





# Recent Trends in Rural Hospitals: Shifting Service Lines and Artificial Intelligence Use



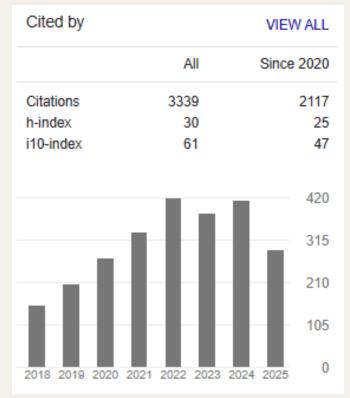
Brian Whitacre

Professor and Neustadt Chair



AGRICULTURAL ECONOMICS




#### **Rural Development Series Seminar**

University of Vermont
Department of Community Development
and Applied Economics
Oct. 13, 2025

#### About Me

- Ph.D. Virginia Tech (2005) <sup>™</sup> VIRGINIA TECH•
- Assistant / Associate / Full Professor, Oklahoma State
- 65% Extension / 25% Research / 10% Teaching
  - Rural Economic Development (undergrad)
  - Spatial Econometrics (graduate)

#### **Google Scholar Profile**



| <u> </u> | jiau)                                                                                                                                                                                  |     |      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|          | Broadband's contribution to economic growth in rural areas: Moving towards a causal relationship  B Whitacre, R Gallardo, S Strover Telecommunications Policy 38 (11), 1011-1023       | 387 | 2014 |
|          | Infrastructure and the rural—urban divide in high-speed residential Internet access BE Whitacre, BF Mills International Regional Science Review 30 (3), 249-273                        | 208 | 2007 |
|          | Does rural broadband impact jobs and income? Evidence from spatial and first-differenced regressions  B Whitacre, R Gallardo, S Strover The Annals of Regional Science 53 (3), 649-670 | 201 | 2014 |
|          | Understanding the Non-Metropolitan—Metropolitan Digital Divide BF Mills, BE Whitacre Growth and Change 34 (2), 219-243                                                                 | 183 | 2003 |

#### Mostly Focused on Broadband!

#### So Why Rural Hospital Trends??

Early adoption of telehealth/remote patient monitoring and hospital revenue changes during COVID-19

Claudia A Rhoades<sup>1</sup>, Brian E Whitacre<sup>2</sup> and Alison F Davis<sup>1</sup>

The Influence of the Degree of Rurality

on EMR Adoption, by Physician

- Rural health an important topic in the general regional science / ag econ field
- Ties in with my broader focus on technology / policy evaluation
- Good fit with land-grant mission

Higher Electronic Health Record Functionality Is Associated with Lower Operating Costs in Urban—but Not Rural—Hospitals Specialty
Brian E. Whitacre

Claudia A. Rhoades<sup>1</sup> Brian E. Whitacre<sup>1</sup> Alison F. Davis<sup>2</sup>



#### Community sociodemographics and rural hospital survival



Recently-published paper on shifting "service lines" among rural hospitals and the resulting impact on profitability

