to simultaneously reduce greenhouse gas emissions and dependence on foreign oil. 
However, transportation electrification is not without challenges. In order for electrified 
transportation to result in substantial greenhouse gas emissions reductions, the fuel sources for 
electricity need to come from low-carbon resources, such as wind and solar power plants. And, 
the aging U.S. electricity infrastructure will need to be modernized in order to incorporate large 
amounts of electrified transportation without substantially degrading electricity reliability. While 
there are a number of useful studies on the greenhouse gas impacts of transportation 
electrification, only recently have researchers begun to understand the impacts of electricity on 
electric power infrastructure. Thus, the primary goals of this research project were to understand 
these impacts in detail and to develop new methods for reducing the impact of transportation 
electrification on the electricity transmission and distribution infrastructure.  

In particular, this report focuses on understanding and mitigating the impact of transportation 
electrification on the medium and low voltage distribution infrastructure, through which 
electricity is transported from the bulk power grid, through neighborhoods, to individual homes 
and businesses. Distribution systems in residential neighborhoods with particularly high plug-in 
electric vehicle adoption rates may see substantial load increases in the relatively near future, 
making this problem particularly timely. In prior work2, researchers identified these distribution 
system impacts to be notably ill understood. This project focused specifically on the impacts of 
electric vehicles on two key components of power distribution systems: residential service 
transformers, and underground cables.  

Service transformers are one of the most important components of the power grid. Every 
home and business connects to the power grid through these relatively small transformers. 
Because of cost considerations they do not include any telemetry systems that can inform utilities 
of their health, making it difficult for utilities to know when these components are overloaded. 
Most residential service transformers are rated to serve between 10 and 50 kVA of load, and 
typically serve 5-15 homes or small businesses. Yet a single plug-in electric vehicle (PEV) with 
a fast charging system (240 V Level 2 charging) will consume about 7 kVA. Three electric 
vehicles will nearly use the entire capacity of a 25-kVA transformer. Because of this potential for 
overloads, this project studied the impact of PEVs on service transformers in detail. Chapter 2 
describes results from a detailed study of the impact of PEVs on service transformers, for two 
climactically distinct locations (Vermont and Arizona) and for several different types of PEV 
charge management systems designed to mitigate these impacts. The results clearly show that the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Annual!Energy!Outlook,!U.S.!Department!of!Energy,!Energy!Information!Agency,!2014.!
2!Jonathan!Dowds,!Paul!Hines,!Chris!Farmer,!Richard!Watts,!Steve!Letendre,!Plug�in!Hybrid!Electric!Vehicle!
Research!Project:!Phase!II!Report.!UVM!Transportation!Research!Center.!March!25,!2010.!
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lower temperatures in Northern climates (such as Vermont) provide a substantial margin for 
additional PEV adoption, relative to hot climates where even low levels of PEV adoption can 
cause significant damage. In addition, the research team, in partnership with Green Mountain 
Power, installed two new “Smart” transformers, which included detailed thermal monitoring 
software. Chapter 3 describes results from this data collection and modeling work.   

Secondly, this project studied the impact of PEV adoption on underground cables. 
Underground cables, as with service transformers, are critical to many medium voltage power 
distribution systems. Since they are expensive and time-consuming to replace, understanding the 
impact of new loads on these components is an important part of understanding the overall 
impact of electric vehicles on the grid. As with transformer impacts, we found that the impact of 
PEVs on underground cables was particularly ill understood in the research literature. Based on a 
review of this literature, the research team found that the impact of rainfall on underground 
cables was a particularly notable gap. To address this gap, the team developed a new method to 
model the impact of rainfall on water and heat transport in the soil surrounding a cable. This new 
method makes it possible to accurately predict soil moisture and heat transfer variation based on 
recorded weather conditions. This should make it possible to adjust the load limits of 
underground cables, based on actual conditions, which will allow for more efficient use of these 
important distribution system components. Chapter 4 of this report describes the results of this 
new modeling method. 

Finally, this project studied new methods to dynamically adjust the number of electric 
vehicles that are charging simultaneously, in order to mitigate the risk of electricity infrastructure 
damage from electric vehicle charging. While other researchers have also developed methods to 
dynamically manage electric vehicle charging, most have suggested centralized optimization-
based methods, which tend to raise concerns about Smart Grid privacy and security. Instead, this 
project studied an alternative approach that harnesses algorithms used in communications 
systems (such as the Internet, home Wi-Fi networks or wireless sensor networks) in order to 
ensure that vehicles do not overload the grid, while preserving privacy and vehicle autonomy. 
This new “Packetized” approach to PEV charge management is described in detail in Chapter 5, 
which also presents results from extensive tests of this approach. 

Together these results suggest that PEV adoption can have impacts on the electric power 
distribution infrastructure, but that these impacts can be managed. Locations with very high 
levels of PEV adoption may need to upgrade aging infrastructure, however, areas with cooler, 
high-moisture climates (such as Vermont) may be able to leverage existing infrastructure for 
some time before extensive upgrades are needed to support large-scale transportation 
electrification. If large-scale adoption of PEVs does occur in some areas, methods such as the 
packetized approach may substantially reduce the need for large-scale increases in transmission 
and distribution infrastructure. 

 



Chapter 2
Estimating the Impact of Electric Vehicle Smart
Charging on Distribution Transformer Aging⇤

Alexander D. Hilshey, Paul D. H. Hines, Pooya Rezaei, Jonathan R. Dowds

Abstract

This paper describes a method for estimating the impact of plug-in electric vehicle (PEV)
charging on overhead distribution transformers, based on detailed travel demand data and un-
der several different schemes for mitigating overloads by shifting PEV charging times (smart
charging). The paper also presents a new smart charging algorithm that manages PEV charg-
ing based on estimated transformer temperatures. We simulated the varied behavior of drivers
from the 2009 National Household Transportation Survey, and transformer temperatures based
an IEEE standard dynamic thermal model. Results are shown for Monte Carlo simulation of a
25kVA overhead distribution transformer, with ambient temperature data from hot and cold cli-
mate locations, for uncontrolled and several smart-charging scenarios. These results illustrate
the substantial impact of ambient temperatures on distribution transformer aging, and indicate
that temperature-based smart charging can dramatically reduce both the mean and variance
in transformer aging without substantially reducing the frequency with which PEVs obtain a
full charge. Finally, the results indicate that simple smart charging schemes, such as delaying
charging until after midnight can actually increase, rather than decrease, transformer aging.

1 Introduction
With a growing number of mass-market plug-in hybrid and battery electric vehicles (collectively
plug-in electric vehicles, PEVs) currently for sale or scheduled to go on sale, there is a growing
need to understand the impact that PEV charging loads will have on the electricity distribution
infrastructure. Substantial research exists regarding the impacts of PEVs on gasoline consump-
tion [1, 2], power-plant emissions [3, 4], electricity costs [5, 6, 7], transmission adequacy [8], and
generating supply adequacy [7, 9, 10]. However, the literature on medium and low voltage distri-
bution system impacts (see Sec. 1.2) is more limited and offers less guidance to utilities looking to
incorporate PEV impacts into their maintenance and investment plans.

Several factors combine to make quantifying the impact of PEVs on the medium and low volt-
age distribution infrastructure a particularly pressing issue. First, the social benefits offered by
PEV deployment in terms of reduced oil consumption and life-cycle greenhouse gas emissions

⇤This chapter is a modified version of the following publication: Alexander D. Hilshey, Paul D. H. Hines, Pooya
Rezai, and Jonathan R. Dowds, “Estimating the Impact of Electric Vehicle Smart Charging on Distribution Transformer
Aging,” IEEE Transactions on Smart Grid, Vol. 4, No. 2, 2013.
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have prompted policies at the state and federal levels geared toward increasing the rate of PEV
adoption [11, 12, 13]. Second, because early PEV adopters are likely motivated, at least in part,
by environmental concerns, and because there is evidence from past hybrid electric vehicle sales
that environmentally motivated vehicle consumers tend to be geographically clustered [14, 15], it
is likely that PEV sales will be concentrated in particular areas. This clustering means that PEV
charging loads will impact local distribution infrastructure well before the impacts on transmis-
sion or generation infrastructure is significant. If, as is suggested in [16], these impacts are severe
distribution utilities may need to make significant infrastructure investments in high-adoption lo-
cations to facilitate this new load. Accurate information on PEV impacts is essential to ensure that
these investments are made in an efficient manner. Thus the objective of this paper is to present,
and illustrate the utility of, a computational method for estimating the additional transformer aging
resulting from PEV charging load and to evaluate different approaches to manage the additional
transformer load from PEV charging.

1.1 Background on modeling PEV power demand

Accurately estimating the impact of PEV charging on electric power system components requires
both component models and good estimates of the magnitude and timing of demand increases due
to PEV charging. Early PEV research assumed very simple charging profiles, such as assuming
that vehicles will charge daily starting at 17:00, 18:00 or 19:00 hours, with batteries fully depleted
at the start of each charge cycle [17, 2, 7, 18]. However actual PEV charging loads will depend
highly on travel patterns, which vary tremendously from driver to driver and day to day. To better
capture this variability in driving behavior, researchers have used either detailed GPS data for small
groups of drivers, or survey data from larger populations. Ref. [19] used data from 9 drivers to
estimate variability in daily miles driven, but with fixed evening arrival times. Another study [20]
used GPS data from 76 vehicles to derive a stochastic model of miles driven and arrival/departure
times. Reference [21] uses a larger set of GPS data to develop a Monte Carlo model that is similar
to the one presented here, but the data are not used to model the miles driven, which is necessary
to estimate the battery state-of-charge on arrival. Other researchers have also use Monte Carlo
methods to study PEV charging impacts [22, 23, 24] but do not specifically consider distribution
transformer aging. The authors in [22] study harmonics due to PEV fast charging; Ref. [23] in-
vestigates system level PEV charging impacts including bus voltages, branch currents, and energy
losses; and [24] uses a Monte Carlo model to predict reliability, efficiency and profitability of
Vehicle-to-Grid (V2G) technology.

While GPS data can allow one to estimate day-to-day variability in driver behavior, the small
sample sizes, typical of GPS studies, may result in biased outcomes. An alternative (or perhaps
supplement) is to use large-scale driver survey data, such as the US National Household Travel
Survey (NHTS) [25] to estimate driver behavior. Ref. [26] used NHTS data to develop a prob-
abilistic model for PEV loads, but focused on modeling large numbers of vehicles, such that the
patterns for individual PEVs are averaged. This paper also employs the NHTS data, but with a
pure sampling strategy that allows for precise tracking of vehicle departure and arrival times, and
the battery state of charge.

4
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1.2 Background on transformer aging models

There is conflicting evidence regarding the impact of PEVs on the residential distribution infras-
tructure. Ref. [16] uses a time-series model of transformer aging and argues that PEV charging
could decrease transformer life by 93%. The study results, however, are based on a transformer
model [27] that does not consider the impact of transient ambient temperatures. Another study
[28] suggests that a PEV penetration level as small as 10% could induce additional distribution
transformer overloading beyond planned overloading. Ref. [29] discusses two residential distribu-
tion circuits and estimates that distribution infrastructure costs could increase by 19% and energy
losses could increase by 40% with substantial (60%) PEV deployment.

Transformers are among the most costly components in the medium and low voltage distri-
bution infrastructure, and therefore, transformer aging is a key consideration when evaluating the
impacts of PEV charging and deciding whether or not to employ smart charging. Transformer
aging depends highly on the state of internal insulation material, which is impacted by internal
transformer temperatures, specifically the hottest spot temperature. Accurately modeling hottest
spot temperature is crucial to accurately predicting transformer aging. Pierce [30] provides a de-
tailed thermodynamic model of transformer temperatures and fluid flow during transient tempera-
ture and loading conditions. This method became the industry standard when it was published in
the 1995 revision of IEEE C57.91 [31] as Annex G. The Annex G method is not, to our knowl-
edge, contested in the existing literature, and was thus chosen for the transformer model used in
this paper.

1.3 Background on Smart Charging

The extent to which PEV charging will impact the distribution infrastructure will depend highly
on the charging method used. For instance, the results of [8] and [32] suggest that impacts of PEV
charging on components of residential feeders could be minimal given the presence of smart charg-
ing, and Ref. [33] argues that PEV deployment with smart charging could yield net benefits for the
distribution system by leveling power demand and thus reducing distribution losses per unit energy.
Ref. [19] used GPS travel data to obtain expected transformer insulation life in different charging
scenarios, and proposed a smart-charging algorithm to reduce the loss of life in transformers. The
authors in [34] used time-of-use price to find optimal charging loads, which minimize the charging
cost in a regulated market. They argue that using their method reduces cost and flattens the load
curve. Ref. [35] used the same GPS data as [20] to predict realistic driving habits and proposes
a decision-making process for charging based on a fuzzy-logic system. The authors in [36] pro-
posed an optimal charge management algorithm for a large number of PEVs in a parking lot and
compare their optimization algorithm with more traditional methods. Ref. [37] investigated uni-
directional V2G to maximize aggregator profit while satisfying system load and price constraints;
different smart charging algorithms for a hypothetical group of commuter cars are simulated to
obtain a continuous variable charge rate. They showed the benefits of combining regulation and
reserves bids [38] and concluded that that price constrained optimal bidding outperforms other
methods. Centralized charging of PEVs is studied in [39] to minimize distribution network losses
using three different objective functions and using simplified travel behavior. In addition, there is
substantial international research into electric vehicle smart charging (e.g., [40, 41, 42]), as well as
international efforts to develop standards for PEV communications (e.g., ISO 15118 [43]).

This paper extends previous work [44] to describe both a method for estimating the impact
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of PEV charging on overhead distribution transformers (given a time-series transformer insula-
tion material thermal model and PEV charging demand derived from observed light-duty vehicle
travel patterns) and a method for mitigating this impact through a transformer temperature-based
smart charging algorithm designed to reduce damaging transformer overloading. Furthermore,
temperature-based control is compared to several other approaches to smart charging. Sec. II
describes a method for modeling residential load with PEV charging. Sec. III describes the trans-
former thermal model, summarizing and providing a supplemental guide to the Annex G trans-
former thermal model. Sec. IV describes the various smart charging algorithms employed, which
is followed by results (Sec. V). Finally we summarize our conclusions in Sec. VI.

2 Modeling PEV charging loads
In this paper, residential load profiles are comprised of two components: residential baseline load
(Lh) and load from PEV charging (Lv). As we are primarily focused on the effect of PEV loads,
we assumed that each home connected to a distribution transformer has identical, deterministic
baseline load. However, in order to study travel pattern variation, we sampled from empirical
travel data to develop a Monte-Carlo model of the PEV portion of the residential load profile.

2.1 Residential baseline load without PEV charging

The National Energy Modeling System (NEMS) reported itemized residential load profiles in [45],
which are interpreted in [28] to produce a single home daily load profile. We fed these data into
a cubic spline to produce a one home, 24-hour load profile, Lh(t), with one minute time steps.
Our model multiplied this daily pattern by the quantity of homes (nh) serviced by an overhead
distribution transformer to obtain the total transformer load, before adding vehicles. The power
factor for the residential loads was assumed to be 0.9 lagging. The result is a baseline demand
profile, which we assume to be constant from day to day over a one-year period. Fig. 1 displays the
daily baseline demand profile for a 25kVA transformer servicing 12 homes and 6 PEVs, along with
the travel patterns for the 6 PEVs. Baseline load values in Fig. 1 that are in excess of the 25kVA
transformer rating represent periods of planned overloading, which are acceptable according to
[31].

2.2 Additional load from PEV charging

This section describes the method used to develop a Monte Carlo model of PEV load (Lv), based
on National Household Transportation Survey data [25]. The NHTS is a comprehensive survey
of U.S. travel patterns conducted by the Federal Highway Administration. The survey data aim
to include all trips taken by all members of the household within a 24 hour period including the
length, timing, duration and mode of transportation for each trip. As the NHTS travel data do
not reflect behavior of PEV-specific drivers, we assume that travel behavior of PEV and non-PEV
drivers is indistinguishable.

The goal of the PEV charging model was to estimate the additional time-varying load that
would result from nv vehicles charging at a certain point in a power grid. For each one-year run
of our model we randomly selected nv vehicles from among the vehicles in the New England
subset of the NHTS data that both start and end the day at home. In our model half of the vehicles
were assumed to have the charging and efficiency characteristics of the Chevrolet Volt (10.4 kWh

6
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Figure 1: The top panel shows the daily baseline load profile with and without PEVs for a 25kVA overhead distribution
transformer servicing 12 homes and 6 randomly selected PEVs charging at AC Level 1 and AC Level 2. Both charging
levels correspond to the same sample set of PEV charging behavior. The middle and lower panels show the state of
each vehicle throughout the day, which is one of: away (white), parked but not charging (gray), or charging (black).

battery and 0.26 kWh/mile), and the other half had the characteristics of the Nissan Leaf (24 kWh
and 0.24 kWh/mi)1. Additionally, we assumed that all PEVs charge exclusively from a home
charging station. Without smart charging in place, we assumed charging begins immediately upon
the vehicle’s arrival at home and continues until either the battery reaches full capacity or the
vehicle begins a new trip. We assumed either AC Level 1 (1.4 kW) or AC Level 2 (7 kW) charging
as established in [46] and 85% charge efficiency as reported in [47]. Based on data obtained from
a GM Volt (Fig. 2), we assumed that the power draw was constant until the battery fully charged
and that the power factor was 1.0.

The sampling method used in this paper represents the state of each vehicle v using two vari-
ables: the state-of-charge for each battery (represented by Dv, the amount of energy needed to fill
the battery) and a binary variable, Av, indicating whether the vehicle is parked at home and con-
nected to a wall socket. Thus, the time required to fully charge the battery of vehicle v at charge
rate Pv is Tv = Dv/Pv. If the step size for vehicle modeling is �t (in units of hours), the load (in

1Battery size and efficiency calculated from data provided in the vehicle owner’s manuals from GM and Nissan.
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Figure 2: AC power consumption and power factor for a full (AC Level 1) charge of a GM Volt. Data courtesy of
Green Mountain Power.

kW) due to vehicle v during time interval [t, t+�t) is:

Lv(t,�t) =

8
><

>:

Av(t)Pv, ifTv(t) � �t

Av(t)
Dv(t)
�t if 0 < Tv(t) < �t

0, ifTv(t)  0
(1)

For the purposes of this model, we randomly select a weekday and a weekend driving profile from
the New England subset of the NHTS data for each v. These are reproduced to give a one-year
charging pattern for each vehicle. We chose a vehicle model step size (�t) of 0.25 hours.

The total load (in kVA) on the transformer is the combination of the nh (complex) residential
loads and loading from nv randomly selected PEVs:

L(t) =

�����nhLh(t) +
nvX

v=1

Lv(t)

����� (2)

Fig. 1 illustrates the results from the model by showing the additional load due to 6 PEVs added
to the load for 12 homes, at Level 1 and Level 2 charging rates.

It is important to note that the baseload data Lh(t) (as well as the temperature data for the
thermal model below), were initially available at hourly intervals. These were translated into one-
minute data (the step size for the thermal model) using a cubic spline. The PEV load is also
translated into one-minute data, from the 15 minute step size in the model, assuming that the PEV
load does not change within each 15 minute interval.

3 Modeling Distribution Transformer Aging
Our model for estimating distribution transformer aging simulates the thermal performance of
an overhead distribution transformer, installed in a location with a known trajectory of ambient
temperatures TA(t) and load L(t), based on IEEE C57.91-1995. One-minute ambient temperature
data, TA(t), were obtained by feeding hourly temperature data from the National Climatic Data
Center2 into a cubic spline to produce one-minute data. The combined PEV/baseline data came
from (2). We obtained transformer specifications from data provided by a local distribution utility.

The output of the model is an estimate of the total one-year accelerated aging of the transformer
2http://www.ncdc.noaa.gov
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insulation material, in years. When this “Factor of Equivalent Aging” (FEQA) is greater than 1.0,
the transformer is aging at a rate that is greater than its designed level of 1 year per year.

