

Jennifer Dean
NY Natural Heritage Program
FEMC Annual Meeting
December 13, 2019
www.nyimapinvasives.org

Coordinated invasive species efforts across New York

- NYS Agency programs
- PRISMs = Regional hubs
- Invasive species council
- Advisory Committee
- Research Institute
- Information sharing

NEW YORK STATE INVASIVE SPECIES COMPREHENSIVE MANAGEMENT PLAN

FINAL November 2018

2. Commit to a Centralized Framework for Sharing Invasive Species Information

2A. NEED

New York has adopted a management framework that includes both centralized and regional organizations and partnerships. These parties, and the public, need to be kept informed of new threats, effective management actions,

Progress to Date

Since iMapInvasives was launched in 2010, over 180,000 invasive species observations have been recorded by engaged citizens and professionals in the field. These observations span 312 terrestrial and 26 aquatic

New York State's standardized and centralized invasive species database

- Aggregates data from the public and professionals
- Online and GIS-based for easy data sharing
- Data managed by NYNHP through NYS DEC
- Launched in 2010

Department of Environmental Conservation

iMapInvasives as New York's centralized database

Reporting tools and data uploads

Tracking Control Efforts and Results

Species Distributions and Reports

Early
Detection
Alerts

Aggregating data from many sources

- Uploads / Crosswalks of existing data from partner organizations
 - Local, State, and Federal Agencies
 - Land/ Water Managers
 - Researchers
 - Museum Data
- Data entered by citizen scientists
 & professionals
- Data collected via custom mobile tools
 - Esri Collector and Survey 123

Web Map Services from iMapInvasives:

Bring in the live data to partner ArcGIS and web applications

Types of data within iMapInvasives

Searched Area

Where did you look?

Polygon showing the area covered that day, at that site, while looking for and/or treating invasive species.

Presence

What did you find?

Location(s) (polygon, line, or point) that document one or multiple species present per location

Not Detected

What didn't you find?

One or more species looked for but not found.

Treatment

What did you treat?

Polygon(s) within, or same area as, the parent Searched Area record

mechanical, chemical, or biological

Being Strategic:

Using the data to prioritizing invasive species survey and control efforts

- Can we reduce pathways of invasion?
- Which species should we target first?
- Where will our efforts have the biggest impact?
- Will our projects be effective?

Species Tiers – creating locally-specific invasive species lists using a standardized process

assessments
Expert Opinion

Species Tiers – creating locally-specific invasive species lists using a standardized process

Terrestrial Invasive Plant Species:

Tier 1:

1a: Actinidia arguta, Hardy Kiwi, Taravine

Actinidia polygama, Silver Vine

Ampelopsis brevipedunculata, Porcelain Berry

Aralia elata, Japanese Angelica Tree

Cytisus scoparius, Scotch Broom

Dioscorea polystachya, Chinese Yam

Lonicera maackii, Amus Honeysuckle

Phellodendron amurense, Amus Cocktree

Pueraria montana var. lobate, Kudzu

Salix cinerea, Gray Florists willow

Salvia glutinosa, Sticky Sage

Schoenoplectus mucronatus, Bog Bulcush (one historical record in CapMo)

1b: Corydalis incisa, Incised Fumewort

Oplismenus birtellus, Wavyleaf Basketgrass

Tier 2

Acer pseudoplatanus, Sycamore Maple

Arthraxon bispidus, Small Carpgrass, Hairy Joint Grass, Jointh

Clematis terniflora, Japanese Virgin's Bower, Sweet Autumn

Eleutherococcus pentaphyllus, Five-leaf Acalia

Ficaria verna sso. Verna. Lesser celandine. Fig Buttercuo

Prioritizing locations:

Where will our invasive species efforts have the biggest impact?

- Protected areas
- High conservation value
- Recreation destinations
- Agricultural resources
- High risk areas
- Areas NOT yet heavily invaded

Spatial modeling to prioritize invasive species efforts

GOAL - Help Natural Resource Managers prioritize where to focus resources for Early Detection surveys and invasive species control by coupling conservation value and risk of spread.

Basic Steps:

- 1) Compiled spatial data on factors influencing invasive control decisions
 - Used layers with statewide coverage and fine scale resolution
- 2) Created new synthesis layers
 - Driven by stakeholder feedback and expected uses

Conservation value

Protection Status

Risk of Spread

Model component details: Ecological Significance

Rare species locations, significant communities, and element distribution models

Biological Assessment Profile (stream quality metrics)

Predicted native mussel richness

Model component details: Protected or Natural

New York Protected Areas Database

Further lifted by NYNHP Biodiversity Index score

National Land Cover Database

Cover Type = Natural Cover

Model component details: Risk of Spread

Landscape Condition Assessment (LCA)

- Transportation network
- Urban and Industrial Development
- Utility Corridors
- Land use-Land Cover created by NYNHP

Recreation Use of Natural Areas

- Boat Launches
- Campgrounds
- Trailheads

From NYS DEC data

Comprehensive Score: Ecological Significance + Protected or Natural + Risk

Combining Location and Species Prioritization:

Example for local invasive species planning

Ecological Significance	Risk of Spread	# of iMap locations	Action
		Spitol-Michael Co	For candidate parcels, compare model values and number of reports as proxy for invasive species work
High	High	Low	Focus PRISM Staff surveys for Tier 1 and 2 species (Run IPMDAT on infestations)
High	Low	Low	Encourage PRISM volunteers to survey and report Tier 3 and 4 species

Moving beyond prioritization:

Creating a decision tool to help managers allocate resources across invasive species, areas, and actions that achieve their objectives.

Objectives:

Minimize negative impacts to:

- Environment
- Industry
- Recreation
- Human health and safety

Maximize cost-effectiveness

Using these management strategy options:

- Direct intervention
- Search, destroy, prevent
- No direct action

Inputs

Species-specific data

- Tier classification
- Dispersal parameter values*
- Impacts to the objectives (from assessments)
- Effects of management actions*
- Costs of management*
- iMap occurrence locations

Block-specific data

- Value for the objectives
- Value as an invasion pathway

PRISM-specific values*

- Weights of objectives
- Budget constraints

* Elicited from PRISM leaders

Optimization Modeling

Outputs for each PRISM

- 1. Per species, per 5km block, which management strategies to implement?
 - No direct action
 - Search, Destroy, Prevent
 - Direct Intervention
- 2. Cumulative maps highlight areas where many species should be targeted

3. Under given budget scenarios, how should funds be allocated?

www.nyimapinvasives.org dean@nynhp.org

Department of Environmental Conservation