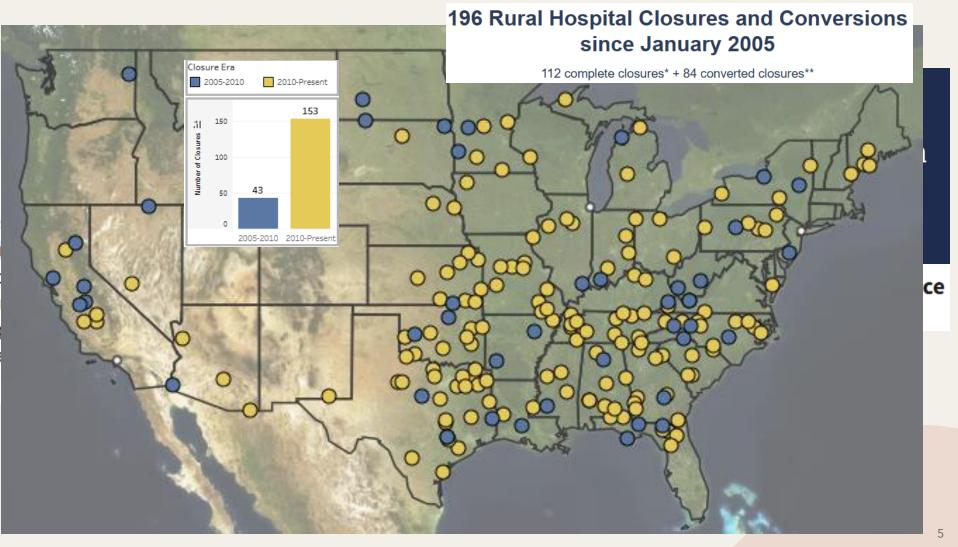
## Agenda: 2 Topics

- What changes make economic sense?



Ongoing project related to Artificial Intelligence use by hospitals

- Rural urban differences in specific tasks?
- Determinants of Al adoption in rural hospitals
- Potential impacts of AI use by rural hospitals


## Broader Rural Hospital Landscape

#### Al summary:



Al Overview

The current rural hospital land hospitals operating at a loss at factors like declining patient vo from cyber threats. These fina healthcare deserts and forcing health outcomes. Efforts to standard advocacy for rural needs, and





## Current Policy Environment

Rural Hospitals at Risk: Cuts to Medicaid Would Further Threaten Access

Significant cuts to Medicaid in "One Big Beautiful Bill"

The One Big Beautiful Bill Act (H.R. 1) would result in 1.8 million individuals in rural communities losing their Medicaid coverage by 2034. In addition, select Medicaid provisions in H.R. 1 would result in a \$50.4 billion reduction in federal Medicaid spending on rural hospitals over 10 years.

- Rural Health Transformation Fund dramatically changes funding process
  - \$50 Billion awarded to states over 5 years
  - Base allotment of \$500 million / state (same for VT / TX!)

The 'One Big Beautiful Bill,' Now Law, Does Not Protect Rural Hospitals No Guarantees For Rural Hospitals; Fast And Steep Funding Cliffs

Funding To States Not Hospitals



Health Affairs

# Rural Hospital Service Lines: Changes Over Time and Impacts on Profitability

- Background & Recent Literature
- Data & Methods
  - Medicare Cost Reports, 2010 2021
  - Panel Event Study
- Results & Robustness Checks
- Conclusion

#### Rural Hospital Service Lines: Changes Over Time and Impacts on Profitability

Brian E. Whitacre, PhD, Department of Agricultural Economics, Oklahoma State University, Stillwater, Oklahoma; and Claudia A. Rhoades, PhD and Alison F. Davis, PhD, Center for Economic Analysis of Rural Health, Department of Agricultural Economics, University of Kentucky, Lexington, Kentucky

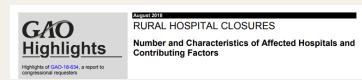
#### **SUMMARY**

Goal: To document shifts in rural hospital service line offerings between 2010 and 2021 and to assess the resulting impacts on hospital profitability.

Methods: We used annual Medicare cost report data for all rural hospitals that did not change payment classifications between 2010 and 2021. We documented changes in the percentages of hospitals offering each of the 37 inpatient or ancillary service lines included in the data. We then used panel event studies to assess effects on hospital operating margin for specific service lines that changed most prominently during this period.

Principal Findings: Twelve service lines changed by more than 5% during our period of analysis. These are highlighted by hospitals adding rural health clinics (+32%) and CT scans (+20%) and removing delivery rooms (-21%) and skilled nursing facilities (-19%). Panel event studies demonstrated that the addition or subtraction of most services did not have statistically significant impacts on future hospital operating margins. Notable exceptions were the addition of rural health clinics and the removal of delivery services, both of which positively affected future operating margins. The addition of occupational therapy services had a positive effect on operating margin in the near term, but adding MRI services had a negative effect.