3.1 Transformer thermal model

The transformer thermal model estimates internal transformer temperatures using the Annex G
method of IEEE C57.91-1995 [31]. Annex G describes the heat transfer and fluid flow dynamics
of the transformer while accounting for transient loading and ambient temperature conditions,
changes in oil viscosity and winding resistance, and cooling mode. While the reader should refer
to Annex G for precise details, the core of the method consists of three differential equations for
internal transformer temperatures, which have the general form:

dTW

dt
= f

1

⇣
L2(t), TW (t)� TDAO(t)

⌘
(3)

dTO

dt
= f

2

⇣
L2(t), TA(t)� TO(t), ... (4)

TW (t)� TDAO(t))
dTHS

dt
= f

3

⇣
L2(t), TW (t)� THS(t)

⌘
(5)

The first equation (3) describes the average transformer winding temperature, TW (t), as a function
of the square of load, L2(t), and the average temperature of fluid in the winding cooling ducts,
TDAO(t). The second (4) models the average cooling oil temperature, TO(t), based on the dif-
ference between TW (t) and TDAO(t), and between TA(t) and TO(t). Equation (5) describes the
transformer hottest spot temperature based on the difference of TW (t) and THS(t). Calculated val-
ues for (5) are used in the transformer damage function, as described in Sec. 3.3. Following the
procedure in Annex G, we solved (3)-(5) using first order Euler’s method, with a 1-minute time
step.

3.2 Transformer insulation loss-of-life equations

Transformer insulation typically fails prior to other components within a transformer. For this
reason, the estimated life of a transformer is primarily a function of aging within the transformer
insulation. Accelerated aging is a measure of how quickly the transformer insulation degrades
under actual conditions, relative to degradation at rated loading and rated ambient temperature
conditions. Clause 5 of IEEE Std. C57.91-1995 [31] provides a method for estimating distribution
transformer aging, which we summarize here.

Excessively high hottest spot temperatures damage a transformer’s insulation through the de-
structive process of pyrolysis [48]. To model this, the calculated THS(t) are fed into a damage
function [31] that estimates the instantaneous accelerated aging of the transformer (FAA(t)), which
can be integrated to compute the total transformer thermal aging over a time horizon (T ) to yield
the average Factor of Equivalent Aging (FEQA):

FEQA(t) =
1

T

Z t

t�T
e

⇣
15,000

THS,R+273�
15,000

THS(t)+273

⌘

dt, (6)

Equation (6) was used to estimate the total distribution transformer aging over a T = 1 year period.
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Figure 3: Illustration of model estimating distribution transformer aging over the course of one day. The transformer
modeled is a 25kVA overhead distribution transformer servicing 12 homes. The temperature data come from Phoenix,
Arizona, 2010. The transformer is modeled under zero PEVs, 6 PEVs with uncoordinated AC Level 2 charging and
6 PEVs with temperature-based AC Level 2 smart charging (“Smart” in the graph above). The top panel shows load
as seen by the transformer. The middle panel shows ambient temperature and internal transformer temperatures; TO

and TW are only shown for the base load case. The bottom panel shows the instantaneous factor of accelerated aging,
FAA(t).

3.3 Distribution transformer aging model sample result

Fig. 3 illustrates the combined effect of the transformer thermal model and transformer insulation
aging equations, with and without PEV-charging load (nv = 6) and under smart and uncontrolled
charging. For this sample result, the transformer thermal model produced transformer internal
temperatures and FAA values for a 25kVA distribution transformer serving 12 homes. Table 1 de-
scribes the transformer parameters used in this study. The ambient temperature in Fig. 3 represents
a 2010 “hot” day in Phoenix, AZ. As shown in the lower panel of Fig. 3, the uncontrolled PEV
charging case exhibits a brief period of extreme aging, approaching 50 years per year.

4 Smart Charging Methods
If a distribution transformer is overloaded due to PEV charging, it can either be replaced with a
larger unit, or the PEV load can be managed with financial incentives and smart charging tech-
nology. This section describes several different approaches to smart charging, which might be
employed to to extend the life of a transformer serving several electric vehicles.

A successful smart charging algorithm should ensure that all PEVs receive as close to a full
charge as possible, thus minimally inconveniencing the PEV owner, while mitigating the negative
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Table 1: Transformer Parameters Used*

Parameter Symbol 25kVA
Rated httest spot temp. THS,R 84.4 �C
Rated winding temp. TW,R 77.0 �C
Rated ambient temp. TA,R 30 �C

Volume of oil - 41.6 L
Mass of core MC 79.9 kg

*Parameter values were obtained from transformer manufacturer specification sheet provided by a local utility. Param-
eter values not provided by the manufacturer (not shown) were chosen in accordance with Annex G recommendations.

impacts of high loads on the electricity infrastructure. The smart charging algorithm proposed in
Sec. 4.1 seeks to do this directly by determining how many PEVs may charge at a given time
without pushing the distribution transformer into sustained, rapid accelerated aging. Other ap-
proaches are discussed in Sec. 4.2. In all cases, we assume that smart meters (Advanced Metering
Infrastructure) are installed at each home, which allow a charge management device at the trans-
former to monitor instantaneous loads and send signals to vehicles connected to the transformer to
forgo charging for a specified time period. Finally, we also assume that sufficient financial incen-
tives and technology are in place to ensure participation. While this last assumption is unrealistic
(some vehicle owners are unlikely to participate in smart charging programs), doing so allows us
to understand the impact of different approaches.

4.1 Smart charging based on transformer temperature

Our smart charging algorithm requires two inputs: the transformer aging status, comprised of
FAA(t) and FEQA(t), which are derived from the aging calculations in Sec. III, and the quantity
of PEVs requesting charge, qr(t). The algorithm yields one output: the quantity of PEVs that may
charge at time t: q(t)  qr(t). When implemented in a charge management device associated
with a transformer, the algorithm operates in two steps. Step one determines q(t). The second step
dispatches a signal to smart meters, which subsequently signal each vehicle to either continue or
discontinue charging. Step two is performed by random allocation, which has the advantages of
1.) not requiring the exchange of information pertaining to battery level and 2.) avoiding the need
to decide which PEV “deserves” charging precedence.

To determine the modeled transformer aging status, we assume that smart meters report instan-
taneous household load to the transformer, as well as the number of vehicles available for charge
management, qr(t). The aggregated L(t) and a measured value for TA(t) are fed into the trans-
former thermal model (Sec. 3), which yields FAA(t) and FEQA(t) averaged over a period of time.
An FEQA averaging period of 12 hours was chosen to ensure that brief periods of high-temperature
operation did not extend to produce high average aging over longer periods. Numerical tests of the
algorithm with averaging periods of 6, 12, 18, and 24 hours did not show that the averaging period
had a statistically significant effect on annual transformer aging.3

After calculating FAA(t) and FEQA(t), the algorithm compares the modeled transformer aging
status against four aging thresholds (HEQA, Hmin

, H
med

, and H
max

) to determine whether q(t)
should be increased, decreased, or held constant in the next time period. Equation (8) is used to

3In our test, mean aging ranged from 1.572 to 1.588, with a standard deviation of 0.2. The differences were not
significant.
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choose the change in q(t) from the previous time period:

q(t) = q(t��t) +�q(t) (7)

�q(t) =

8
>>>>>><

>>>>>>:

+1, if (FAA < H
min

) or
(FAA < H

med

&FEQA < HEQA)
�1, ifFAA > H

med

�2, ifFAA > H
max

0 otherwise.

(8)

Table 2 provides suggested aging threshold values, as determined from numerical experimentation.

Table 2: Aging Thresholds used for Temperature-based Smart Charging Algorithm

HEQA H
min

H
med

H
max

2.5 3.5 4 4.75

Unless q(t) is greater than qr(t), in which case all requesting PEVs may charge, the smart
charging algorithm randomly chooses q(t) vehicles from the set of vehicles that are currently re-
questing charge, qr(t), and signals the smart meters to allow or forgo charging to their respective
PEVs.

Fig. 3 highlights the differences between uncontrolled and smart charging using a transformer
operating during a high-temperature, 24 hour period for Phoenix, Arizona and serving six PEVs.
The smart charging algorithm delayed charging for several vehicles, away from the hottest hours
or heaviest load periods of the day.

Note that the communication costs for this control algorithm are minimal. The only data ex-
change that is needed is for the vehicle to query a “transformer control agent” once every 15
minutes to request permission to charge. The transformer would need to assemble the requests and
randomly grant a subset of these requests, according to (8). The transformer control agent does
not need to gather information about the battery state of charge, the departure time of the vehicle,
or whether the PEVs will charge at other locations, which is advantageous in terms of customer
privacy and simplicity. The algorithm, as implemented, is fully capable of handling the adding
and removing of vehicles, assuming that the vehicles can communicate with the control agent. We
assume that this communication would be encouraged through a preferential smart charging rate
structure.

The algorithm could also be applied without major changes to mitigate overloads on a distri-
bution feeder transformer, so long as there was sufficient communication bandwidth to facilitate
requests between the vehicles and the transformer. Also, the algorithm assumes that PEVs can
only be controlled in a binary manner, making it feasible to implement within bandwidth-limited,
high latency first generation Advanced Metering Infrastructure (AMI). As AMI improves, real-
time communications between grid infrastructure and smart meters will be increasingly feasible,
making it feasible to adapt the temperature-based control algorithm for bi- or unidirectional and
continuous charging control (V2G).

4.2 Other smart charging methods

To compare temperature-based smart charging to other approaches, we measured transformer aging
and the frequency of charge mitigation for three existing smart charging methods:

12
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1. After Midnight (AM): all charging is postponed until after 12:00 am, and before 6:00 am to
avoid the peak load period;

2. Load Cutting (LC): charging starts immediately upon the arrival of the PEV at the home
charging station but is limited based on the aggregate transformer load such that PEV charg-
ing (w/ 15 minute intervals) is randomly allocated every 15 minutes, to ensure that the
transformer load remains below its load limit; in a variant of this method, the load limit
is increased to 30kVA during nighttime hours (10:00 pm - 8:00 am);

3. “Randomized Charging Strategy”: following the method proposed in [19], a random array
of charging time slots, with 15 minute intervals, is allocated between 7:00 pm or the vehicle
arrival time (whichever is later), to ensure that the vehicle is charged by 6:00 am.

5 Results
As concluded in previous work [44], ambient temperatures can dramatically affect the impact of
PEV charging on transformers. Therefore, we examined PEV charging impacts with one year of
ambient temperature data from two climatically distinct U.S. cities: Burlington, Vermont (VT) and
Phoenix, Arizona (AZ), which have average July temperatures of 21.4�C and 34.8�C respectively.
The main goal was to compute the annual factor of equivalent aging (FEQA), which we also refer
to as the transformer’s aging rate. To compensate for variability in PEV driver travel behavior,
we ran the transformer model for 10,000 sets of randomly generated travel patterns, under each
of the following five test conditions, for both locations: 1) no PEV charging; 2) AC Level 1,
uncoordinated PEV charging; 3) AC Level 1, temperature-based smart PEV charging; 4) AC Level
2, uncoordinated PEV charging; and 5) AC Level 2, temperature-based smart PEV charging. In
addition, the three smart charging algorithms from Sec. 4.2 were compared, for both charging
levels and in both locations. As in Fig. 3, the 25 kVA transformer was assumed to serve 12 homes
and 6 vehicles, each with unique weekday and weekend travel patterns for each model run. The
average baseline load was 22.8 kVA, which is near the rated limit.

Figure 4 shows the simulation results for no PEVs, uncontrolled, and temperature-based charg-
ing for each location. The uncontrolled charging results show a substantial difference between
AC Level 1 and 2 charging. Level 2 charging increases aging rates by a factor of 5.6 and 4.2
above the uncontrolled level, in Vermont and Arizona respectively. Clearly, higher charging rates
will result in increased aging rates for distribution infrastructure. Additionally, the results show
that temperature-based smart charging can dramatically reduce transformer aging. The proposed
smart charging algorithm reduced average transformer aging in Burlington by a factor of 1.4 for
AC Level 1 and a factor of 4.8 for AC Level 2, relative to uncontrolled charging. In Phoenix, the
differences are greater, with average FEQA falling by factors of 1.8 and 6.3 for Levels 1 and 2,
respectively. For all cases, a two-sample Kolmogorov-Smirnov test shows statistical significance
of the reduction in aging from temperature-based smart charging (p < 10�3 for all cases).

The results also indicate that temperature-based smart charging can dramatically reduce the
uncertainty in transformer aging that results from differing travel patterns among vehicles. The 90th
percentile aging rates for the Level 2 cases (from Fig. 4) decrease by an order of magnitude under
temperature-based smart charging in both Arizona and Vermont. This indicates that temperature-
based smart charging can reduce both the average, and the variance in transformer life expectancy
under high levels of PEV adoption.
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Figure 4: The annual factor of equivalent aging (FEQA) for Burlington, VT & Phoenix, AZ for no PEVs, uncontrolled
PEV charging, and temperature-based smart charging. The graph displays average (bars) and 10th�50th & 50th�90th

percentile (black lines) FEQA values for each location and charging rate.

It is important to emphasize that an algorithm that reduces aging but does not allow adequate
charging to the PEV batteries is not desirable. To ensure that the proposed smart charging method
resulted in adequate PEV charging, we measured the number of cases in which vehicles fully
charged before beginning their next trip, after having been parked at home for an extended period
of time. Specifically, we define a “successful charge” to be a period in which the battery was
charged to at least 95% of its capacity after being at home long enough to have received a full
charge at the unmitigated Level 1 or 2 charging rate. We found that for both charging rates and
both locations, vehicles received successful charges in greater than 98% of extended home stays.
The only exception to this was AC Level 2 in Arizona which showed an average of 97% successful
charge rate. Given that the algorithm achieves a very high rate of charging success for the case of
a very heavily loaded transformer, we conclude that the proposed scheme would have almost no
noticeable effect on most PEV owners.

For comparison purposes, the three smart charging methods described in Sec. 4.2 were evalu-
ated under the same model parameters as those for the temperature-based smart charging method
(both locations and both charging rates). As before, we compared the average annual aging rate
(FEQA) for 10,000 iterations and the average percent of successful charges. The results of these
simulations are found in Figs. 5 and 6.

All simulated cases showed that load cutting method substantially reduced distribution trans-
former aging. For AC Level 1, the aging rate decreased from 0.42 (for uncontrolled charging) to
0.18 in VT, and from 2.30 to 1.07 in AZ. For AC Level 2, the average aging rate decreased from
2.34 (for uncontrolled charging) to 0.15 in VT and from 9.79 to 0.90 in AZ. However, the success-
ful charge rate for load cutting was only 66.6% for AC Level 2 and 95.2% for Level 1, which is
notably lower that what was obtained from the temperature-based algorithm. This indicates that
controlling transformer load based on temperature or aging, rather than merely based on load, will
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Figure 5: Transformer aging (FEQA) results for uncontrolled charging, and four smart-charging methods: load cutting
(LC), after midnight (AM), randomized charging [19], and our temperature-based method. The graph displays average
(bars) and 10th � 50th & 50th � 90th percentile (black lines) FEQA values for each location and charging rate.

reduce the need to curtail PEV charging loads, likely leading to less customer aggravation. In order
to further explore the load-cutting method, we attempted to improve the results by increasing the
load limit by 20% (to 30 kVA) during night-time hours (10:00 pm to 8:00 am). This modification
caused the percent of successful charges to increase by as much as 10% in Level 2 charging (from
67% to 77%), but did not have a significant impact on successful charges in Level 1 charging,
or on the average aging rate. The reason is that in the simple load cutting method many Level 2
charging instances are cut when the transformer reaches its full load, but in Level 1 charging the
lower charging power allows more PEVs to obtain nearly a full charge before departing. How-
ever, in the modified load-cutting method a greater quantity of Level 2 charging occurs during the
night, without substantially increasing the aging rate. The results make the modified version more
desirable than the simple load cutting method, but still less attractive than the temperature-based
method.

At AC Level 1, the after-midnight method resulted in a decrease in aging from 0.42 to 0.15
(compared to uncontrolled charging) for Vermont, and from 2.30 to 0.90 Arizona. At AC Level 2,
however, the after-midnight method resulted in an increase in average aging rate from 2.34 to 2.91
and from 9.79 to 10.81 for VT and AZ, respectively. Additionally, the percent of successful charges
were quite low: 62.5% for Level 1 and 76.5% for Level 2. These results show that time-delayed
charging may only be helpful in reducing distribution transformer aging when AC Level 1 is used,
and can have a substantial negative impact on transformer life with higher charging rates. In both
cases, the after-midnight method results in a low rate of successful charges, because charging is
delayed until after 12:00 am.

The randomized charging strategy from [19] also produced good results in terms of mitigating
distribution transformer aging. For AC Level 1, the aging rate decreased from 0.42 to 0.19 in VT
and from 2.30 to 1.15 in AZ. For AC Level 2, the average aging rate decreased from 2.34 to 0.26
in VT and from 9.79 to 1.47 in AZ. However, the percent of successful charges was found to be
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Figure 6: Average percent successful charging for uncontrolled charging and each of the smart charging methods in
Fig. 5.

81.3% and 75.1% for AC Levels 1 and 2 respectively. Therefore, the randomized charging strategy,
which clearly is effective in reducing distribution transformer aging, may be less desirable given
the need to maintain a favorable battery state of charge.

6 Conclusions
This paper describes a method for estimating and mitigating the impact of electric vehicle charg-
ing on overhead distribution transformers by combining a transformer thermal aging model with
empirical travel behavior and a temperature-based smart charging algorithm. We use Monte Carlo
simulation to estimate thermal aging in a fully loaded 25 kVA overhead distribution transformer
serving 12 homes and 6 PEVs, with ambient temperature data from Phoenix, Arizona and Burling-
ton, Vermont. We compared the thermal aging in the transformer, as well as the likelihood that
vehicles would be able to successfully charge their batteries, for several smart charging algorithms,
including a new temperature based control algorithm proposed in this paper.

The results suggest a number of interesting conclusions. First, we found that in all cases the
warmer climate of Phoenix, AZ resulted in notably more transformer aging, relative to the cooler
climate of Burlington, VT. This indicates that, in cooler climates, a moderate amount of overload-
ing from PEV charging may not substantially decrease transformer life. The results also highlight
the need to use location-specific ambient temperature data when evaluating the impact of PEV
charging on thermally sensitive infrastructure. Additionally, because of the variability in driver
behavior and the exponential aging function, PEV charging is likely to introduce enormous un-
certainty in transformer aging, particularly for hot climates. Second, the results show that smart
charging in general, and the proposed temperature-based algorithm in particular, can substantially
reduce transformer aging. These reductions were substantially greater in the hot climate location,
relative to the cool climate one. In addition to this average effect, we found that smart charging can
also reduce uncertainty in transformer life, in the face of highly uncertain vehicle travel behavior.
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These benefits came with very little cost in terms of inconvenience to PEV drivers. In the
proposed temperature-based method, vehicles were able to charge their batteries to at least 95%,
after having been at home for long enough to get a full charge, in more than 97% of all cases.
While the model indicated that other smart charging algorithms can also reduce transformer aging,
methods that were not explicitly focused on mitigating transformer damage tended to result in a
greater number of unsuccessful charges. For the case of vehicles charging at AC Level 2 rates,
but only being allowed to charge after midnight, smart charging actually increased, rather than
decreased transformer aging over the uncontrolled case. Time-of-use pricing schemes, in which
vehicles could charge at a reduced cost after a certain hour, could have a similar negative impact on
the distribution infrastructure. This emphasizes the need to exercise caution when designing new
incentives and technology for time-delayed charging. Unintended consequences, such as creating
a sudden spike in load when lower-priced electricity becomes available, could have costly impacts
on power delivery infrastructure.

While the focus of this paper is on mitigating transformer damage due to electric vehicle charg-
ing, similar methods can be used (and similar results are likely to be obtained), if the proposed
temperature-based smart charging algorithm were applied to other large loads that can be time-
shifted, such as air-conditioners and water heaters. Also, the relatively smart-charging algorithm
proposed in this paper considers only one constraint: the thermal limit of a transformer. Future
work will focus on integrated control methods that can manage smart charging to satisfy the many
limits in a power system, such as bulk generation availability (and bulk prices) as well the thermal
limits of power transformers and underground cables. In addition, as the communications capabil-
ities of AMI systems improve, it will become increasingly feasible to deploy more sophisticated
load management algorithms. In future work, we will also investigate the potential benefits and
costs of continuous, rather than binary electric vehicle charge management methods.

Acknowledgment
The authors gratefully acknowledge Seth Blumsack for initial collaborative work on the topic of
transformer aging, three anonymous reviewers for helpful suggestions, as well as Lisa Aultman-
Hall, Jeff Frolik and Justine Sears for assistance with this research. Finally, the authors acknowl-
edge the Vermont Advanced Computing Core, which is supported by NASA (NNX 06AC88G), at
the University of Vermont for providing High Performance Computing resources that have con-
tributed to the research results reported in this paper.

