## UVM CENTER FOR SUSTAINABLE AGRICULTURE GRASS FARMING RESEARCH: SOIL ORGANIC MATTER & WATER HOLDING CAPACITY

## **ABOUT THE RESEARCH**

Our project is taking place on a 400-acre Champlain Valley diversified beef farm with long previous use as a dairy operation. Its recent history includes heavy tillage and synthetic inputs, and the increased frequency of extreme weather events, which both have contributed to soil erosion and disaggregation and resulted in degraded fields. The Center's research team is helping the current farmers recover the soils by monitoring and researching soil health and pasture forage ecosystems as they relate to the production of high-quality, grass-fed, grass-finished beef.'

We see pasture-based farming as an inseparable triad of well-functioning soils, abundant and high quality forages, and healthy livestock animals in a constant and balanced rotation. The four fields under study were previously managed as hay or crop fields, with no livestock presence. The data below reflects the changes in sampled soil organic matter after animals were added to these fields and managed in an active rotational-grazing system.

## INCREASING SOIL ORGANIC MATTER INCREASES WATER-HOLDING CAPACITY: Research Plot Results 2015-2017

| Field Name           | 2015 SOM % | 2017 SOM % | Change in<br>SOM %     | Increase in<br>water-holding<br>capacity (per<br>acre) | Field Acres | Total increase<br>in water-<br>holding<br>capacity |
|----------------------|------------|------------|------------------------|--------------------------------------------------------|-------------|----------------------------------------------------|
| Grazing Field        | 4.0        | 5.7        | 1.7                    | 45,900<br>gallons/acre                                 | 15          | 688,500<br>gallons                                 |
| West Island<br>Field | 5.1        | 6.0        | 0.9                    | 24,300<br>gallons/acre                                 | 7.5         | 182,250<br>gallons                                 |
| East Island<br>Field | 4.0        | 5.1        | 1.1                    | 29,700<br>gallons/acre                                 | 9           | 267,300<br>gallons                                 |
| East Field (N)       | 4.0        | 5.6        | 1.6                    | 43,200<br>gallons/acre                                 | 20          | 864,000<br>gallons                                 |
|                      |            |            | 1.325 avg.<br>increase | 35,775<br>additional<br>gallons/acre<br>avg.           | 51.5 acres  | 2,002,050<br>gallons of<br>increased<br>capacity   |

Questions? Contact Juan Alvez, Ph.D. 802-656-6116 or jalvez@uvm.edu



Center for Sustainable Agriculture

63 Carrigan Dr., Rm. 105 Burlington, VT 05405 802-656-5459 www.uvm.edu/extension/sustainableagriculture