Practical Applications: The finding that only a select few service line changes resulted in meaningful impacts to hospital operating margins suggests that hospital leaders should be wary of implementing such changes as a means of improving financial viability.


Journal of Healthcare Management

2016

**Predicting Financial Distress and Closure in Rural Hospitals** 

George M. Holmes PhD, Brystana G. Kaufman MSPH, George H. Pink PhD

2018



Background

Impact of Rural Hospital Closures on Health-Care Access

Sean McCarthy MD °, Dylana Moore BS ° b, W. Andrew Smedley BS ° b, Brandon M. Crowley BS ° b,

- Existing literature largely focuses on survival / closure of rural hospitals and resulting impact on healthcare access
- Recognition that financial pressures impact hospital's ability to provide specific types of hospital services

2009

Hospital Financial Conditions and the Provision of Unprofitable Services

2025

- Rural hospitals lose money on several critical service lines, including behavioral health, pulmonology, obstetrics, and burns and wounds.
- Clear patterns for rural hospitals over past several decades:
  - Reduction in inpatient volume
  - Changes in revenue sources (growing outpatient share)
  - Affiliation with larger health systems

Escalating Pressure to Control Costs / Maximize Revenue

# Shifting Service Lines

- Shifts documented by John et al. (2022) and Oyeka et al. (2023)
  - 2009 2017: More cardiology, pain management but less skilled nursing, birthing
  - 2008 2020: Service **additions** more frequent in hospitals that <u>left</u> health care systems. Majority of service **losses** occurred in hospitals that <u>joined</u> systems.

No peer reviewed studies on IMPACT of these shifts on hospital finances



Findings Brief NC Rural Health Research Program

August 2022

Changes in the Provision of Health Care Services by Rural Critical Access Hospitals and Prospective Payment System Hospitals in 2009 compared to 2017

Randall John, BSPH; Kathleen Knocke, MSPH, PhD; Sharita Thomas, MPP; Kristie Thompson, MA; Mark Holmes, PhD; George Pink, PhD

## RUPRI Center for Rural Health Policy Analysis Rural Policy Brief

Brief No. 2023-2

JANUARY 2023

http://www.public-health.uiowa.edu/rupri/

#### Changes in Service Offerings Post-System Affiliation in Rural Hospitals

Onyinye Oyeka, MPH, PhD; Fred Ullrich, BA; Dan Shane, PhD; Keith J. Mueller, PhD



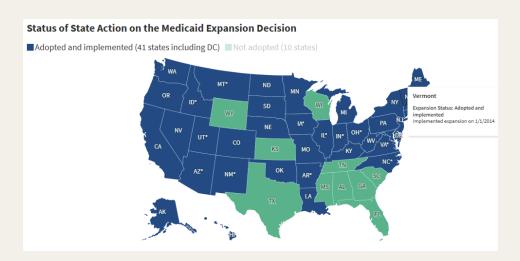
#### Data

# CMS Hospital Cost Report Data Made Easy We Process the Data, You Do the Analysis

RAND Hospital Data enhances CMS hospital cost report data and makes it more accessible. We download the publicly available data from CMS, process it into panel datasets, and add key metrics.

https://www.hospitaldatasets.org/

- Center for Medicare and Medicaid Service (CMS) Healthcare Cost Report Information System (HCRIS)
  - Medicare Cost Reports compiled by each individual hospital
  - Compiled by RAND Corporation for 1996-2021
  - Include larger share of rural hospitals than voluntary AHA annual surveys
- Limited analysis to subset of all hospitals:
  - Only hospitals with complete annual data for 2010 2021
  - Only hospitals defined as "rural" by Federal Office of Rural Health Policy
    - RUCA codes ranging from 4-10 OR
    - RUCA codes 2-3 with population density < 35 people / square mile
  - Only hospitals that did not switch payment classifications during this period