References
[1] J. Gonder, T. Markel, M. Thornton, and A. Simpson, “Using global positioning system travel

data to assess real-world energy use of plug-in hybrid electric vehicles,” Transportation Re-
search Record, 2007.

[2] K. Parks, P. Denholm, and T. Markel, “Costs and emissions associated with plug-in hybrid
electric vehicle charging in the Xcel Energy Colorado service territory,” National Renewable
Energy Laboratory, Golden, CO, Tech. Rep., 2007.

[3] C. Samaras and K. Meisterling, “Life cycle assessment of greenhouse gas emissions from
plug-in hybrid vehicles: Implications for policy,” Environmental Science and Technology,
vol. 42, no. 9, pp. 3170–3176, 2008.

17



UVM TRC Report #14-010

[4] R. Sioshansi and P. Denholm, “Emissions impacts and benefits of plug-in hybrid electric
vehicles and vehicle-to-grid services,” Environmental Science & Technology, vol. 43, no. 4,
pp. 1199–1204, 2009.

[5] W. Kempton and J. Tomic, “Vehicle-to-grid power fundamentals: Calculating capacity and
net revenue,” Journal of Power Sources, vol. 144, no. 1, pp. 268–279, 2005.

[6] M. J. Scott and M. Kintner-Meyer, “Impact assessments of plug-in hybrid vehicles on elec-
tric utilities and regional U.S. power grids part II: Economic assessment,” Pacific Northwest
National Laboratory, Tech. Rep., 2007.

[7] S. Hadley and A. Tsvetkova, “Potential impacts of plug-in hybrid electric vehicles on regional
power generation,” Oak Ridge National Laboratory, Tech. Rep., 2008.

[8] C. Gerkensmeyer, M. Kintner-Meyer, and J. DeSteese, “Technical challenges of plug-in hy-
brid electric vehicles and impacts to the US power system: Distribution system analysis,”
Prepared for U.S. Dept. of Energy, Pacific Northwest National Laboratory, Tech. Rep., 2010.

[9] P. Denholm and W. Short, “An evaluation of utility system impacts and benefits of optimally
dispatched plug-in hybrid electric vehicles,” National Renewable Energy Laboratory, Tech.
Rep. NREL/TP-620-40293, 2006.

[10] M. Kintner-Meyer, K. Schneider, and R. Pratt, “Impact assessments of plug-in hybrid ve-
hicles on electric utilities and regional U.S. power grids part I: Technical analysis,” Pacific
Northwest National Laboratory, Tech. Rep., 2007.

[11] D. Crane and B. Prusnek, “The role of a low carbon fuel standard in reducing greenhouse gas
emission and protecting our economy, state of California.” State of California, Tech. Rep.,
2007.

[12] A. E. Farrell and D. Sperling, “A low-carbon fuel standard for California part 2: Policy
analysis, institute of transportation studies,” University of California, Davis., Tech. Rep.,
2007.

[13] EIA, “International energy outlook,” US DOE Energy Information Agency, Tech. Rep., 2008.
[14] M. E. Kahn and R. K. Vaughn, “Green market geography: The spatial clustering of hybrid

vehicles and LEED registered buildings,” The B. E. Journal of Economic Analysis & Policy,
vol. 9, no. 2, 2009.

[15] J. Sears, J. Dowds, L. Aultman-Hall, and P. Hines, “Travel demand and charging capacity
for electric vehicles in rural states: A Vermont case study,” Transportation Research Record,
2012.

[16] C. Roe, F. Evangelos, J. Meisel, A. Meliopoulos, and T. Overbye, “Power system level im-
pacts of PHEVs,” in Proceedings of the 42nd Hawaii International Conference on System
Sciences, Waikoloa, HI, 2009.

[17] EPRI, “Environmental assessment of plug-in hybrid electric vehicles: Volume 1: Nationwide
greenhouse gas emissions,” Electric Power Research Institute, Tech. Rep., 2007.

[18] D. Lemoine and D. Kammen, “Effects of plug-in hybrids electric vehicles in California en-
ergy markets,” in Proceedings of the TRB 86th Annual Meeting, 2007.

[19] Q. Gong, S. Midlam-Mohler, V. Marano, and G. Rizzoni, “Study of pev charging on residen-
tial distribution transformer life,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 404 –412, March
2012.

[20] A. Ashtari, E. Bibeau, S. Shahidinejad, and T. Molinski, “Pev charging profile prediction and
analysis based on vehicle usage data,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 341 –350,
March 2012.

18



UVM TRC Report #14-010

[21] M. Kuss, T. Markel, and W. Kramer, “Application of distribution transformer thermal life
models to electrified vehicle charging loads using monte-carlo method,” 25th World Battery,
Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibitionl, 2010.

[22] F. Koyanagi, T. Inuzuka, Y. Uriu, and R. Yokoyama, “Monte carlo simulation on the de-
mand impact by quick chargers for electric vehicles,” in Power Engineering Society Summer
Meeting, 1999. IEEE, vol. 2, 1999, pp. 1031 –1036 vol.2.

[23] F. Soares, J. Lopes, and P. Almeida, “A monte carlo method to evaluate electric vehicles
impacts in distribution networks,” in Innovative Technologies for an Efficient and Reliable
Electricity Supply (CITRES), 2010 IEEE Conference on, Sept. 2010, pp. 365 –372.

[24] C. Sandels, U. Franke, N. Ingvar, L. Nordströ andm, and R. Hamren, “Vehicle to grid: Monte
carlo simulations for optimal aggregator strategies,” in Power System Technology (POWER-
CON), 2010 International Conference on, Oct. 2010, pp. 1 –8.

[25] Oak Ridge National Laboratories. (2009) 2009 NHTS user notes. [Online]. Available:
http://nhts.ornl.gov/2009/pub/usernotes.pdf

[26] D. Wu, D. Aliprantis, and K. Gkritza, “Electric energy and power consumption by light-duty
plug-in electric vehicles,” IEEE Trans. Power Systems, vol. 26, no. 2, pp. 738 –746, May
2011.

[27] J. F. Lindsay, “Temperature rise of an oil-filed transformer with varying load,” IEEE Trans.
Power Apparatus and Systems, vol. PAS-109, no. 9, pp. 2530–2536, 1984.

[28] S. Shao, M. Pipattanasomporn, and S. Rahman, “Challenges of PHEV penetration to the res-
idential distribution network,” in Proceedings of the IEEE Power & Energy Society General
Meeting, Minneapolis, July 2009.

[29] L. P. Fernández, T. G. S. Román, R. Cossent, C. M. Domingo, and P. Frías, “Assessment of
the impact of plug-in electric vehicles on distribution networks,” IEEE Trans. Power Systems,
vol. 26, no. 1, pp. 206 –213, Feb. 2011.

[30] L. Pierce, “Predicting liquid filled transformer loading capability,” IEEE Trans. on Industry
Applications, vol. 30, Jan/Feb 1994.

[31] Transformers Committee of the IEEE Power Engineering Society, IEEE Std C57.91-1995:
IEEE Guide for Loading Mineral-Oil-Immersed Transformers. IEEE, 1995.

[32] M. Rutherford and V. Yousefzadeh, “The impact of electric vehicle battery charging on dis-
tribution transformers,” in Applied Power Electronics Conference and Exposition (APEC),
2011 Twenty-Sixth Annual IEEE, March 2011, pp. 396 –400.

[33] K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging plug-in hybrid electric
vehicles on a residential distribution grid,” IEEE Trans. Power Systems, vol. 25, no. 1, pp.
371–380, Feb. 2010.

[34] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li, “An optimized EV charging
model considering TOU price and SOC curve,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp.
388 –393, March 2012.

[35] S. Shahidinejad, S. Filizadeh, and E. Bibeau, “Profile of charging load on the grid due to
plug-in vehicles,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 135 –141, March 2012.

[36] W. Su and M.-Y. Chow, “Performance evaluation of an EDA-based large-scale plug-in hybrid
electric vehicle charging algorithm,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 308 –315,
March 2012.

[37] E. Sortomme and M. El-Sharkawi, “Optimal charging strategies for unidirectional vehicle-
to-grid,” IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 131 –138, March 2011.

19

http://nhts.ornl.gov/2009/pub/usernotes.pdf


UVM TRC Report #14-010

[38] E. Sortomme and M. El-Sharkawi, “Optimal combined bidding of vehicle-to-grid ancillary
services,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 70 –79, March 2012.

[39] E. Sortomme, M. Hindi, S. MacPherson, and S. Venkata, “Coordinated charging of plug-in
hybrid electric vehicles to minimize distribution system losses,” IEEE Trans. Smart Grid,
vol. 2, no. 1, pp. 198 –205, March 2011.

[40] M. Agsten, S. Schlegel, and D. Westermann, “On the optimization of the load of electric
vehicles,” Proceedings of the 18th IFAC World Congress, vol. 18, 2011.

[41] R. Schwerdfeger, M. Agsten, M. Ifland, S. Schlegel, A.-K. Marten, and D. Westermann,
“PHEV and BEV charge management strategies in microgrids,” CIGRE - The Electric Power
System of the Future - Integrating super grids and microgrids, 2011.

[42] A. De Almeida and E. Vine, “Advanced monitoring technologies for the evaluation of
demand-side management programs,” IEEE Trans. Power Systems, vol. 9, no. 3, pp. 1691
– 1697, August 1994.

[43] “Road vehicles – vehicle to grid communication interface,” International Organization for
Standardization, Standard ISO/IEC CD 15118-3, 2012 (in development).

[44] A. Hilshey, P. Hines, and J. Dowds, “Estimating the acceleration of transformer aging due to
electric vehicle charging,” Summer 2011 IEEE PES General Meeting, 2011.

[45] NEMS. (2001) Reload database documentation and evaluation and use in NEMS. [Online].
Available: http://www.onlocationinc.com/LoadShapesReload2001.pdf

[46] Society of Automotive Engineers, “SAE charging configurations and ratings terminology,”
SAEJ1772, 2011.

[47] K. Morrow and D. Karner, “Plug-in hybrid electric vehicle charging infrastructure review,”
U. S. Dept. of Energy, Idaho National Laboratory., Tech. Rep., 2008.

[48] G. Swift, T. Molinski, and W. Lehn., “A fundamental approach to transformer thermal
modeling–part 1: Theory and equivalent circuit.” IEEE Trans. Power Delivery, vol. 16, no. 2,
pp. 171–175, Apr 2001.

20

http://www.onlocationinc.com/LoadShapesReload2001.pdf


Chapter 3

Data-Driven Thermal Modeling of Residential Service
Transformers⇤

Andrew Seier, Paul Hines, and Jeff Frolik

Abstract

Sales of privately-owned, plug-in electric vehicles (PEVs) are projected to increase dra-
matically in the coming years; their charging will impact residential service transformer loads.
Transformer life expectancy is related to the cumulative effects of internal winding tempera-
tures, which are a function of such loading. Thermal models exist (for example, IEEE C57.91)
for predicting these internal temperatures, the most sophisticated being the Annex G model.
While this model has been validated with measurements from large power transformers, small
residential service transformers have been given less attention. Given increasing PEV loads,
a better understanding of service transformer aging could be useful in replacement planning
processes. Empirical data from this paper indicate that the Annex G model over-estimates
internal temperatures in small, 25 kVA, 65 �C rise, mineral oil immersed transformers. In or-
der to create a model that is both simpler, and more accurately tracks empirical transformer
data, this paper presents a method for modeling service transformers via genetic programming.
These results suggest that one can use a fairly simple thermal model in combination with data
from advanced metering infrastructure (AMI) to more accurately estimate service transformer
lifetimes, and thus more accurately plan for transformer replacement.

1 Introduction

This paper focuses on methods used to estimate the lifetime of service transformers in residential
areas. The term service transformer is used here to define the pole- or pad-mounted transformers
that directly serve residential loads. The service transformers considered in this paper are 25 kVA,
65 �C rise mineral-oil immersed devices. Though these particular assets are fairly inexpensive–
around $700 for pole-mounted and $1,500 for pad-mounted plus installation costs–the entirety of
the fleet will typically constitute a significant fraction of a distribution utility’s physical assets.

Sales of plug-in electric vehicles (PEVs) are expected to greatly increase. Inflating adoption
rates are predicted to stress the grid and require distribution transformer replacement [1], [2], [3].
For instance, Level 2 charging of PEVs draws 7.2 kVA of power from the grid. For a 25 kVA ser-
vice transformer, this amounts to 29% of the rated load. The average American household has two

⇤This work is currently in review for potential publication: Andrew Seier, Paul Hines, and Jeff Frolik, “Data-Driven
Thermal Modeling of Residential Service Transformers,” IEEE Transactions on Smart Grid, (in review), 2014.
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vehicles [4]. Given that a single service transformer may serve ten houses, PEV penetration rates
of 25% could load a 25 kVA device to 144% of rated load, if the vehicles charge simultaneously.
Because charge times for PEVs are expected to overlap, even low penetrations of PEVs can create
harmful overloading for service transformers [5].

Individual power transformers are typically monitored closely as their failure in the grid can
be extremely costly to utilities and can cause prolonged outages [6]. The cost of monitoring each
service transformer on the network is generally too expensive, computationally or monetarily, and
approximations are used to determine device lifetimes. However, a utility that has advanced me-
tering infrastructure (AMI) has access to accurate loading history for its service transformers and
can estimate wear based upon these data. The expense of tracking these assets are then mostly
computational.

Where loading is known for a transformer, artificial neural networks (ANN) have been pro-
posed to match the loading profile of a new transformer to the loading profiles of transformers in
a recorded database to yield an estimate of remaining lifetime of the new device [7]. Because this
paper looks at the damage caused by new PEV charging loads, representative databases are likely
not available. Also, ANNs do not give the utility an intuitive understanding of how they predict
their outcomes. Another approach is to probabilistically estimate the number of transformers that
will require replacement as a function of predicted PEV adoption rates as discussed in [2]. While
this analysis is helpful to utilities, it only helps for budgeting, leaving the real-time health of spe-
cific transformers in question. Finally, since the loading is known on these service transformers,
a thermal model can be used which can yield the desired estimates on transformer life while pre-
serving the connection between how the model works and our intuition about how aging occurs in
transformers. This approach is usually based on the aging of the insulation paper as a function of
loading and ambient temperature.

In general, loading transformers causes heating in the internal windings and degrades the in-
sulating material. The effect of overloading is to cause accelerated aging compared to a unit that
is loaded to its rating. If enough overloading accumulates in a single transformer, its lifetime can
be significantly curtailed. Transformer aging theory and modeling methods are discussed in the
IEEE Guide to Loading Mineral-Oil Immersed Transformers [8]. Due to the internal heating’s
exponential dependence on transformer loading, energy-equivalent load profiles without peaks are
more economic than those with peaks as seen in (3).

This equation set says that if internal heating is an exponential function of load, L(t)x with
x > 1, then the least heat would be created by a flat loading profile, K. This is important be-
cause simultaneously charging PEVs from one service transformer will cause large loading peaks.
This means that an accurate estimation of transformer aging starts with some detailed history of
transformer loading. If the loading history is known, two models are given by the IEEE loading
guide, Clause 7 and Annex G, for calculating transformer aging [8]. The latter model is more com-
plicated, but it is more accurate. Other methods exist which use a circuit model to depict device
heating [9], or attempt a complete 3-D dynamic model [10].

Let:
Z T

0

L(t)dt = TK , L(t) > 0 (1)

Assume:L(t1) >K , t1 2 [0, T ] (2)
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)
Z T

0

L(t)xdt >TK

x
, x > 1 (3)

In summary, the use of a thermal model would allow utilities to more closely track their service
transformer fleets. Ideally, the model would be concise, intuitive, and accurate so that utilities could
track many service transformers with minimal effort. To this end, we propose that there exists a
simple thermal model that would track the existing data at least as well as the more complicated
Annex G and will better represent heating in service transformers. This model will allow for a
computationally inexpensive and accurate description of aging in the service transformer fleet.

This paper is organized as follows, Section 2 describes the data collection process and devices
used. Section 3 explains present drawbacks to using the IEEE Annex G model and discusses some
motivation for using a genetic program (GP) to find a thermal model for service transformers.
Section 4 details the modeling process via an example with data created with the Annex G model.
Section 5 explains why this modeling process would be of use to utilities. Finally, Section 6
summarizes the findings of this paper.

2 Data Collection

This paper uses experimental data to validate thermal models for service transformer heating. The
following section presents information on how these data were acquired.

Howard Industries smart transformers were used to gather thermal and loading data. When
powered, the smart transformers output information about the state of operation of the machine
each minute. The key output parameters from the instrumented transformer and accompanying
sensors are ambient temperature, internal temperatures, and load. Transformers were installed in
two locations in South Burlington, Vermont. The locations of these transformers were chosen to be
in areas where loading was expected to peak above the transformer’s load rating. Each transformer
serves a minimum of eleven homes.

Internal temperature data include the outer low voltage winding (OLVW) temperature which
is used in this paper. This reading can be compared with the TW or TO values from the Annex G
model, the winding or top oil temperature, respectively. The locations of the temperature probes
are shown pictorially in Figure 1.

The data loggers used in this research were Campbell Scientific CR800’s which recorded serial
output from the smart transformers as well as output from an ambient temperature sensor. The
loggers were fitted into voltage regulator boxes that were installed on the utility poles underneath
the pole-mount transformers. All measurements are real time values which are collected every
minute.

Data collected has shown that during periods of high ambient temperature, loading on the
instrumented transformers peaked above the rated loading limit. However, the average loading on
the transformers was 9.4 kVA over the course of three months of logging.

3 Motivation for a New Model

As mentioned in Section 1, the IEEE has published models to predict the internal temperature of
a transformer. The following Section discusses whether the Annex G model may be overly com-
plicated for the purpose of modeling 25 kVA service transformers. It also presents evidence that
the predictions of the model may be overly conservative, and thus not an accurate representation
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Figure 1: Transformer winding cross-section. The transformers in this work are 1�. Red circles represent where
temperature sensors are located in the Howard Industries devices. Windings show are inner low voltage winding
(ILVW), high voltage winding (HVW), and outer low voltage winding (OLVW). The upper-left dot represents the Top
Oil (TO) temperature.

of the actual internal heating of these units.

3.1 The Annex G Model

For this work, we used the IEEE Annex G model to aid in comparison with previous work [5].
Experimental comparisons for the Annex G model can be found for larger transformers [11]. To
our knowledge, there is no existing literature that thoroughly validates the Annex G model for
smaller (e.g., 25 kVA) service transformers.

Using data from a representative day, Figure 2 shows a comparison of top oil temperature
data which was output from the Annex G model alongside an actual measurement of the top oil
temperature data from a smart transformer (refer to Figure 1). Figure 2 also shows a comparison
of the Annex G model’s prediction for the internal hottest spot temperature and the thermal limit
for the hottest spot temperature (110 �C), which when loaded to produces aging at 1 pu [8]. These
data show that during peak loading, the Annex G top oil temperature is overestimating the actual
top oil temperature by over 20 �C. Also, even if the Annex G hottest spot estimates are correct
in Figure 2, this transformer can be loaded much more before accelerated aging will occur. This
is because per unit aging is defined as aging in a transformer with a hottest spot temperature of
110 �C, the dashed line at the top of Figure 2. Therefore, this transformer could be loaded much
more heavily according to the Annex G model predictions, and it shows that these transformers are
actually heating less than the model predicts.
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Figure 2: Comparison of Annex G calculated top oil temperature and measured top oil temperature. From top to
bottom, the plot shows the thermal hottest spot temperature limit for normal aging of a transformer (110 �C), the
Annex G prediction for hottest spot temperature, the Annex G prediction for top oil temperature, and the measured top
oil temperature. All measurements and predictions depend data collected as described in Section 2.

3.2 Introduction to Using a Genetic Program

A GP will be used in this work to create a list of mathematical structures that attempt to explain
the dynamics of a distribution transformer’s hottest spot temperature. The merits of genetic pro-
gramming are well documented [12], [13], [14]. A note is in order of preferring an approach that
allows for highly complex and disorderly solution structures. A succinct, physically-appropriate
solution is ultimately selected by human intervention. The GP will work to continuously output
better solutions and it is the job of the user to pick a reasonably intuitive and concise solution.
In this work, a GP called Eureqa Formulize, developed by Nutonian, is used to find underlying
structures in the data. The program is based on the work done in [14].

The solution we will search for in this paper is a single differential equation that reliably yields
changes in the internal temperature of a service transformer. To see the utility in this, the reader can
refer to the Annex G model which is made up of over 30 equations, many of which are differential
equations. In contrast, the solution we seek in this paper is of the form shown in (4).

˙
THS(s) = f(THS(s), L(s), TA(s)) (4)

To begin the genetic program, a set of solutions of the form shown in (4) are said to make
up the population of solutions in the first generation of the program. Each solution is termed an
individual. Note that we use s in (4) to emphasize that the data are discrete.

To assess the fitness of each individual in each generation of the GP, the fitness test, F(Xg,i),
shown in (5) will be used. The individual, Xg,i, is number i in the g

th generation of the GP. The
variables we will use are L(s), TA(s), and THS(s) for load, ambient temperature, and hottest spot
temperature as a function of the discrete variable s, where S is the number of data points we are
using in the GP. Every generation, the N individuals are tested and ranked in descending order of
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Figure 3: The model selection process. Each block is an individual solution with the shade representing its absolute
fitness, white meaning zero error. The GP is initialized, a set of fit individuals surfaces and the process is terminated,
a subset of fit individuals are further refined using a LMS approach, and a single model is ultimately chosen.

fitness.

lF(Xg,i) =

1

S

S�1X

s=0

⇣
˙

THS(s)�Xg,i (L(s), TA(s), THS(s))
⌘2

Fit individuals are propagated through future generations as a function of their relative fitness
and new individuals are created by combining aspects of fit individuals. In our work, a set of
individual solutions are chosen from the final generation. The coefficients on these solutions are
then refined via a least mean-squares (LMS) approach, and one solution is ultimately chosen as a
best model for the data.

The process is shown graphically in Figure 3. Each block represents an individual in this
process (i.e., a solution modeling the change in hottest spot temperature). The shade associated
with each individual represents its mean squared error (MSE).

4 GP Modeling

With regard to the complexity of the Annex G model, the following Section seeks to find a simple
thermal model that at least tracks internal temperatures as well as the IEEE Annex G model. The
purpose of this Section is to detail a broad approach by which a thermal model can be created
to accurately describe the internal heating of service transformers based on user-defined input
variables.

We are attempting to model the dynamics of the Annex G model [8]. As such, we need to
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start with a hottest spot temperature profile created by this model. To do this, we input ambient
temperature data and actual loading data, which was increased to 150% of the measured values
to bring the internal temperatures closer to the transformer’s limits and expose the dynamics of
the model. The Annex G hottest spot temperature (THS), the ambient temperature (TA), and the
loading (L) are used as inputs to the GP. It should be noted that variables TO and TW , which are
other outputs from the Annex G model, could have been used as additional inputs to the GP. In
this way, we would have to actually model multiple differential equations, one for each variable,
and come up with a set of equations that would need to be integrated forward together to find the
hottest spot temperature, THS . Again, it is our purpose here to simplify, so we choose to relate the
input variables to one of the original outputs of the Annex G model, the hottest spot temperature.

Heuristically, we would expect that the change in THS will depend on the difference between
the hottest spot temperature, THS , and the ambient temperature, TA. Hence, to simplify the search
space, we define TD as shown in (5), and we seek a differential equation for the change in hottest
spot temperature as shown in (6).

TD = THS � TA (5)
˙

THS = f(L, TD) (6)

The allowable operations for these input variables were: addition, subtraction, multiplication,
and negation. This search space has closure and it is also reasonable to assume that it is sufficient
to describe the dynamics. The justification of sufficiency comes with the acceptance of a model at
the end of this Section.

4.1 Running the Genetic Program and Selecting Solutions

After running the GP for over 6 hours with 16 cloud cores, the ten simplest results were identified.
They are shown, ordered by complexity and labeled alphabetically (a-j) in Table 1. This table
labels each solution equation structure with a letter which will be referenced throughout.

As is common with genetic programs, it is up to the user to select a reasonable solution [12],
[13], [15]. Solution (a) from Table 1 is not good selection because it is constant that doesn’t depend
on any of the input variables. Models (b) and (c) do not depend on TD, which is connected to TA,
a known input to the Annex G model. Therefore, we do not choose these either. Models (h)-(j)
begin to create complicated polynomial fits from the variable L and are also not chosen.

We select the solutions (d), (e), (f), and (g) to move forward with. It will be shown that one of
these models can be considered acceptable when compared to the Annex G model in the following
subsections. If this were not the case, the next logical step would be to include more of the models
from Table 1 to see if any of these yield better results. If no models can ultimately be selected by
the end of this process, the assumption is that the solution space is not sufficient and more input
variables, beyond our chosen L and TD, need to be added and the GP must be rerun. For reference,
the selected model structures arising from the GP are shown in bold in Table 1 along with their
resulting models from the training discussed in the following subsection.

4.2 Fitting Selected Structures to Training Data via Least Mean Squares

The next step is to take the structures obtained from running the GP and find a best LMS fit to make
the actual models. In making a model, we must train it on certain data and then check its validity
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Table 1: Structures arising from GP and four selected structures trained on the data in Figure 4.

ID Structure for ˙
THS Model for ˙

THS (Trained in Figure 5)
a ↵1

b ↵1L

c ↵1L+ ↵2

d ↵1L+ ↵2TD 0.0367L� 0.0188TD

e ↵1L+ ↵2 + ↵3TD 0.0469L� 0.262� 0.0149TD

f ↵1 + ↵2L
2 + ↵3TD 0.178 + 0.00094L2 � 0.0149TD

g ↵1L
2 + ↵2 + ↵3T

2
D 0.00096L2 � 0.040� 0.00022T 2

D

h ↵1L+ ↵2L
3 + ↵3TD

i ↵1L+ ↵2L
4 + ↵3TD

on new data. These models are trained on the inputs shown in Figure 4, where the loading profile
is an hour long pulse and the temperature profile is a ramp. During research, training the models
with fictitious data like the load pulse and temperature ramp was more successful in finding a best
fit. The short load pulse and temperature ramp allows us to separate out dynamics due to loading
and temperature differentials.

As specified in [8], emergency overloads are intentional overloads that last for only a short
duration. Loading guides in this document cite a maximum emergency overload limit of 2 pu, thus
though the load pulse shown is fictitious, it is not an unreasonable estimate to a loading scenario.
Loading goes from very underloaded, at 0.5 pu or 12.5 kVA, to overloaded, at 1.5 pu or 37.5 kVA.
The temperature ramp changes from 0 �C to 40 �C during an interval in the middle of the day. Such
low temperatures help the model train when TD is large, and high temperatures allow the model
to train when TD is small. In Fahrenheit, the temperatures go from 32 �F to 104 �F. This ambient
temperature spectrum certainly covers the hottest days in a Vermont year, though locals can attest
that it does not fully handle the lowest. Again, this training data is meant to have some practical
ranges, but need not be experimental for the purposes of training the models.

The Annex G model is then used to predict the hottest spot temperatures throughout the day,
shown in Figure 4 (bottom). The models (d)-(g) are then fit to the change in the Annex G curve
and also shown in Figure 4 (bottom), where they have been integrated forward for comparison of
modeled THS temperatures. Notably, model (d) is the only curve which seems to have a steady
state error. Another clarifying point, the models do the worst at the beginning of the day when
the ambient temperature is low, though all of the models begin with initial conditions from the
prior night when ambient temperatures were discontinuously higher as seen in Figure 4 (middle).
Abrupt changes like this are included to help train the models by emphasizing the dynamics of
the Annex G model, though ambient temperatures do not have such discontinuities in practice.
Loading, on the other hand, as expressed in Figure 4 (top) can change very rapidly. The LMS fits
for the structures obtained from the training portion of this process for the models (d), (e), (f), and
(g) are shown in the rightmost column of Table 1.

4.3 Selecting a Final Model Based on Validation

The four models acquired from the training process are then assessed with new a new load profile,
Figure 5 (top), and a new temperature profile, Figure 5 (middle). The loading curve here is mea-
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Figure 4: A THS curve is produced to train structures (d)-(g). The loading profile (top) and ambient temperature profile
(middle) are used to create a the Annex G predicted THS temperature (bottom-black). Coefficients of structures (d)-(g)
are set to minimize differential equation error and then integrated forward and are shown compared to the Annex G
prediction (bottom-colors).

Table 2: Error table: mean squared-error (MSE) in �C/min
2 and error per point (EPP) in �C from the training (T), the

low load (L), and the high load (H). Models refer to those in Table 1.

ID MSE T MSE L MSE H EPP T EPP L EPP H
d 0.0251 0.0272 0.2311 1.2805 0.4796 -6.0791
e 0.0216 0.0214 0.2011 0.0286 1.8721 3.6869
f 0.0216 0.0272 0.1692 0.0286 -1.0069 -1.0193
g 0.0203 0.0265 0.1580 0.2560 0.3465 -3.4269
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Figure 5: Model validation via a comparison with independent THS predictions for low loading. The loading profile
(top) and ambient temperature profile (middle) are used to create Annex G and model (d)-(f) THS predictions (bottom)
to validate the models for low loading scenarios.

sured loading data from one of the smart transformers. This loading is typical of that seen in the
experimental neighborhoods where the load breaches the transformer’s rated limit only between
the hours of 8PM and 10PM. The ambient temperature curve shows that this data was collected
on a hot day, at least for Vermont.

Figure 5 (bottom) shows the comparison of the resulting forward integrations of models (d),
(e), (f), (g). To create these curves, the Annex G method was used to find an estimate for the
transformer’s hottest spot to which the models are compared. Model (d) is seen to overestimate
the Annex G hottest spot temperature between 8AM and 10AM and underestimate between the
hours of 8PM and 10PM. Model (e) is seen to overestimate the Annex G hottest spot temperature
between 2PM and 12AM the next day and the model does not seem to converge at the end of
the day. Model (f) is arguably the best fit, though model (g) is also very good. Though beyond
the scope of this paper, validation runs for these models with different loading levels show that
model (f) outperforms all of the other models and thus it was selected from the original structures
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shown in Table 1. A summary of the different model fits is shown in Table 2. This table shows the
mean squared error (MSE) for each of the models in training (T), low-load validation (L) which is
shown in Figure 5, and high-load validation (H) which is not shown. The MSE has units of �C

/min
2

because it is relating to the change in the hottest spot temperature. Also tabulated are the error per
point (EPP) which is a measure of how symmetric the error is. This number is found by summing
the errors and dividing by the number of data points and has units of �C. Together the MSE and
EPP yield a more complete description of the model’s ability to track the Annex G predictions.
From Table 2, model (f) has the most consistently low EPP and has low MSE.

4.4 Results from Modeling Approach

This process has shown that many models came organically out of a GP. From these models, four
were selected for further study that seemed to be both well related to the physics of the actual
problem and reasonably simple. The actual coefficients for these models were thrown away so
that the structures were kept. They were then re-fitted with with new coefficients using fictional
training data and the least mean squares method. To understand whether these fits worked for
the specific data or generally for other data sets, the models were validated by integrating them
forward with new data. These results show that, qualitatively, all of the models tracked both the
changes in temperature of the hottest spot, as predicted by the Annex G method, as well as the
overall accumulated hottest spot temperature. We showed that the best model for the Annex G
method was (f) as re-stated in (7). The achievement here is finding a differential equation that use
only two measurable inputs, three terms, and still tracks the Annex G output reasonably well for
very different loading data sets.

˙
THS ⇡ f(L, TD) = 0.178 + 0.000939L2 � 0.0149TD

Recall that the Annex G model is made up of a large set of differential equations. Thus, the
model presented in (7) manages to follow the dynamics of the Annex G model’s predictions of
the hottest spot temperature, Figure 5 (bottom), while being much simpler. Model (f) is not meant
to be a replacement for the Annex G model for all transformers. However, we have conjectured
that a 25 kVA service transformer may not require the full complexity of the Annex G model and
have shown that the structure of model (f), using only one differential equation, has been validated
to predict hottest spot temperatures in accordance with the IEEE standard model. It should be
noted that this model has been trained and validated against the Annex G model for a single set of
transformer parameters. This means that the model coefficients may need to be tuned for use with
slightly different transformers.

It is important to note that the model in (7) makes some physical sense, given thermodynamics
and circuit theory. If we recall the equivalent circuit for a transformer, there are power losses
associated with the modeled resistance of the core and the resistance of the winding. These power
losses manifest themselves as heating and are proportional to the square of the current through
the resistors. Because the voltage at a transformer is relatively constant, the load (L) served by
a transformer is proportional to the current through the windings. The power loss in the winding
resistance is then proportional to the square of this instantaneous current. Hence, the L

2 term in
(7) supports this rationalization. Furthermore, Newton’s Law of Cooling tells us that a body cools
in proportion to the difference between its temperature and the ambient temperature, i.e., the term
TD from (7) [16]. Finally, the constant in this equation may be an adjusting factor since we are
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directly relating an internal temperature to the ambient temperature.

5 Connection to Asset Management

Thus far, we have explained how the Annex G model may not be appropriate for describing the
heating measured experimentally in our instrumented service transformers. We have also proposed
an approach by which a simple thermal model can be found for service transformers. This Section
seeks to explain how a utility would be able to leverage such a model for better asset management
of its service transformer fleet.

The large fleet of service transformers owned by utilities is an important subset of assets that
must be appropriately managed. Given that the utility in question has already installed AMI, access
to loading data for these transformers is relatively inexpensive. This includes getting local ambient
temperatures from nearby national weather stations (e.g., the KBTV station for South Burlington).
Initial results show that the Annex G thermal model for loading these transformers is overly conser-
vative in that it predicts internal temperatures to be higher than what are experimentally recorded.
In addition, the cumbersome nature of the model along with the large number of device-specific
constants required, presents a barrier to utilities. The approach to modeling hot-spot temperatures
can be used by utilities to find a concise, intuitive model which can leverage loading data.

In this way, utilities see the effect of increased loading from PEV charging as it appears. This
requires neither a history of transformer failure as a comparison nor a cumbersome model which
is unintuitive and computationally intense. The method only depends on evidence that insulation
pyrolysis, the destruction of the material via heating, is the determining factor in transformer ag-
ing. With up-to-date information on service transformer aging, utilities can preemptively install
additional capacity before certain devices breakdown and appropriately budget for future device
purchase and installation.

In addition, the approach explained in this paper is flexible to the input data used. The Annex G
model uses only loading and ambient temperature as inputs, though other factors (e.g., wind speed,
solar intensity, etc.) may be important in properly modeling transformer heating. By measuring
this data and using it as an input to the approach shown in Section 4, such dependencies can be
included. For example, work with ANNs has shown that current harmonics in devices may have
an effect on heating which is not captured by the Annex G model [17]. Another factor that may be
of import is hydrolysis, which has been shown to effect insulation aging for transformers loaded
far below their rated limits [18].

Finally, utilities would also have the option to include load management, and control loading
based on calculated internal temperatures. Monitoring their transformer fleet in this way would
allow for better management because of accurate information and flexibility.

6 Conclusion

Initial data collected for this paper indicate that the Annex G model is overly conservative in that
it overestimates internal temperatures for the instrumented 25 kVA service transformers used in
this work (see Figure 2). Because a precise estimate of a transformer’s hottest spot temperature
is the standard indicator for insulation aging, an approach to finding a more appropriate model
was detailed. The approach used a genetic program to remodel output from the Annex G model
to indicate the effectiveness of the method. The result of this approach was shown in (7), which
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was far simpler than the Annex G model, and tracked the model well. Our existing measurement
system did not provide data for hottest spot temperature; collection and modeling of hottest spot
data remains for future work.

Given that utilities have increasing access to residential load time-series data and that weather
data are readily available, real-time monitoring of service transformers is a realistic goal. If these
assets are monitored, utilities can gain information on how much additional loading capacity exists
at the residential level to serve predicted PEV charging requirements. They can also closely mon-
itor the aging rates of these devices and make decisions on how to schedule future replacements
and upgrade these devices proactively instead of reactively.

Therefore, by leveraging data collected by AMI, utilities can more closely monitor aging in
assets that were previously difficult to track.
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Chapter 4 
Effect of Rainfall Transients on Thermal and Moisture 
Exposure of Underground Electric Cables1 
 
Jeffrey S. Marshall and Andrew P. Fuhrmann  

 
 
 

Abstract 
Cable ampacity analysis is generally performed assuming constant worst-state environmental conditions, 
which often correspond to a dry soil condition or to a condition with uniform ambient soil moisture content. 
The characteristic time scale of thermal variation in the soil is large, on the order of several weeks, and is 
similar to the time scale between rainfall events in many geographic locations. Intermittent rainfall events 
introduce significant transient fluctuations that influence the thermal conditions and moisture content 
around a buried cable both by increasing thermal conductivity of the soil and by increasing the moisture 
exposure of the cable insulation. This paper reports on a computational study of the effect of rainfall events 
on the thermal and moisture transients surrounding a buried cable. The computations were performed with 
a finite-difference method using an overset grid approach, with an inner polar grid surrounding the cable 
and an outer Cartesian grid. The thermal and moisture transients observed in computations with periodic 
rainfall events were compared to control computations with a steady uniform rainfall. Under periodic 
rainfall conditions, the temperature and moisture fields are observed to approach a limit-cycle condition in 
which the cable surface temperature and moisture content oscillate in time, but with mean values that are 
significantly different than the steady-state values. 
 

 
Nomenclature 
 
Roman letters 
gA = area of outer grid cell [m2] 

b = cable submergence depth [m] 
Sc  = specific heat of soil [ KJ/kg ⋅ ] 

wc  = specific heat of liquid water [ KJ/kg ⋅ ] 
C  = effective soil heat capacity [ KJ/m3 ⋅ ] 
Cw  = heat capacity of water [ KJ/m3 ⋅ ] 
d = cable diameter [m] 
D = rainfall duration parameter ( LR ττ /= ) [dimensionless] 

TLD = liquid thermal migration coefficient [ ]K/sm2 ⋅    

TVD  = vapor thermal migration coefficient [ ]K/sm2 ⋅   

TD = total thermal migration coefficient [ ]K/sm2 ⋅  

                                                
1 This paper is based on work in review for publication, as follows: Jeffrey S. Marshall and Andrew P. Fuhrmann, 
"Effect of Rainfall Transients on Thermal and Moisture Exposure of Underground Electric Cables," International 
Journal of Heat and Mass Transfer, (in review), 2014. 
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LDθ  = liquid isothermal diffusivity [ ]/sm2   

VDθ  = vapor isothermal diffusivity [ ]/sm2   

θD  = total isothermal diffusivity [ ]/sm2   
F = dimensionless rainfall period ( LP ττ /= ) [dimensionless] 

outf = heat supply rate to each outer grid cell [W/m3] 
h = convective heat transfer coefficient [W/m2K] 
lvh  = specific enthalpy of vaporization [ J/kg ] 

yx HH ,  = grid size in x and y-directions [m[ 

I = rainfall intensity parameter ( 0/ θKQrain= ) [dimensionless] 

eK  = Kersten number [dimensionless] 

θK = hydraulic conductivity [m/s] 
L = latent heat of vaporization [J/m3] 

cN = number of outer grid cells which receive a heat supply [dimensionless] 

surfq = cable heat flux per unit depth [W/m2] 
q  = average cable surface heat flux [W/m2] 
Q = net water flux [m/s] 
rainQ = liquid flux due to rainfall, per unit depth [m/s] 

r = radial coordinate [m] 
R = cable radius (= d/2)  [m] 
IR = radius of inner grid [m] 

S = effective saturation ( satθθ /= ) [dimensionless]  
t = time [s] 
T = absolute temperature [K] 
fT = temperature value at fringe point [K] 

0T  = ambient temperature [K] 

surfT = average temperature around cable surface [K] 
x = horizontal coordinate [m] 
y = vertical coordinate [m] 
maxv = maximum liquid velocity magnitude [m/s] 
v = liquid velocity [m/s] 
 
Greek letters   
φ  = azimuthal coordinate [dimensionless] 
η  = soil porosity [dimensionless]  
λ  =  effective thermal conductivity of soil [ ]KW/m⋅  

dryλ  =  thermal conductivity of dry soil [ ]KW/m⋅   

satλ  = thermal conductivity of saturated soil [ ]KW/m⋅   
θ  = moisture content  [dimensionless] 
fθ = value of moisture content at fringe point [dimensionless] 
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satθ  = moisture content of saturated soil (= η )  [dimensionless] 

surfθ = average moisture content around cable surface [dimensionless] 

sρ  = effective density of soil [ 3kg/m ] 

wρ  = density of liquid water [ 3kg/m ] 
τ  = time scale [s] 
Cτ  = convective time scale ( 0/ θKb= ) [s] 

Dτ  = diffusive time scale ( 0
2

0 /λbC= ) [s] 

Lτ  = time scale of daily load variation [s] 

Rτ  = rain duration time scale [s] 

Pτ  = time scale between rain events [s] 
ξ = dimensionless depth ( by /−= ) [dimensionless] 
 
1. Introduction 
 Determination of the current-carrying capacity (or ampacity) of underground electric 
cables is one of the key factors limiting operation of electric distribution systems, particularly in 
residential areas. Cable lifespan depends in a nonlinear manner on several factors, primary 
among which are insulation temperature, electric stress magnitude, and exposure of insulation to 
moisture (Hyvönen, 2008). The effect of temperature on insulation lifespan is often 
approximated by an exponential (Arrhenius) expression (Montanari et al., 2002; Mazzanti, 2007, 
2009), so that the peak temperature values have a disproportionately large influence on lifespan 
degradation compared to the average temperature value. In order to reduce peak temperatures, 
ampacity is usually set for cable systems based on worst-case environmental conditions, usually 
consisting of dry conditions or conditions with uniform background soil moisture content. Water 
has a duel role on the cable lifespan. On the one hand, the thermal conductivity of soil is 
substantially increased by the presence of water, with an increase of an order of magnitude or 
more between dry and saturated conditions for many soils (Hamdhan and Clarke, 2010). As a 
consequence, the presence of water decreases insulation temperatures, which has a favorable 
effect on cable lifespan. On the other hand, exposure to water can give rise to formation of water 
treeing degradation within the cable insulation (Hyvönen, 2008), which over time can lead to 
deterioration of the insulation material and shortening of the cable lifespan.  
 The increasing availability of plug-in electric vehicles (PEVs) is expected to substantially 
increase electric loads in the near future, particularly within residential communities where 
underground cable systems are commonly used (Fernández et al., 2011; Webster, 1999; 
Clement-Nyns et al., 2010). Moreover, the electric load associated with PEVs has large 
stochastic variation, depending on the percentage of a community that has electric vehicles. In 
order to accommodate residential PEVs while minimizing the cost of upgrading infrastructure, 
new charge-control schemes have been proposed to better manage electricity availability in 
distribution systems without exceeding load limits (Rezaei et al., 2014).  
 In the presence of large fluctuations of the electric load, it is important to have a good 
understanding of other transients imposed on the heat and moisture transfer around the cable, the 
most important of which originate from intermittent rainfall events. Rainfall is a key factor in 
determination of cable temperature and water exposure under actual environmental conditions. In 
many geographic areas around the world, between 25-40 rainy days during a year account for 
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two-thirds of the total annual precipitation (Sun et al., 2006). This range corresponds to a typical 
average interval of 9-14 days between significant rainfall events. The range of time intervals 
associated with rainfall events is therefore similar to the time scale associated with heat transfer 
in the soil surrounding an underground cable (Anders, 1997), with the consequence that the 
temperature field around underground cables in regions with frequent rainfall may be nearly 
always in a transient state, influenced on a short time scale by the daily load variation and on a 
longer time scale by soil moisture variation associated with rainfall. 

There is a substantial literature on prediction of cable ampacity based on thermal analysis 
within cables and the soil surrounding the cables. A survey of steady-state analytical methods is 
given by Neher and McGrath (1957), which has also been extended to transient problems (Neher, 
1964; Anders and El-Kady, 1992; Liang, 1999; Black and Park, 1983). These analytical models 
are subject to a number of simplifications, including the assumption that the ground surface is an 
isotherm, that cables are a line source of heat, and for transient calculations, that the heat source 
changes as a series of discrete step functions. Numerical solutions for cable thermal fields have 
been reported using the finite-element method (Flatbo, 1973; Kellow, 1981; Nahman and 
Tanaskovic, 2012), the finite-volume method (Freitas et al., 1996), and a boundary-element 
method (Gela and Dai, 1988). Application of overset grid methods to cable thermal analysis were 
reported by Garrido et al. (2003), Vollaro et al. (2011), and Marshall et al. (2013). Overset grid 
methods are well suited for cable heat transfer problems since the characteristic length scale for 
heat transfer varies over a large range, from the cable diameter to the submergence depth of the 
cable.  Problems with soil heterogeneity on cable heat transfer were examined by Tarasiewicz et 
al. (1985) and Hanna et al. (1993), and nonlinear effects due to temperature-dependent insulation 
electrical resistance was examined by Kovač  et al. (2006).   
 The effect of moisture variation on underground cable thermal fields was first examined 
computationally by Anders and Radhakrishna (1988) using a finite element method, and later by 
Freitas et al. (1996) using a finite volume method. Both of these studies neglect thermal 
convection caused by fluid velocity associated with moisture gradients, and they assume that the 
ambient moisture level is uniform. Specifically, the studies assume that no additional moisture is 
added to the system at the soil-air interface (i.e., no rainfall). A primary observation of these 
studies is the formation of a local dry region surrounding an underground cable, within which the 
temperature gradient associated with the cable thermal field causes moisture to migrate away 
from the cable. The presence of this dry region decreases the soil thermal diffusivity in the 
region surrounding the cable, which in turn increases the cable surface temperature. Moya et al. 
(1999) report an experimental study of heat and moisture transport around a heated cylinder in 
unsaturated soil. The experimental results are found to compare well with numerical 
computations using a finite-volume method. The paper concluded that the primary influence of 
moisture on the cable surface temperature is through the influence of moisture on the soil 
thermal conductivity. This observation might seem to justify the common approach of simply 
prescribing a conservative thermal conductivity value for the soil and determining ampacity 
using only solution of the thermal equation. However, one problem with that approach is that 
cable insulation degradation is sensitive not only to thermal conditions, but also to water 
exposure. Accurate calculation of cable moisture exposure in realistic weather conditions is 
critical in order to adequately characterize degradation associated with these two variables.  
 The current paper examines the effect of transients caused by rainfall events on the 
temperature and moisture fields surrounding an underground cable. Of particular interest is the 
effect of a rainfall front on the dry region surrounding the cable, and the transients caused by 
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passage of rain fronts at different rainfall intensities, durations, and frequencies. A two-
dimensional finite-difference model is used to simulate both the temperature and moisture fields 
surrounding an underground cable. The top boundary condition for the moisture field at the soil-
atmosphere interface is varied to represent effect of rainfall of different intensity, duration, and 
frequency. Unlike most studies of combined moisture/thermal cable analysis, we retain the 
thermal convection term in the temperature governing equation to account for the short time 
scales of the rain front. The significance of the thermal convection term is examined by 
comparing simulations both with and without this term.   
 A summary of the governing equations and boundary conditions, and of the computations 
method used to solve thee equations, is given in Section 2. This section also includes results of a 
grid independence study and an evaluation of the importance of thermal convection on the cable 
surface temperature. The results of the paper are presented in Section 3, including comparison of 
steady-state calculations with constant rainfall rate with periodic rainfall cases having rainfall 
events with different intensity, duration, and frequency. Conclusions are given in Section 4. 
 
2. Computational Method 
Governing Equations 
 The governing equations for heat and moisture transfer within the ground are given by 
the coupled system derived by Philip and de Vries (1957) as 
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∂
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TC v ,   (1) 
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t T ∂
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where ),( tT x  is the temperature field and ),( txθ  is the volumetric moisture content. The various 
coefficients in (1)-(2) include the volumetric heat capacity of wet soil C, the volumetric heat 
capacity of water Cw, the water velocity vector v ,  the unsaturated hydraulic conductivity θK , 
the soil thermal conductivity λ , the latent heat of vaporization of water L, the thermal moisture 
diffusivity TD , the isothermal moisture diffusivity θD , and the isothermal vapor diffusivity VDθ

. Equation (1) is derived from the conservation of energy, where the second term on the left-hand 
side represents thermal convection by the liquid motion, and on the right-hand side, the first term 
represents thermal diffusion, and the second term represents energy transfer via latent heat of the 
vapor caused by a moisture gradient.  
 Equation (2) is derived from a combination of the continuity equation and an extension of 
Darcy's law to unsaturated media. The continuity equation gives an expression for the rate of 
change of the moisture content as 
 

 0=⋅∇+
∂
∂ Q
t
θ ,   (3) 

 
where Q  is the net water flux (defined to be positive upward), which is equal to the product of 
the water velocity v and the soil porosity η . An equation for Q was derived by Philip and de 
Vries (1957) in terms of the temperature and moisture gradients as  
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 )(/ yT KDTD evQ θθ θη +∇+∇−== , (4) 
 
where the first and second terms on the right-hand side are associated with transport of water by 
capillary action and the third term is associated with gravitational transport.  Substituting this 
expression into the continuity equation (3) gives the moisture balance equation (2). Equations 
(1)-(2) are the same equations used by previous investigators for cable ampacity computation 
(Anders and Radhakrishna, 1988; Freitas et al., 1996; Moya et al., 1999), with the difference that 
we have also included the thermal convection term in order to properly account for the effect of 
rainfall on the temperature field.  
 The coefficients λ , TD , θD , L, C, VDθ , and θK  are functions of the temperature and 
moisture content. Since analytical expressions for these coefficients are difficult to obtain, it is 
common practice to evaluate them using empirical formulas developed for specific soil types. In 
the current study, a representative backfill soil was selected, which is identified as Soil III by 
Anders and Radhakrishna (1988). This soil is described as well-graded with course to fine 
particles, such as is found in a silty sand or a sandy loam. The equations used for the coefficients 
for this soil type are given by Anders and Radhakrishna (1988) as 
 
 dryedrysat K λλλλ ++= )( ,       

 TVTLT DDD += ,         VL DDD θθθ += ,    (5) 
 lvwhL ρ= ,       θρρ wwSs ccC +=  
 
where  1log += SKe , satS θθ /≡ , and the various coefficients in (5) are given in Table 1. The 
empirical equation for effective thermal conductivity in (5) is restricted to 1.0≥S . When 

1.0<S , the soil is nearly dry, so we set dryλλ =  in the computations.  
 
Table 1. Expressions used for the variable coefficients that characterize heat and moisture 
transport in the soil as functions of temperature T (in degrees Kelvin) and relative moisture 
content satS θθ /≡ . The different coefficients are in SI units, as indicated in the nomenclature 
section.  
 

Variable Parameters  Constant Parameters 

TLD  = )96.2601.8exp( −S   45.0=satθ  

TVD  = )316.23416.1exp( −− S   3.0=dryλ  

LDθ = )19.1806.8exp( −S   6.1=satλ  

VDθ  = )792.27483.7exp( −− S   1800=sρ  

lvh  = T)00237.0(10496.2 6 −× −   1000=wρ  

θK  = 6610 S−   1480=Sc  
  4216=wc  

 
Computational Approach 
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 The numerical computations are performed on both an outer Cartesian grid and on an 
inner polar grid surrounding a single buried cable, as shown in Figure 1. The outer grid has 

boundaries at 

� 

x = ±
1
2
Hx  in the horizontal direction, and it extends from the ground to a depth 

� 

y = −Hy . The four boundaries of the outer grid are identified by circled numbers [1] - [4] in 
Figure 1. On the bottom boundary [4], the temperature is set to a prescribed value 0T  and the 
moisture content is governed by a flux balance of the form 
 

 θθ
θ K
y

D
y
TDT −=

∂
∂+

∂
∂ .      (6) 

 

 
Figure 1. Schematic diagram of the computational flow domain and the inner (polar) and outer 
(Cartesian) grids, where the cable is identified as a black circle at the center of the inner grid, 
which is submerged a depth b below the ground. The boundaries of the outer grid are identified 
by circled numbers. 
 
 
Zero-flux boundary conditions are used for temperature on the side boundaries [2] and [3], so 
that 0/ =∂∂ xT . The side boundary condition for moisture is again based on the flux balance, 
and is given by  
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A convective boundary condition for temperature is used on the top boundary [1], which has the 
form 
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where h is the surface heat transfer coefficient and atmT  is the atmospheric temperature. The third 
term is included along with the tradition convective boundary equation to account for the transfer 
of latent heat by vapor migration. The boundary condition for moisture content on the top 
boundary [1] is  
 

 rainT QK
y

D
y
TD =+

∂
∂+

∂
∂

θθ
θ , (9) 

 
where )(tQrain  denotes the prescribed time-varying flux of water supply by rain on the top 
boundary.   
 The outer Cartesian grid computations are performed by introducing a heat source for 
grid cells of the outer grid that overlap the cable cross-section. The heat supply rate to each outer 
grid cell, outf , is related to the cable surface heat flux inq  by  
 
 outgcin fANRq =π2 , (10) 
 
where R is the cable radius, cN  is the number of outer grid cells which receive a heat supply, and 

gA  is the area of one cell of the outer grid.  
 The outer grid yields an accurate solution for heat and moisture transport in the region 
sufficiently far away from the cable, but it does not satisfy the boundary conditions on the cable 
surface. In order to obtain a more accurate solution near the cable, we use an overset inner grid in 
an annular region spanning from the cable radius R to the outer radius IR  of the inner grid. The 
center of the inner grid is located a distance b below the ground level, where b is called the cable 
burial depth. Within this inner grid, the temperature and moisture content fields are discretized 
using a polar coordinate system ),( φr . The inner grid solution satisfies the flux boundary 
condition in temperature and the no-penetration condition for moisture on the cable surface, so 
that 
 

 inqr
T =
∂
∂− λ , 0=

∂
∂
r
θ  on Rr = . (11) 

 
The two grids communicate on the set of grid points on the outer boundary of the inner grid (

IRr = ), which are called fringe points. At each time step, we first solve for the temperature and 
moisture fields on the outer grid, and then use a bilinear interpolation to set the values of T  and 
θ  at the fringe points of the inner grid, denoted by fT  and fθ . The inner solution is then solved 
using a Dirichlet boundary condition on its outer surface of the form 
 
 fTT = , fθθ =  on IRr = . (12) 
 
 The governing equations (1)-(2) for temperature and moisture content were solved within 
both the inner and outer grids using a Crank-Nicholson method for the diffusive terms and a 
second-order Adams-Bashforth method for the convective term, with the velocity given by (4). 
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Spatial derivatives were computed using second-order centered differences in both grids. The 
resulting system of equations was solved using a Gauss-Seidel iteration method, which was 
written such that computations are performed only with non-zero matrix elements. It is noted that 
(1) approaches a first-order hyperbolic equation in the absence of the diffusive terms, for which 
the numerical method described above would not be stable. This numerical instability was not an 
issue in the current computations, however, since the scale of the problem is fairly small (ranging 
from centimeters to tens of meters) and the diffusive terms were consequently sufficiently large 
to suppress the instability. The CFL number xtv ΔΔ /max  was monitored for all computations and 
did not exceed 0.002. 
 
Dimensionless Parameters 
 The problem depends upon two dominant length scales - the cable diameter d and the 
cable submergence depth b. The cable diameter characterizes small-scale fluctuations of 
temperature and moisture around the cable, such as are associated with power load fluctuations 
during a daily cycle, but the submergence depth is more characteristic of the thermal and 
moisture fields as a whole.  
 Three characteristic time scales in the problem are referred to as the convective time scale 
Cτ , the diffusive time scale Dτ , and the load-variation time scale Lτ . If we select b as a 

characteristic length scale, the convective time  0/ θτ KbC =  is the typical time required for a rain 
front to propagate from the ground to the cable location, where 0θK  is characteristic of the 

velocity scale caused by gravitational drainage. The diffusive time 0
2

0 /λτ bCD = , where 00 /Cλ  
is a characteristic thermal diffusivity, is representative of the time required for the thermal field 
to attain a steady state upon change of the cable heat flux or of the surrounding moisture field. 
The load-variation time Lτ  represents the period of oscillation of the cable heat load, where we 
make the common assumption that the cable load is periodic on a daily cycle. For typical 
conditions, Cτ  is on the order of 11 days, Dτ  is on the order of 20 days, and Lτ  is 1 day. The 
addition of rain at the top boundary introduces other time scales which can be compared to the 
three time scales described above. These additional scales include the rain duration time Rτ  and 
the period between rain events Pτ , both of which are examined in the paper. 
 A set of dimensionless variables are defined using the cable submergence depth b as a 
length scale, the load-variation time Lτ  as the time scale, the average cable surface heat flux q , 
and the ambient temperature 0T .  The resulting dimensionless variables (denoted with primes) 
are defined by  
 

)( 0
0 TT
bq

T −=′
λ

, ∇=∇′ b , Ldttd τ/=′ , bxx /=′ , byy /=′ , 

0/ θKvv =′ ,   outout f
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b
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0/ TTT DDD =′ , 0/ θθθ DDD =′ , 0/ θθθ KKK =′ . (13) 
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A subscript “0” is used to denote constant nominal values of the coefficients, where these 
nominal values are set equal to the coefficient values under saturated soil conditions (obtained 
from (5) and Table 1 with 1=S ).  
 The dimensionless governing equations and boundary conditions contain a number of 
different dimensionless parameters. In the current paper, we hold many of these dimensionless 
parameters constant in order to focus on a small number of parameters that characterize the 
rainfall. Characteristic values of these dimensionless parameters are obtained for a typical 5kV 
distribution cable (e.g., a tape-shielded 5kV 4/0 AWG aluminum conductor), for which the 
average cable diameter is 5.2=d cm, the burial depth is 1=b m, and a typical cable surface heat 
flux is q  = 500 W/m2 for an average-size residential community (Marshall et al., 2013). Using a 
typical value for thermal conductivity of fully saturated soil of  W/mK6.10 =λ , we obtain a 
relationship between a change in the dimensionless temperature T ′Δ  and the dimensional 
temperature TΔ  as TCT ′Δ°=Δ )5.312( . A list of constant dimensionless parameters and the 
values used for these parameters in the current computations is given in Table 2. The 
dimensionless parameters that are allowed to vary in the computations include the rainfall 
intensity, the rainfall duration parameter LRrainD ττ /= , and the dimensionless rainfall frequency 

Lff τ=′  .   
 
Table 2. List of dimensionless parameters whose values are held fixed, and their values in the 
current computations.  
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Grid Independence and Validation 
 A grid independence study was performed to examine sensitivity of the computations to 
number of grid points in the inner and outer grids. Since the focus of the study is on effect of soil 
characteristics and rain on the thermal and moisture exposure of a buried cable, the grid 
independence study examines the effect of grid resolution on the average temperature and 
moisture content on the cable surface as a function of time.  The test computation used for the 
grid independence study was conducted for a case where the initial temperature field is set equal 
to the ambient temperature ( 0)0,( =′ xT ) and the initial moisture content was 1.0),( =yxθ . The 
domain size was 

� 

Hx /b = 5.0 and 

� 

Hy /b = 3.0 , with a cable diameter 

� 

d /b = 0.0249  and an inner 
grid radius 

� 

RI /b = 0.0747. The cable surface heat flux was held constant ( 1=′surfq ) and the rain 

flux was set at 5.0=′rainQ . The time step was fixed as 002.0=′Δt , and the runs were continued 
out to 20=′t . The number of grid points in the inner grid was set such that the grid spacing at 
the outer edge of the inner grid in both the radial and azimuthal directions was similar to the grid 
spacing used in the outer grid. In the grid independence study, the number of points in the inner 
and outer grids were varied in the same proportion. Three different grids were examined in the 
study, with grid point numbers in each direction in the inner and outer grids listed in Table 3. 
Results for the average cable surface temperature and moisture content are plotted in Figure 2 as 
functions of time for each grid. For the finest two meshes, the maximum difference in cable 
surface temperature was 0.5% and the maximum difference in moisture content was 1.1%. The 
computations in the remainder of the paper were performed on the medium-resolution mesh B. 
 

   
           (a) (b) 
 
Figure 2. Time variation of the average cable surface temperature and moisture content for the 
grid independence study, for grids A (dash-dot), B (solid), and C (dashed).  
 
 The sensitivity of the temperature field to the thermal convection term was examined by 
repeating the computation described above with grid B but with no thermal convection term. The 
prediction for the average dimensionless temperature on the cable surface is compared with the 
result with the thermal convection term in Figure 3. It is observed that the results are similar for 
the runs with and without convection during the initial part of the calculation as the cable 
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temperature increases before the rain front penetrates to the cable location. At about 4=′t , the 
cable temperature abruptly begins decreasing, coinciding with the abrupt increase in moisture 
content observed in Figure 2b associated with arrival of the moisture front from the rainfall event 
at the cable location. Following this time, the predictions with and without the convection term 
in Figure 3 exhibit significant differences. The most noticeable of these differences is that the 
cable temperature prediction without convection rapidly asymptotes to a constant value 
following arrival of the moisture front, whereas the cable temperature prediction with convection 
exhibits a gradual decrease with time.  
 

 
Figure 3. Comparison of predicted dimensionless average cable surface temperature for a case 
with the thermal convection term (solid line) and without the thermal convection term (dashed 
line) for the same run as shown in Figure 2. 
 
3. Results and Discussion 
 Computational results are reported in this section for thermal and moisture fields around 
underground cables with periodic rainfall events. The rainfall intensity, duration, and period are 
all varied in such a way that the average rainfall is held constant, and the results are compared to 
computations with constant average rainfall in order to determine the transient effects caused by 
rainfall events.  
 
Initialization 
 The computations are initialized using two sets of preliminary computations. The first 
preliminary computation is performed with the outer grid only for constant rainfall and with no 
cable present. Since this problem is essentially one-dimensional, the outer grid is reduced to 637 
points in the y-direction and 11 points in the x-direction for the first preliminary computation. 
The constant rainfall rate is determined by dividing the  average annual precipitation in different 
regions by the number of days in a year, and then non-dimensionalized to obtain rainQ ′ , where the 

overbar denotes average value. Computations were performed with 005.0=′rainQ , 0.01, 0.02, and 

0.03, as well as the case with no rain ( 0=′rainQ ). The case with 03.0=′rainQ  corresponds to a 

precipitation of 95 cm/yr, which is typical of Chicago, whereas that with 01.0=′rainQ  
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corresponds to a precipitation of 32 cm/yr, which is typical of Los Angeles. For simplicity, 
rainfall is spread throughout the year and seasonal variations are ignored. Each computation is 
initialized using a uniform moisture content of 1.00 =θ  and temperature set equal to the ambient 
value. The computations are continued until a steady-state condition is achieved in the value of 
moisture content to at least four significant figures. The case with no rain did not achieve a 
steady-state value even after very long time, but instead decreased very slowly with time in a 
continuous manner. The steady-state moisture profiles for the four cases with non-zero values of  

rainQ ′  are plotted as functions of the dimensionless depth by /−≡ξ  in Figure 4. The line denoted 
by 'E' in this figure shows the moisture content profile for the case with no rain at a time 
approximately 10 years after the initial condition.  
 

  

 
Figure 4. Steady-state moisture content profiles for cases with (A) 03.0=′rainQ , (B) 0.02, (C) 
0.01, (D) 0.005, and (E) 0 as a function of dimensionless depth ξ . The initial moisture profile in 
the calculations is indicated by a dashed line. For the case with no rain, the moisture content 
moves downward very slowly in time and no steady-state profile is observed. The moisture 
profile shown in E is plotted at a time of approximately 10 years after the initial condition. The 
other cases have all converged to steady-state profiles within four significant figures in the 
moisture content.  
 
 The second preliminary computation reads in the equilibrium moisture content profile for 
the selected average rainfall rate, and then introduces the cable with a constant surface heat flux 
using both the outer and inner grids with the number of grid points set equal to the values stated 
for grid B in Table 3. In the second preliminary computation, the rainfall rate is held constant at 
the same average value as used for the first computation. The computations are continued until 
both the temperature and moisture content fields have achieved steady-state values. The time 
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variation of the average temperature and moisture content on the cable surface are plotted in 
Figure 5 as functions of time for the four cases with non-zero rainfall shown in Figure 4, 
showing the approach of the results to a steady-state condition. In Figure 5a, the dimensionless 
temperature is shown on the left-hand y-axis and the corresponding change in dimensional 
temperature (in C° ) for the example problem with 2 W/m500=q , m 1=b , and  W/mK6.10 =λ  
is shown on the right-hand y-axis. 
 
 

Table 3. Number of points in different grids used in grid independence study. 
 
Grid Identification Outer Grid Inner Grid 

 x y r φ 
A 651 451 37 63 
B 921 637 53 89 
C 1029 711 59 99 

 
 
 
 

     
 
 (a) (b) 
 
Figure 5. Time variation of the average cable surface (a) temperature and (b) moisture content 
during the second preliminary computation for cases with (A) 03.0=′rainQ , (B) 0.02, (C) 0.01, 
and (D) 0.005. In (a), the dimensionless temperature is shown on the left-hand y-axis and the 
corresponding change in dimensional temperature for the example problem is shown on the 
right-hand y-axis. The figure shows the approach of the temperature and moisture content fields 
to a steady state condition. 
 
 The contours of the steady-state temperature and moisture content around the cable are 
plotted for the case with 03.0=′rainQ  in Figure 6. In this figure, the near-cable inner grid is 
superimposed on the outer grid so that the fields are accurately represented both near to and far 
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away from the cable. Contours of the temperature and moisture content fields are observed in 
close-up images to vary smoothly and continuously across the two grids. Also, the value of 
temperature and moisture content is extracted on the vertical line 0=x , passing through the 
cable, and plotted in Figure 7 for the four different rainfall rates in their steady-state solutions. 
As expected, the temperature field exhibits a local maximum at the cable and decays away from 
the cable. From Figure 7, we observe that the temperature peak value does not differ 
significantly between the four different rainfall rates examined, although the temperature falls off 
more rapidly with distance away from the cable for the higher rainfall rate case, as is consistent 
with the higher thermal conductivity caused by higher values of moisture content. The moisture 
content exhibits a local minimum near the cable for all four rainfall rates, which corresponds to a 
region in which the moisture content contour lines are locally raised upward as they pass over the 
cable. This effect also persists for some distance below the cable. The presence of rainfall causes 
the region of decreased moisture fraction (i.e., the 'dry' region) surrounding the cable to become 
asymmetric, with a sharper moisture gradient above the cable than below the cable.    
 

 

 
 

Figure 6. Steady-state (a) dimensionless temperature and (b) moisture content fields at the end of 
the second preliminary computation for the case with 03.0=′rainQ . 

(a) 

(b) 
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 (a) (b) 
 
Figure 7. Variation of (a) temperature and (b) moisture content on the line 0=′x  as a function of 
dimensionless depth ξ  for the same four values of rainQ ′  shown in Figure 5. 
  
Periodic Variation in Rainfall Intensity, Duration, and Frequency 
 The result of the second preliminary computation is used as an initial condition for a 
series of computations examining the effect of rainfall transients on cable thermal and moisture 
exposure. In each of these computations, the rainfall is assumed to occur periodically in time, 
with intensity, duration, and frequency that are consistent with the specified average rainfall rate 
in the preliminary computations. Each set of computations is compared with the result of the 
steady-state computation with constant rainfall rate. We focus specifically on two regions, one 
fairly moist (typical of Chicago, Illinois) and one fairly dry (typical of Los Angeles, California). 
The average dimensionless rainfall rates for these two regions are approximately 03.0≅′rainQ  
and 0.01, corresponding to 940 and 325 mm/yr, respectively. According to Sun et al. (2006), 
67% of the precipitation occurs in 15 days in Los Angeles and in 30 days in Chicago, yielding a 
dimensionless frequency of Lff τ≡′  of 0.04 and 0.08, respectively. Rainfall intensity varies 
from about 2.5 mm/hr for a light rainfall to between 10-50 mm/hr for a heavy rainfall, with a 
characteristic value of 10 mm/hr for a moderate rainfall. When non-dimensionalized using 

6
0 10−=θK m/s, the characteristic value of the instantaneous dimensionless rainfall intensity, 

rainQ′ , is approximately 2.5. Dividing the total annual precipitation by the characteristic rainfall 
intensity (10 mm/hr) times the number of rainy days gives a typical rainfall duration of about 2.5 
hours, or 1.024/5.2 ≅=rainD . Using these characteristic values, a listing of computational runs 
was formulated as shown in Table 4. The first runs D1 and M1 are based on the characteristic 
conditions, runs D2-D3 and M2-M3 vary intensity and duration with fixed frequency, runs D4-
D5 and M4-M5 vary duration and frequency with fixed intensity, and runs D6-D7 and M6-M7 
vary intensity and frequency with fixed duration.     
 Results are shown in Figures 8-10 for Run D1, characteristic of a dry climate (e.g., Los 
Angeles). The average cable surface temperature and moisture content are plotted in Figure 8 as 
functions of time. The computation is performed over a time interval of 600 days, during which 
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24 rainfall periods occur. Even though the computation is initialized at the steady-state condition 
for the same value of average rainfall rate as used in the D1 computation, it is observed that the 
temperature and moisture fields approach a periodic limit-cycle state in which the mean 
temperature and moisture content on the cable surface has very different values than in the 
steady-state condition. The approach of the system from the steady-state solution to a limit-cycle 
state is shown in Figure 9, which plots the dimensionless cable surface temperature as a function 
of the cable surface moisture content. In this limit-cycle condition, the mean cable surface 
dimensionless temperature decreases by about 0.008 and the mean moisture content increases by 
about 0.04 compared to the steady-state solution. The oscillation amplitude of the dimensionless 
cable surface temperature in the limit-cycle state is 0003.0≅′ampT  and the amplitude of the 

moisture content on the cable surface is 0044.0≅ampθ .  
 
Table 4. Listing of rainfall conditions used for periodic rainfall computations in conditions 
typical of dry and moist climates. Rainfall is characterized by the dimensionless rainfall intensity 

0/ θKQQ rainrain =′ , duration LRrainD ττ /= , and frequency Lff τ=′ . The computational results 
are listed for the change in the mean values of dimensionless temperature and moisture content 
from the steady-state solutions, surfT ′Δ  and surfθΔ , and the oscillation amplitude of the 

dimensionless temperature and moisture content in the periodic solution, ampT ′  and ampθ . 
 

Dry Climate ( 01.0=′rainQ ) 
Rainfall Characteristics Computational Results 

Run Intensity Duration Freq. 
 

surfT ′Δ  ampT ′  surfθΔ  ampθ  

D1 2.5 0.10 0.04 - 0.0081 0.00031 0.040 0.0044 
D2 1.0 0.25 0.04 - 0.0076 0.00029 0.037 0.0041 
D3 5.0 0.05 0.04 - 0.0097 0.00039 0.040 0.0052 
D4 2.5 0.20 0.02 - 0.0085 0.00093 0.042 0.0115 
D5 2.5 0.05 0.08 - 0.0074 0.00009 0.037 0.0015 
D6 5.0 0.10 0.02 - 0.0104 0.00130 0.045 0.0146 
D7 1.25 0.10 0.08 - 0.0067 0.00008 0.033 0.0013 
Moist Climate ( 03.0=′rainQ ) 
Rainfall Characteristics Computational Results 

Run Intensity Duration Freq. 
 

surfT ′Δ  ampT ′  surfθΔ  ampθ  

M1 2.5 0.15 0.08 - 0.0094 0.00038 0.050 0.0060 
M2 1.0 0.375 0.08 - 0.0088 0.00036 0.047 0.0058 
M3 5.0 0.075 0.08 - 0.0082 0.00043 0.044 0.0069 
M4 2.5 0.30 0.04 - 0.0101 0.00111 0.056 0.0145 
M5 2.5 0.075 0.16 -0.0077 0.00012 0.042 0.0020 
M6 5.0 0.15 0.04 -0.0088 0.00127 0.048 0.0170 
M7 1.25 0.15 0.16 -0.0073 0.00011 0.040 0.0021 
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(a) (b) 

 
Figure 8. Oscillation of average dimensionless temperature and moisture content on the cable 
surface as functions of dimensionless time with constant cable heat flux, for Run D1. The 
oscillations observed in the plots are due to periodic rain events. 
 
 
 

 
 
Figure 9. Plot of dimensionless cable surface temperature as a function of cable surface moisture 
content for Run D1, showing the approach of the system to a limit-cycle behavior at long time.  
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(a) (b) 

 
Figure 10. Variation of (a) dimensionless temperature and (b) moisture content on the line 0=′x  
as a function of the dimensionless depth ξ  for Run D1 at times (A) =′t 575.2, (B) 575.4, (C) 
575.8, (D) 577.2, (E) 583.6, and (F) 575 and 600. The same six lines are plotted in (a), but the 
curves nearly overlap.  
 
 Plots showing the variation in temperature and moisture content profiles during a periodic 
rainfall event are given in Figure 10, for a time period ]600,575[=′t  at which the system has 
achieved a periodic state. The profiles are extracted along the line 0=′x , which passes through 
the cable at depth 1=ξ . The largest moisture content variation occurs near the ground surface (

0=ξ ) during the first part of the period, during and immediately after the rainfall event. The 
curves in this figure are plotted at times that are chosen so as to capture this moisture spike, and 
hence are preferentially timed for the beginning part of the rain period. Profiles are plotted at the 
same times in Figures 10a and 10b, but the temperature change due to moisture content variation 
is sufficiently small compared to the steady-state temperature values that the curves nearly lie on 
top of each other in Figure 10a. In Figure 10b, the rainfall is observed to cause a spike in 
moisture content near the ground surface 0=ξ . This rainfall spike rapidly propagates into the 
soil, and it diffuses and reduces in magnitude as it does so. Several different effects occur to 
influence the moisture content profiles, including downward gravitational drainage, upward 
pulling from the capillary force, diffusive spreading, and repulsion of moisture from the cable 
due to the temperature gradient around the cable. The combination of these influences causes the 
large fluctuation amplitude of the moisture content at the ground level ( 0=ξ ), which measures 
approximately 0.04, to decrease by nearly an order of magnitude at the level of the cable ( 1=ξ ). 
The moisture content fluctuation continues to decrease such that there is almost no observable 
change with time for depths 2<ξ . Following the rainfall event, the moisture content profile 
gradually returns to a curve with local maximum at approximately 6.1=ξ . This curve differs 
significantly in structure from the moisture content profile given in Figure 7b for the steady-state 
case. 
 Contour plots of the moisture content field are shown in Figure 11 for one day following 
a rainfall event in Run D1. The figure is plotted starting at time 575=′t , by which point the 
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system has achieved a periodic state. The initial plot (Figure 11a) is for an instance just before 
the rain begins. The structure of the moisture field has a region of high moisture content centered 
at about 3.1=ξ , with low moisture near both the bottom and the top of the computational 
domain. This high moisture band is the remnant of previous rainfalls, which are pulled 
downward by gravity and upward by capillary action. The region surrounding the cable is 
observed to be drier than surrounding regions at the same level, as evidenced by a downward 
deflection of the moisture contour lines.  This structure differs significantly from that shown in 
Figure 6b for the steady-state simulation. At time 2.575=′t  (Figure 11b), the rain event has 
recently ended and a region with high moisture content is observed at the top of the figure. This 
region of high moisture content propagates downward with time in Figures 11c-f, eventually 
overtaking the dry region around the cable. Over longer time, the high-moisture region from the 
previous rainfall will move downward and merge into the high-moisture region located just 
below the cable, so that by the end of the period at 600=′t , the moisture field looks the same as 
shown in Figure 11a. 
 

 
Figure 11. Contour plot of the moisture content for a time interval of one day following a rain 
storm, for Run D1. The plots are made at dimensionless times (a) 575=′t , (b) 575.2, (c) 575.4, 
(d) 575.6, (e) 575.8, and (f) 576.  
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 Results are presented in Figures 12 and 13 for Run M1, characteristic of a moderately 
moisture climate (e.g, Chicago). The trends in the data are qualitatively the same as was 
observed under drier conditions in Figures 8 and 10. The cable surface temperature and moisture 
content transition from the steady-state solution to approach a limit-cycle state. The mean 
dimensionless cable surface temperature decreases by about 0.0094 and the mean cable surface 
moisture content increases by about 0.050 in this limit-cycle state compared to the values in the 
steady-state solution. The fluctuations in dimensionless surface temperature and moisture content 
during each rainfall cycle occur with amplitude 0004.0≅′ampT  and 006.0≅ampθ , which are 
slightly larger than the values observed for Run D1. The temperature profile in Figure 13a is not 
significantly affected by the moisture variation, but the moisture profile in Figure 13b exhibits a 
large spike near the upper surface during and immediately after the rainfall event, with the 
moisture content increasing by approximately 0.1 at 0=ξ  during each rainfall cycle. As was the 
case with Run D1, the fluctuation in moisture content decays rapidly with depth, decreasing by 
about an order of magnitude by the level of the cable. The moisture content is observed to settle 
in the later part of each period to the same hump-type profile as noted in Figure 10b for Run D1, 
for which the moisture content is a maximum at an intermediate depth.   
 

 
 
 (a) (b) 
 
Figure 12. Oscillation of average dimensionless temperature and moisture content on the cable 
surface as functions of dimensionless time with constant cable heat flux, for Run M1. The 
oscillations observed in the plots are due to periodic rain events. 
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 (a) (b) 
 
Figure 13. Variation of (a) dimensionless temperature and (b) moisture content on the line 0=′x  
as a function of the dimensionless depth ξ  for Run M1 at times (A) =′t 587.6, (B) 587.8, (C) 
588.0, (D) 588.4, and (E) 590.0, and (F) 587.5 and 600. The same six lines are plotted in (a), but 
they nearly overlap.  
 
 
 The system response for Runs D2-D7 and M2-M7 were qualitatively similar to that 
described above for Runs D1 and M1. In all cases with periodic rainfall, the cable surface 
temperature and moisture content approach a periodic limit-cycle condition in which the mean 
cable surface temperature decreases and the mean cable surface moisture content increases 
compared to the steady-state solutions. A listing of the change in dimensionless cable surface 
temperature and moisture content and the amplitude of oscillation of these values in the limit-
cycle state is given in Table 4 for Runs D1-D7 and M1-M7. The results in this table exhibit a 
strong dependence of the oscillation amplitude on the rain frequency, but a weaker dependence 
on rainfall intensity and duration (provided the total rainfall amount is fixed).  

Figure 14 plots the computed oscillation amplitude for the dimensionless cable surface 
temperature and the cable moisture content as functions of dimensionless frequency f ′ for all of 
the conditions examined. The oscillation amplitude values for the moist conditions (Runs M1-
M7) are substantially greater than for the dry conditions (Runs D1-D7). The amplitudes for the 
cable surface temperature and moisture content decrease as the rainfall frequency increases. 
Since the total annual rainfall amount for the dry and moist conditions is fixed, higher frequency 
cases correspond to conditions with frequent rainfall events containing small amounts of 
precipitation, whereas low frequency cases correspond to conditions with infrequent rainfall 
events that contain large amounts of precipitation. It is noted that the oscillation amplitude is 
rather small for both the cable surface temperature and the moisture content. For instance, for the 
example problem with burial depth 1=b m and average cable heat flux q  = 500 W/m2, the 
largest oscillation amplitude values for the cable surface temperature and moisture content in the 
computations conducted were C°4.0  and 0.017, respectively. By comparison, the temperature 
field obtained by Marshall et al. (2013) for the same example case oscillated due to the daily 
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power load variation with amplitude of C°9.3 , or an order of magnitude larger than the rain-
related oscillation amplitude. 

Plots are shown in Figure 15 for the difference between the dimensionless cable surface 
temperature and the cable surface moisture content in the periodic limit-cycle condition and the 
initial values for the steady-state case, denoted by meanT ′Δ  and meanθΔ . The dimensionless cable 
surface temperature decreases with periodic rainfall by an amount between 0.006 and 0.011, 
where the magnitude of the temperature change decreases with increase in the rainfall frequency. 
The cable surface moisture content increases with periodic rainfall by an amount ranging 
between 0.033 and 0.056, where the change in moisture content also decreases with increase in 
rainfall frequency. Again using our example problem with 1=b m and q  = 500 W/m2, the 
change in mean cable surface temperature under the periodic rainfall condition corresponds to a 
decrease of C°− 5.30.2 .     
 

     
  
 (a) (b) 
 
Figure 14. Amplitude of average cable surface (a) dimensionless temperature and (b) moisture 
content fluctuations with periodic rain events as functions of dimensionless frequency. Results 
are for the moist condition (triangles, dashed line) and the dry condition (circles, solid line) listed 
in Table 4. The curves are exponential fits to the data. 
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 (a) (b) 
 
Figure 15. Change in mean values of the average cable surface (a) dimensionless temperature 
and (b) moisture content with periodic rain events as functions of dimensionless frequency. 
Results are for the moist condition (triangles, dashed line) and the dry condition (circles, solid 
line) listed in Table 4. The curves are exponential fits to the data. 
 
4. Conclusions 
 A study of the effect of periodic rainfall events on the surface temperature and moisture 
exposure of a buried electric cable was conducted using numerical simulations. Cases with 
different rainfall intensity, duration, and frequency were compared to a steady-state case with the 
same annual precipitation amount. Computations were conduced for two values of the annual 
precipitation, one typical of a relatively moist climate and one typical of a dry climate. In the 
steady-state condition, the computations indicate formation of a relatively dry region surrounding 
the cable in which the moisture content decreases by about 2-5% compared to the value that it 
would have had without the cable present. Under periodic rainfall conditions, the cable surface 
temperature and moisture content transition to a limit-cycle behavior with values that oscillate 
periodically in time with the rainfall frequency. Of particular interest is the observation that the 
mean values of the cable surface temperature and moisture content in this limit-cycle condition 
are significantly different from the steady-state values, with the mean cable surface temperature 
decreasing and the moisture content increasing in value under the limit-cycle condition relative 
to the steady-state condition. Both the oscillation amplitudes and the change in mean values 
relative to the steady-state condition are observed to depend primarily on the rainfall frequency 
and on the annual precipitation amount, such that the absolute values of these quantities decrease 
as the rainfall frequency or the annual precipitation amount increase. While the computed values 
of the oscillation amplitude of the cable surface temperature are rather small, measuring C°4.0  
or less in the current computations, the change in the mean cable surface temperature between 
the steady-state and limit-cycle conditions is found to be large, measuring as high as C°5.3  in 
the current computations. Similarly, the largest computed value of the oscillation amplitude of 
the moisture content (0.017) is small compared to the largest computed value of the change in 
mean cable surface moisture content between the limit-cycle and steady-state conditions (0.056).  
 The results of the current study have shown that periodic rainfall conditions result in 
fundamentally different moisture and temperature fields around an underground cable compared 
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to what would be observed under rainfall steady-state conditions. Not only do the moisture 
content and temperature values oscillate periodically in time when exposed to periodic rainfall 
events, but the time-averaged values of the moisture content and temperature also change 
significantly in this periodic case compared to their steady-state values. The change in the mean 
values causes decreased values of the cable surface temperature, but increased values of the 
cable surface moisture content. As a consequence, steady-state computations over-estimate the 
temperature-related degradation of the cable insulation but under-estimate the moisture-related 
insulation degradation.      
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Chapter 5 
Packetized Plug-in Electric Vehicle Charge Management1 
 

Pooya Rezaei, Jeff Frolik, and Paul Hines 
 
 
 

Abstract 
Plug-in electric vehicle (PEV) charging could cause significant strain on residential distribution systems, 
unless technologies and incentives are created to mitigate charging during times of peak residential 
consumption. This paper describes and evaluates a decentralized and ‘packetized’ approach to PEV charge 
management, in which PEV charging is requested and approved for time-limited periods. This method, 
which is adapted from approaches for bandwidth sharing in communication networks, simultaneously 
ensures that constraints in the distribution network are satisfied, that communication bandwidth 
requirements are relatively small, and that each vehicle has fair access to the available power capacity. This 
paper compares the performance of the packetized approach to an optimization method and a first-come, 
first-served (FCFS) charging scheme in a test case with a constrained 500 kVA distribution feeder and 
time-of-use residential electricity pricing. The results show substantial advantages for the packetized 
approach. The algorithm provides all vehicles with equal access to constrained resources and attains near 
optimal travel cost performance, with low complexity and communication requirements. The proposed 
method does not require that vehicles report or record driving patterns, and thus provides benefits over 
optimization approaches by preserving privacy and reducing computation and bandwidth requirements. 

 

1. Introduction 
Plug-in Electric vehicles (PEVs) have the potential to facilitate a transportation future that is less 
dependent on liquid fossil fuels. However, as PEV market penetration increases, vehicle 
charging could strain aging power delivery infrastructure. A number of recent papers have shown 
that increases in PEV charging could have detrimental impacts on medium and low voltage 
distribution infrastructure (e.g., [1],[2]), particularly where PEV adoption is highly clustered [3]. 
With mass-produced PEVs coming to market and a range of charging standards (AC Levels 1-3) 
established [4], it is increasingly important to understand and mitigate negative impacts that PEV 
charging might have on distribution system components, such as underground cables and 
transformers. 

Implementing effective charge management (CM, also known as smart charging) methods is 
one step to facilitate the smooth integration of PEVs. Several previous studies (e.g., [1],[2]) show 
that with effective CM schemes it is possible to support large numbers of electric vehicles even 
with constrained electric power infrastructure. In many cases it is also possible for PEVs to not 
only avoid negative impacts on the power grid, but also to provide grid services, through 
Vehicle-to-Grid (V2G) technology (e.g., [5],[6]). 

The CM and V2G control schemes that have been proposed in the literature, or in industry, 
generally fall into one or both of the following categories: 
                                                
  

1 This chapter is based on work published as follows: Pooya Rezaei, Jeff Frolik, and Paul Hines, “Packetized 
Plug-in Electric Vehicle Charge Management.” IEEE Transactions on Smart Grid, Vol. 5, No. 2, pp. 642-650, 2014. 
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1. Centralized optimization or control methods in which each vehicle submits information to a 
central authority, which in turn solves an optimization problem that produces a charging 
schedule for each vehicle [7]-[12].  

2. Decentralized methods, in which either utilities set a pricing scheme (e.g., a two-period time-
of-use price) and vehicles self-schedule based on those prices [13]-[15], or market-based 
scheme that generate prices from bid or historical information, to which vehicle charge 
management devices respond [5],[16]-[20]. 

These two approaches have a variety of advantages and disadvantages.  
Centralized schemes have the advantage that they produce optimal outcomes by minimizing 

costs and avoiding constraint violations in the distribution system. However, 
optimization/control methods require that vehicle owners provide information (e.g., willingness 
to pay or anticipated departure times) to a central authority and give up at least some autonomy 
over the charging of their PEV. While the load-serving entity would likely compensate the 
vehicle owner for this loss of control with a reduced rate for electric energy, reduced autonomy 
could be an impediment to the adoption of CM schemes. In addition, vehicle owners are unlikely 
to know in advance their exact travel schedule, which complicates the problem. 
 Dynamic pricing schemes, such as reduced rates for nighttime charging, do not have these 
disadvantages; drivers are free to choose how to respond to change in prices. However, because 
not all vehicle owners will be price responsive, price-based schemes do not guarantee that 
vehicle charging will not produce overloads. In fact, under some conditions, time-differentiated 
pricing could produce new load peaks that increase, rather than decrease, aging in the 
distribution infrastructure [2]. The method in [21] seeks to combine the benefits of centralized 
and dynamic pricing schemes, but has the disadvantage that customers need to declare their 
willingness to pay for electricity in order to set the parameters for the bidding system. One major 
impediment for purely price-based schemes is the concern expressed by many utilities that true 
real-time pricing schemes would not be acceptable to electricity customers [22].  

The stochastic nature of charging behavior is particularly important to highlight. PEV arrival 
and departure times vary substantially among different owners, days, and times-of-day. While 
aggregate load for a region can be predicted with some accuracy, distribution feeder loads are 
less predictable, due to the smaller number of customers over which to average. Distribution 
system load variability and uncertainty will grow even further with an increase in distributed 
renewable generation. Vehicle CM schemes that do not adapt well to this uncertainty are 
unlikely to be successful.  

The combination of random supply (available capacity on a feeder, for example) and random 
demand for PEV charging is analogous to the problem of sharing a constrained channel in 
multiple access communication systems. This paper proposes an approach where PEV charging 
is completed over multiple short intervals using ‘charge-packets,’ which are analogous to 
discrete ‘data packets’ that revolutionized communications. Our approach leverages a 
probabilistic automaton, the design of which originated in the decentralized control of node 
activity in wireless sensor networks [24]. While the packetized approach could be applied in a 
variety of power system contexts, this paper focuses on the problem of ensuring that PEV 
charging does not result in overloads in residential distribution components (e.g., transformers or 
underground cables). Simulation results (Sec. 5) show that the inherent randomness in vehicle 
charging enables constrained resources to be fairly and anonymously shared.  
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Our approach builds on previous work by the authors and others applying communication 
algorithms to the problem of PEV charging. We extend our prior work [29]-[31] by simulating 
realistic travel demand behavior, and by comparing the packetized approach with other 
approaches to CM. Another communication-inspired algorithm is proposed in [25], which uses a 
more complicated communication algorithm, in order to treat PEV charging as a continuously 
controllable variable. Unlike many proposed smart charging methods (e.g., [1],[21]), the charge-
packet method does not require drivers to estimate their future departure times.  

2. The Communication Channel Analogy 

2.1 Characteristics of Modern Communications 
Modern communication systems are characterized not only by information that is digital in 

format but also by the way that data are sent in multiple discrete packets, each of finite duration. 
Packet communications can occur over dedicated or shared channels, the latter type we view to 
have analogous issues to PEVs sharing the power distribution system. In the communications 
field, techniques that manage access to shared channels (or bandwidth) are collectively known as 
media access control (MAC) protocols and have as an objective the efficient use of the 
bandwidth resource (measured by channel throughput) for the load placed on the system [26]. 
This objective is analogous to matching the demand for power to the available capacity of a 
feeder, to ensure that high loads do not damage the infrastructure, or trigger instabilities (e.g., 
voltage collapse). A second objective for MAC protocols is ensuring that latency does not 
exceed the user’s requirements; we view the latency objective to be analogous to PEVs receiving 
the requisite charge in the requisite time, which is a primary concern to PEV owners. The 
packetization of data allows both of these conflicting objectives to be addressed simultaneously 
in communication systems. 

2.2 Packetization of PEV Charge 
Why is PEV home charging a candidate for packetized delivery? Firstly, a 5-8kW AC Level 2 

PEV charger is likely to be the highest power load in a home; if many chargers in a 
neighborhood were to run simultaneously, substantial infrastructure degradation could result, 
particularly in older distribution systems. In addition, most PEV owners with Level 2 chargers 
will not need to charge their vehicles immediately upon vehicle arrival at home. Given fast 
charge rates, there is likely to be more than sufficient time overnight to bring a PEV’s battery to 
the desired state of charge (SOC) for the next day’s driving. In short, it is typically not necessary 
that PEV charging be continuous from start to finish. 

Packetized charging breaks the required charge time into many small intervals of charging 
(i.e., ‘charge-packets’). For example, 4 hours of Level 2 charging could be accomplished with 
48, 5-minute charge-packets. A PEV (or its charging station) would request the authorization to 
charge for the packet’s duration. A charge-management coordinator device at the distribution 
substation would assess local conditions and determine whether additional load on the system 
can be accommodated. If allowed, the PEV will charge for the duration of the packet and then 
submit new requests for subsequent packets until the battery is fully charged. If charging cannot 
be accommodated, the PEV resubmits a request at a later time.  

The accommodation or denial of charging is analogous to the successful transmission of a data 
packet or a packet collision, respectively, in random access communication systems in which 
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users compete for available bandwidth. Benchmark MAC methods developed for random access 
channels include Aloha, Slotted-Aloha and Carrier Sense Multiple Access (CSMA) [26], each of 
which requires very little (if any) overhead communications between the source and loads in the 
system. The MAC techniques provide a predictable throughput (i.e., utilization of bandwidth) for 
a given stochastic load by the network as a whole. However, individual user load is not managed 
by MAC protocols and thus a different type of control is needed if we wish to leverage 
packetization for the PEV charge management problem.  

3. A Probabilistic Automaton for 
PEV Charge Management 

3.1 Automaton Design 
The problem of managing, in a 

distributed manner, the individual 
activity rates (i.e., load) for entities in 
a large group is similar to the control 
of active nodes in a wireless sensor 
network and to the PEV CM problem. 
For the sensor-network problem, N-
state probabilistic automatons have 
been proposed that are both simple to 
implement on computationally 
constrained hardware and require 
minimal communications for control 
[24, 27, 28]. Our earlier work, [24] 
and [28], illustrated the ability of this 
approach to control participation for a large range of nodes and activities levels in a manner that 
ensured equity of participation among nodes. For PEV charging, we leverage this automaton 
design, of which a simple version (N=3) is presented in Fig. 1. 

As shown in the state diagram (Fig. 1), if the node (sensor or PEV) is in its middle state, it will 
transmit during a particular epoch (time period) with probability P2. In the PEV application, this 
“transmission” corresponds to the PEV requesting a packet of charge for a fixed length of time 
(or epoch). If the request can be supported by the infrastructure, the vehicle is allowed to charge 
for one epoch. In the communications context this would mean being “rewarded” by the channel, 
through successful transmission of the data. With a successful request, the state machine moves 
to the next higher probability state (P1) and transmits during the next epoch with probability P1 > 
P2. If the request was not successful, the PEV would not charge for the epoch, would move to the 
next lower probability state, and would request at the next epoch with probability P3 < P2. Prior 
work demonstrated that this automaton approach could adapt to scenarios where the distribution 
capacity varies over time [29].  

For fair and consistent treatment across all PEVs, each user’s automaton would have the same 
design. However, in order to ensure that drivers who need to charge their vehicles more quickly 
are able to do so, the design can be adjusted to give such vehicles a higher priority. In our design, 
each charger would have an “urgent” mode [30], which, when selected by the user, increases the 
probability of charge requests, and also the price of electricity. As implemented in this paper (see 
Fig. 1) ‘urgent’ vehicles request charge at each epoch with P1=1 [31].  

  
Fig. 1. A three-state (N=3) automaton where P2 corresponds to a 
lower probability of PEV charge request than P1, and P3 to a lower 
probability than P2. In case of charge urgency (urg=1) the state 
machine will stay at P1, but if there is no charge urgency by driver’s 
call (urg=0), and the power transformer was congested (cong=1), 
i.e. a charge request was denied to avoid transformer overload, the 
PEV state machine will go to a state with lower probability. If 
charge urgency was set by the driver (urg=1) the state machine will 
go to P1 with the highest probability. 
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3.2 Possible Implementation Approaches 
Key advantages of the proposed packet-based CM approach are that (1) the scheme can be 

used to manage constraints anywhere in a distribution system, (2) the communication 
requirements are minimal, and (3) customer privacy is maintained. Here we discuss these 
advantages by describing possible ways to implement the required communications (broadcast 
vs. point-to-point communications) and various power system constraints that the algorithm 
could be used to address. 

The packetized method can be implemented to mitigate overloads at a variety of locations 
within a distribution system, such as avoiding thermal overloads in underground cables, low-
voltage service transformers, or medium voltage distribution transformers, or avoiding under-
voltage conditions in the network, or (using a hierarchical design) any combination of these 
constraints. In each case, a charger automaton would communicate with an aggregator 
responsible for managing a particular constraint. For the case of medium voltage constraints, the 
aggregator could be located at the distribution substation. For the case of service-transformer 
constraints, the aggregator would likely be located at the transformer. The only data that would 
flow from the PEV charger to the aggregator would be charge-packet requests. The aggregator 
would respond to requests only based on available capacity. In each of these cases, 
communications could occur over Advanced Metering Infrastructure systems, which typically 
have very low communications bandwidth and high latencies, emphasizing the importance of a 
scheme that makes limited use of this bandwidth. 

It is possible to implement communications for the packetized method with either one-way 
(simplex) or two-way (duplex) data flows. In the duplex case, the aggregator would respond to 
each request individually with either an approval or denial. In the simplex case, the aggregator 
would broadcast the state of the resource (either overloaded, or not-overloaded) and chargers 
would make their request locally by merely randomly “listening” to the broadcast signal. The 
latter version has advantages in terms of privacy, as the transformer is blind to who is receiving 
permission to charge. 

These approaches represent conceptual extremes on how the packetized CM technique could 
be implemented. Note that combinations of these schemes could be employed simultaneously. 
For example, a PEV charger might send requests to an aggregator at the substation only if a 
service transformer’s broadcast signal indicated that there was local capacity available. Because 
vehicle chargers using the packetized method only charge when there is sufficient capacity in the 
system, our approach ensures that PEV loads will not cause overloads in components that are 
monitored by the system.  

3.3 Illustrative results for a service transformer  
To illustrate the operation of our approach, this section demonstrates how the charge-packet 

method would operate for the case of a constrained low-voltage service transformer. In this 
example scenario, a transformer has a peak load limit of 30kVA and serves 20 homes and 10 
PEVs. The baseline residential load patterns were the same as used in [2], scaled to an average of 
1 kVA per home, with a 0.9 power factor. The PEV travel patterns were randomly sampled from 
travel survey data [32] for New England, as described in [2]. Each vehicle was assumed to 
charge using AC Level 2 charging rates (7 kW at 1.0 power factor). The electric vehicle 
characteristics roughly reflect those of the GM Volt, with an efficiency of 4.46 km/kWh in 
electric mode and 15.7 km/L in gasoline mode, and a 13 kWh usable battery capacity. While all 
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of the simulation results in this paper are for series Plug-in Hybrid Electric Vehicles (PHEV), the 
packetized method could just as easily be applied to pure battery electric vehicles (BEV). 
However, for the BEV case, the travel survey data are likely to be a less accurate representation 
of travel behavior, since BEV drivers may adjust their travel patterns given the reduced range of 
the vehicle. For this reason we simulated PHEVs rather than BEVs. 

In this paper, we assumed that drivers can decide to choose between urgent or non-urgent 
charging modes and that, once chosen, this choice is constant during the day (the simulation 
duration). In the urgent mode, the vehicle requests charge regardless of the price of electricity, 
and its automaton stays at P1 (the highest probability). In the non-urgent mode, the vehicle 
requests charge only during off-peak hours, and its automaton can go to lower states in case of 
charge denial. 

For our first illustrative example, we used the following assumptions. First, all PEVs operate 
in the non-urgent charging mode, and thus do not request charge during peak hours (8 a.m. to 8 
p.m). Second, each PEV charger was managed with a three-state (N=3) automaton as illustrated 
in Fig. 1, with request probabilities of P1=1, P2=0.5 and P3=0.25. Finally, time epochs were set 
to 15 minutes.  

 
 

 
Fig. 2 shows the simulation result for this example. The top panel shows the transformer load 

with and without PEV charging. While the load approaches the 30kVA limit, the constraint is 
satisfied over the entire period. The middle panel shows the status of each PEV over the day, 

 
Fig. 2. Illustration of the charge-packet method for a service transformer with a 30kVA limit. (a) Load curve, 
showing the residential and the aggregate transformer load. (b) PEV status with gray shades indicating: A: PEV 
is away, HN: PEV is at home but not requesting for charge (either the battery is full, or it is during peak hours), 
HM: PEV requested a charge packet, but was denied to avoid transformer overload (charge mitigation), HC: 
PEV is at home and charging. (c) PEV automaton state number with the gray shades showing each automaton’s 
state at the end of the epoch.  
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with white bands showing the randomly scattered 15-minute periods during which vehicles were 
charging (note that vehicles are sorted by the time at which they arrive at home for evening 
charging). The lower panel shows the changing automaton states over the day, illustrating that 
during off-peak hours, the automatons are more likely to sit in the lower state (P3). This is 
notable since these states are determined locally based only on the success of the vehicle’s most 
recent charge request.  

4. Comparison Charge Management Schemes 
The results in Fig. 2 illustrate how the decentralized charge-packet CM approach can be used 

to keep transformer loads below a desired limit. This section describes two comparison schemes 
that were used to evaluate and illustrate the relative merits of the packetized approach. As stated 
in Sec. 3, the results that follow assume that all vehicles are series PHEVs, which use gasoline 
after their batteries are fully depleted.  
4.1 First-come, first-served charge management 

A simpler decentralized approach to the CM problem would be a first-come, first-served 
(FCFS) method in which vehicles are allowed to charge as soon as they arrive home and can 
continue to charge, so long as there is sufficient capacity available. As we will show, this 
approach puts vehicles arriving home at a later time at a disadvantage, should there be a capacity 
constraint in the system. Like the charge-packet method, this approach is largely decentralized, is 
low in computational complexity, ensures that charging will not exceed the feeder capacity, and 
can be implemented with equivalent limited communications. In our FCFS implementation, 
PHEVs are allowed during both peak and off-peak hours. Once charging begins, it continues 
until one of the following occurs: the battery is fully charged, the PHEV leaves home, or the 
network (transformer or feeder) becomes overloaded by an increase in non-PHEV load. In the 
latter case, the system randomly chooses a vehicle to stop charging. 

 

 

 
Fig. 3. Sample illustration of the FCFS charging method. (a) Load curve (b) PEV status 
using the same gray-scale codes as in Fig. 2. 
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Fig. 3 shows results from the FCFS approach for the same 10-vehicle scenario as in Fig. 2. In 
this scenario, vehicles have more continuous charging patterns (as seen by the continuity in the 
white bands in the lower panel). Because time-of-use prices are not considered by PHEVs in this 
method, they charge regardless of the time of day, as long as the transformer is not overloaded. 
In this case, vehicles that arrive later in the day or are initially denied charge are at a 
disadvantage because they cannot start charging until there is sufficient capacity to support 
additional PHEV charging. As a result PHEVs 9 and 10 do not start charging until the early 
hours of the morning (Fig. 3(b)). In contrast, the randomized nature of the packetized approach 
solves this fairness problem by requiring vehicles to request new packets at each epoch, 
providing vehicles with equal access to the resource, regardless of arrival times. In the 
packetized simulation (Fig. 2), vehicles 9 and 10 charge during several intervals during the night, 
with the first packets shortly after vehicle arrival. In Fig. 3, PHEVs 9 and 10 do not get any 
charge until after 1 and 2 am respectively. The extent to which vehicles get equal access to 
charging is quantified and compared in Sec. 5 (see Fig. 7).  

 

 
The FCFS charging scheme is a useful comparison scheme for two reasons. First, it illustrates 

how much charging costs increase, if PHEVs are not responsive to time-of-use prices, having the 
same travel pattern as in packetized charging method. Second, the FCFS method illustrates the 
potential of the packetized approach to provide equal access to constrained resources for all 
PHEVs.  

4.2 Optimal Charge Management 
The second comparison method is a centralized optimal CM scheme, which we use to identify 

the minimum cost charge scenario for each travel pattern and compare that cost to that of the 
packetized case under a two-rate, time-of-use residential tariff. A critical distinction for the 
optimal case is that the model assumes that PHEV charge rates can be continuously controlled 

 
Fig. 4. Illustrative results for optimal charge management. (a) Load curve. (b) PEV status with gray levels 
showing the amount of energy given to each PEV at each hour. In the grey-level bar, “A” shows the time 
when the PHEV is away. When at home, hourly charge quantities vary between 0 and 4.64 kWh, which is the 
maximum quantity delivered in this example. 
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between zero and the full charge rate. Also, and significantly, the travel behavior for each user 
must be known in advance for the optimization scheme. As in the other cases, all vehicles were 
assumed to be serial plug-in hybrid electric vehicles, with gasoline used only after the usable 
battery capacity was expended.  

The optimization problem formulation is a mixed integer linear programming model based on 
the approach in [12]. Only the objective function and our modifications to the model are 
described here; the reader is referred [12] for further details.  

The objective in the optimization method is to minimize the retail costs to vehicle owners 
associated with traveling the miles described in the travel survey data. Because the vehicles are 
PHEVs, and the homes are charged for electricity using time-of-using pricing, there are three 
fuels that can be used for charging: on peak electricity, off peak electricity, or gasoline. The 
resulting objective (cost) function is given in (1):  

 !! =
!! ! ∙ ! !, ! ∙ ℎ

!!
+ !! ∙ !!"(!, !)!!

!

!!!
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!!!
 (1)  

where !!(!) and ! !, ! !are the price of electricity and the charging power of vehicle ! at time t; 
h is the charge epoch length; !! !is the overall efficiency of the charging system (!! = 0.85); 
!! = 1.06 $/L is the price of gasoline; !!" !, !  is the distance traveled after the battery was 
depleted (Charge Sustaining, CS mode); !! = 15.7 km/L is the CS mode vehicle efficiency; and 
T and N are the number of epochs and vehicles, respectively. In our implementation, one-hour 
epochs were used (ℎ = 1), and ! !, ! !was a continuous variable that varied between 0 and 7 
kW. In order to obtain consistent results, the following two constraints were added to the model 
in [12]: 
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where !!(!) is the total residential load at time !, ! is the load limit for the transformer or feeder, 
and !!"!(!, !) is the total distance traveled by vehicle v at time t. Constraint (2) ensures that the 
transformer is not overloaded, and (3) forces PHEVs to charge as soon as possible, so long as the 
total cost is not affected. In other words, if the total distance traveled by PHEV ! is zero in two 
consecutive time slots (if the PHEV is plugged in at home) and the price of electricity is the same 
at time t and t-1, the charging power of vehicle v’s battery should be greater at the earlier time 
slot. 

Fig. 4 shows results for this optimal charging scheme for the 10-PEV case considered in Figs. 
2 and 3. As a result of allowing vehicles to charge at any rate, the approach chooses charge rates 
that are lower than the full Level 2 rate. This type of “Unidirectional V2G” [5] has advantages in 
terms of more refined control, but requires additional communication and coordination. As 
expected, optimal CM fully utilizes the transformer capacity during off-peak hours, but only if 
travel plans are fully known. The other two methods also keep loads below the power limit, but 
with somewhat more variability. 
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5. Results 
This section compares the packetized approach to the optimal and FCFS cases, and to variants of 
the packetized approach, for a larger number of homes and vehicles. Specifically, we simulated a 
500 kVA medium voltage transformer serving 320 homes, each with 1 kVA average load. Each 
home has two vehicles [33] (i.e., 640 vehicles in total), either or both of which could be a PHEV 
depending on the PHEV penetration level. The number of homes was selected such that the peak 
residential load was below the transformer’s rated load. We assumed that customers were 
charged for electricity according to a two-rate, time-of-use residential tariff in which the peak (8 
a.m. to 8 p.m.) electricity rate is πe(t)=$0.14/kWh and the off-peak rate is πe(t)= $0.10/kWh. 
These assumed values are representative of (though less extreme than) current retail time-of-use 
rates in the Northeastern US [34]. For the packetized case, we assumed that vehicles in urgent 
charging mode were charged the peak price ($0.14/kWh) during peak hours. It is important to 
note that this $0.04 difference between urgent and non-urgent rates is likely conservative, since 
the cost to utilities of providing non-urgent charging is likely to be only slightly higher than off-
peak wholesale energy costs, which are frequently $0.02-$0.03/kWh in the Northeastern US 
[35].  

In order to obtain a distribution of outcomes over a variety of likely travel patterns, 100 unique 
vehicle travel patterns were randomly selected from the survey data (see [2] for details of this 
Monte-Carlo model). 

5.1 Comparing packetized charging to optimal and FCFS charge management 
In this section the packetized approach is compared to results from the FCFS and optimal 

method for the larger scenario. For the packetized method, we modeled a two-state automaton, 
with request probabilities of P1=1 and P2=0.5. Furthermore, vehicles were set to urgent mode 
(for the packetized approach) based on the solution from the optimization: if PHEV v charged 
during peak hours in the optimization results,  v was set to urgent charging mode. Essentially this 
reflects the assumption that drivers were able to estimate their need for urgent charging.  

We simulated three different levels of PHEV penetration: 12.5% (N=80), 25% (N=160) and 
50% (N=320). Note that these high penetration levels are relatively unlikely in the near term for 
the aggregate vehicle-fleet in most countries. However, it is not unlikely that some residential 
neighborhoods could have PEV penetrations that are substantially higher than that of aggregate. 
As a result of this, and the fact that temporal patterns in non-residential loads differ from 
residential patterns, we assume that the simulated PHEVs do not impact the two-tier time-of-use 
price. We also assume that the aggregate system load curve, which would include commercial 
and industrial customers, is different from the residential load shown in Fig. 5, which shows the 
baseline and total load for 25% PHEV penetration (160 PHEVs) for each CM scheme. In order 
to make a clear comparison, we chose 1-hour time slots for the FCFS and optimization method, 
and 1-hour request intervals and packet lengths (i.e., epochs) for the charge-packet method. Fig. 
5 shows that the PHEVs in the charge-packet case use slightly more peak hour charging, than in 
the optimization case, which increases the overall costs for the charge-packet method somewhat. 
However, the presumption is the unrealistic requirement that the central optimization approach 
can obtain perfect information about travel plans. What is notable is that the charge-packet 
scheme keeps loads below the limit, with costs that are nearly optimal as the load presented to 
the system is adjusted over time and distributed across PEVs in the system.  
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We compared the average total travel cost per PHEV over 100 one-day Monte Carlo 

simulations. We assigned each vehicle a random travel pattern from the survey data. The same 
vehicle-travel pattern combinations were used identically for each scenario, to ensure a fair 
comparison. The results for two different PEV penetrations (12.5% and 50%), and two different 
battery capacities are shown in Fig. 6. The gasoline, off-peak and on-peak electricity costs are 
shown separately. From Fig. 6, we can see that the total travel cost of the charge-packet method 
is slightly more than that of the optimization method, but much less than the FCFS method. The 
charge-packet costs are slightly greater because urgency settings were constant during the day, 
based on the realistic assumption that drivers are not perfect optimizers. The FCFS method is 
more costly because in this case drivers do not differentiate their charging based on the price of 
electricity. The result is that in the FCFS method, vehicles consume more peak-hour electricity 
than in the other methods. One exception is the case of 50% penetration and 24 kWh batteries, 
where all charging methods use the entire transformer capacity during off-peak hours, but the 
optimization method can optimally allocate charging to those PEVs that cannot get peak-hour 
charging. In other charging methods, some PEVs that are not capable of receiving peak 
electricity (because of not being home) do not get enough charge overnight, and must use the 
most expensive fuel, gasoline. It should be noted that in our simulations peak electricity at 
$0.14/kWh is still cheaper than gasoline in terms of $/km travel.  

 
Fig. 5. Daily load curve showing non-PEV residential load and the aggregate load with 25% PHEV 

penetration. 
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Generally, in the higher PEV penetration scenarios, there is insufficient off-peak electricity to 
allow all vehicles to fully charge their batteries, resulting in more peak electricity usage for the 
optimization and packetized scenarios. Because of this, increased PEV penetrations resulted in a 
slight increase in travel costs for the optimization and packetized cases. For example, in the 
12.5% PEV penetration case, vehicles can use more off-peak electricity than in the 50% PEV 
penetration case, where peak electricity is used more. 

As one would expect, the results indicate that larger battery capacities result in reduced use of 
the most expensive fuel, gasoline, and thus reduce travel costs. However, the impact of the larger 
batteries is different in low and high PEV penetration cases. In the low penetration case, more 
off-peak electricity can be used for the larger battery, as more transformer capacity is available; 
in the high penetration case, the transformer capacity is exhausted for both the 13 kWh and 24 
kWh battery cases during the off-peak hours, making the benefits of larger batteries less clear. 

Most importantly, these results show that the cost of using the packetized method is only 0.9% 
to 5.2% greater than what we found for the optimal CM case (as opposed to 3.1% to 14.1% for 
the FCFS CM scheme). The charge-packet method requires much less information from the PEV 
owner (only the choice of an urgency setting) and requires far less two-way communication than 
would be required to implement centralized optimization method. In summary, we find that the 
charge-packet method can achieve near optimal costs, while preserving driver privacy and being 
robust to random changes in travel behavior.  

5.2 Comparing variants of the charge-packet method 
The automaton used in the packetized PEV charger allows PEV charging to adapt to reduce 

the impact on the distribution system, such as overloaded transformers or feeders. However, 
different automaton probabilities and structures will change the performance of the charge-
packet method, particularly with respect to the burden on the communications infrastructure. To 
investigate the performance of the charge-packet method, we introduced the idea of 
differentiating between charge-packet lengths, i.e., the time epoch a PEV is given permission to 
charge, and request intervals, i.e., the time epoch between two requests for charge. 

We simulated the charge-packet method with different automaton probabilities, packet lengths 
(5-minute and one-hour), and request intervals (5-minute and one-hour). The results were 

Fig. 6. Average total travel costs in 100 Monte Carlo simulations, showing gasoline, peak and off-peak electricity costs 
separately in four case studies with different PEV penetrations and battery capacities (bars show the average and black 
lines show 10th to 50th and 50th to 90th percentile) 
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compared across three metrics: (1) average total cost, (2) a measure of the extent to which the 
method provided each vehicle with equal access to the charging resources, and (3) the number of 
messages transmitted by the PEVs or the transformer, per vehicle-day, assuming the bi-
directional communication (duplex) case is implemented (see Sec. 3.2).  

One of the problems observed with the FCFS charging case (Sec. 4.1) was that vehicles that 
began charging earlier than others, before a period in which charge mitigation occurred (typically 
early evening hours), were not required to stop charging when new vehicles arrived. As a result, 
vehicles that arrived later in the day frequently were not allowed to begin charging until capacity 
in the system was released, effectively giving them “less equal” access to charging resources. In 
order to measure the extent to which vehicles were given equal access to grid resources under 
different scenarios, we defined an Equal Access Metric (EAM) to assess the “fairness” of each 
method. For this purpose, we find the probability of charge mitigation for each vehicle v, !! ! , 
by dividing the number of time slots that the PEV charge request is denied by total number of 
time slots that the PEV is requesting charge from the transformer. PM was computed only for off-
peak hours, when all vehicles, whether in urgent or non-urgent mode, were requesting charge. 
Given the standard deviation of !!(!) over all v, ! !! , EAM was calculated as follows: 

 !"# = 1− ! !! . (4) 

! !!  ranges between 0 and 1, which means that EAM has the same range. Therefore, a method 
with perfectly equal access will have EAM = 1, and lower values of EAM indicate that some 
vehicles are given more access than others. The rationale for this metric is that as long as all the 
PEVs are mitigated with the same probability (i.e., the same ratio of mitigation to total requests) 

 
Fig. 7. Comparison of FCFS charging and variations of the charge-packet method. (Top) Average total costs over 100 
Monte Carlo simulations, with shades indicating gasoline (black), peak (gray) and off-peak (white) electricity costs. 
(Middle) The extent which consumers have equal access to the available capacity. (Bottom) Communication burden 
for the various methods. t1 and t2 in t1/t2 (e.g., 60/60) show the request interval and the packet length in minutes, 
respectively. See the text for definitions of the state-machine probabilities SMi. 
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the method maintains its fairness.  
Communication burden was measured by counting the number of messages exchanged over 

the communications network per vehicle per day. Following the two-way communication system 
design, we assumed that each charge packet request requires one message submission to the 
aggregator. If the PEV gets a reply (one message), this means that the request is approved; 
otherwise the charge request is denied.  

Fig. 7 shows these three metrics, for three different charge time-interval combinations and four 
different state machines, along with results for the FCFS charging method. Time-interval 
combinations are defined using the notation t1/t2, in which t1 is the interval of times between 
requests and t2 is the length of the charge packet, both in minutes. The three time-interval 
combinations compared were 60/60, 5/60 and 5/5, and the state machines were SM1: {P1 = 1, P2 
= 0.5}, SM2: {P1 = 1, P2 = 0.5, P3 = 0.25}, SM3: {P1 = 0.8, P2 = 0.4} and SM4: {P1 = 0.8, P2 = 
0.4, P3 = 0.2}. As expected, smaller request intervals and charge-packet lengths reduced 
charging costs, but increased communication costs. The 5/60 gives about the same travel cost as 
5/5, but at the expense of fairness (reduced EAM). It is possible that excessively frequent on/off 
cycles could have adverse effects on the battery or charging systems. If this was the case, the 
5/60 method could be preferable, given that the increase in cost is negligible. Note that 5/60 
outperforms 60/60 in terms of equal access. 

The results also suggest that using state-machines with N=3 rather than N=2 states, or with 
lower transition probabilities, can substantially reduce the burden of CM on the communications 
system. This notion agrees with the results obtained previously for automaton control applied to 
wireless sensor node participation [24]. However, these changes also result in small increases in 
travel costs. If communications bandwidth is not a constraint, the 5/5 charge-packet is superior in 
terms of both total cost and equal access.  

6. Conclusions 
This paper draws similarities between the problem of managing the charging of electric 

vehicles and that of providing multiple devices with access to a bandwidth-constrained 
communications channel. We propose to treat PEV charging as a random access problem where 
charge is delivered through many ‘charge-packets’. As with random access communication 
channels, the packetization of charge allows distribution system objectives (i.e., efficient use of 
available resources without overloading the network) and customer objectives (reducing travel 
costs) to be achieved simultaneously. Leveraging this approach, this paper presents a new 
decentralized, automaton-based charge management strategy, which preserves users’ privacy 
more than many existing charge management schemes. Simulations of packetized charging in a 
constrained residential distribution feeder indicate that the cost increase of our method over an 
omniscient centralized optimization method (which is untenable in its information requirements) 
is only 0.9% to 5.2%. However, in comparison to the optimal approach, the charge-packet 
technique can be implemented with first-generation low-bandwidth advanced metering 
infrastructure. 

While the simulations in this paper are for plug-in hybrid electric vehicles charging in a 
residential distribution network, the packetized method could be adapted and applied to other 
thermal or battery storage loads. Battery electric vehicles are likely to have somewhat different 
charging and travel characteristics than PHEVs: BEV owners would probably take fewer very 
long trips, and are likely to request the “urgent” charging mode more frequently. Similarly, the 
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method could be adapted to the management of thermal loads, such as HVAC and water heating. 
Future work will investigate these adaptations.  

Finally, it is important to note that the charge packet approach would not be desirable if 
discrete switching caused substantially accelerated battery degradation. While detailed analysis 
of battery impacts are beyond the scope of this paper, evidence from prior research suggest that 
charging Lithium Ion batteries at a constant rate resulted in no aging benefit, relative to a 
variable changing rate [36], and that pulsed charging can, under some circumstances, be 
beneficial to battery life [37].     
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Chapter 6 
Conclusions 

 
This report describes the results of a two-year study of the impacts of electric vehicles on the 

electric power distribution infrastructure, which moves electricity between the bulk transmission 
system and individual homes and businesses.  

In Chapter 2, we show that residential service transformers can be adversely affected by even 
a small number (e.g., 3) of electric vehicles simultaneously charging. This was particularly the 
case in hot climates, such as Arizona, where ambient temperatures result in smaller margins 
between the internal thermal limits of a transformer and the actual operating temperature. The 
results in Chapter 2 also show that well-designed “Smart Grid” control schemes can be useful in 
dramatically reducing the potential negative impacts of electric vehicle charging. Chapter 3 
builds on this work to study the thermal properties of residential service transformers in 
additional detail. In this study we collected temperature measurements from several instrumented 
transformers in the Green Mountain Power territory, and used the measurements to test a variety 
of different thermal models. The results suggest that there are simpler models that may work 
equally well for residential service transformers, relative to the more complicated thermal 
models that are commonly used to model larger bulk power transformers. 

In Chapter 4, team members propose a new thermal model for underground cables, which are 
another critical component of the electric power distribution infrastructure. This new method can 
accurately model the thermal impact of moisture on distribution cables. In cooler, moist climates, 
such as Vermont, moisture could increase the available capacity in an underground cable, which 
indicates that there may be capacity for more electric vehicle adoption than one would assume 
from standard cable models that do not model the impacts of moisture. This new approach makes 
it possible to more accurately plan for electric vehicle deployment in cool, moist locations. 

Finally, Chapter 5 presents a new approach to mitigate the potential negative impacts 
of electric vehicle charging on the power distribution infrastructure. Unlike optimization-based 
approaches to electric vehicle charge management, which have been proposed by others, our 
method does not require information about the vehicles future state (e.g., battery state of charge, 
arrival time, departure time, etc.) in order to compute a charging schedule. Our approach, in 
contrast, allows the charging behavior of vehicles to adapt to constraints in a power system, in 
near real-time. This new approach requires very little data from the vehicles, and what 
information it does need is anonymous to the central aggregator, and thus the new approach 
maintains privacy.  This new approach to power delivery mimics the means by which data is 
moved through communication networks; i.e., using ‘packets’. As a result, we expect to be able 
to leverage decades of research into random access communication channels to improve upon the 
work reported here. In future work, we expect to leverage the core concepts to develop a 
distributed and adaptive means to manage other large residential loads such as water heaters and 
air conditioners.  Ongoing work, including a pending pilot implementation, is looking at 
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strategies for applying the method to charge a fleet of vehicles and for managing roadway 
lighting. 

Taken as a whole, these results suggest that electric vehicle charging can have significant 
impacts on the electric power distribution infrastructure, but that these impacts can be effectively 
mitigated by careful planning and appropriate use of the increasing capabilities of “Smart Grid” 
infrastructure.  