Critical Access Hospital
Medicare Dependent Hospital
Sole Community Hospital
Prospective Payment System
Rural Referral Center

## Data (cont'd)

Dependent variable: Operating Margin =  $\frac{net \ income}{revenue}$ 

- Commonly used to assess profitability in rural hospitals
- Strong predictor of hospital closure BUT useful to assess trends over time
- Control variables:
  - Occupancy rates
  - Medicare charge-to-cost ratio (inpatient, outpatient)
  - Healthcare system affiliation (dummy)
  - State participation in Medicaid Expansion (dummy)
    - Kaiser Family Foundation
    - Time of entry important

Only from patient care; not cafeterias / gift shops



#### **FINAL DATASET:**

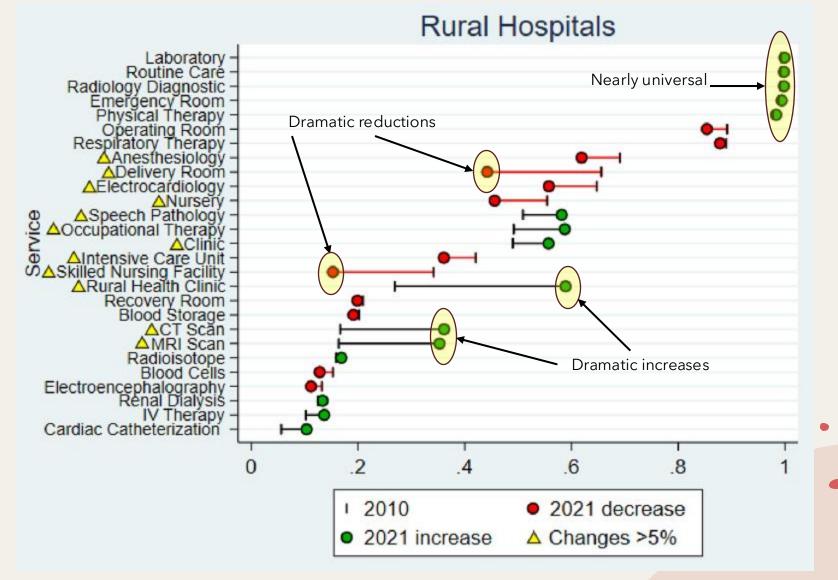
1,901 hospitals
12-year period of analysis
22,812 observations

# Hospital Summary Statistics

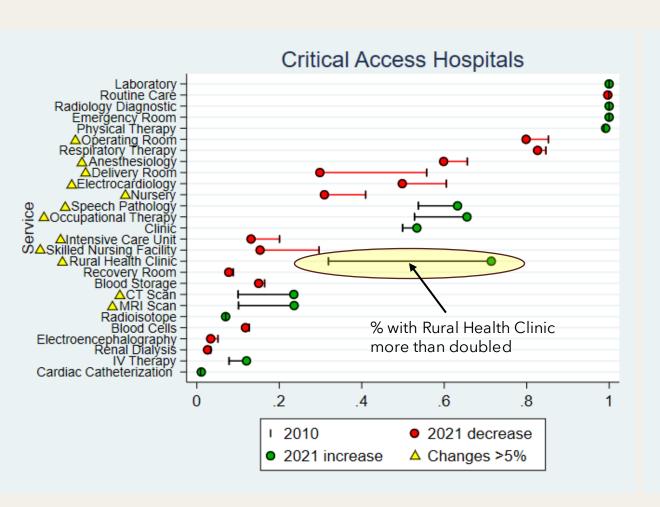
|                                     | M      | SD    | Min    | Max    |
|-------------------------------------|--------|-------|--------|--------|
| Operating margin                    | 0.015  | 0.130 | -0.561 | 0.522  |
| Occupancy rate                      | 0.350  | 0.186 | 0.000  | 3.620  |
| Inpatient charge-to-cost ratio      | 2.101  | 1.565 | 0.100  | 13.710 |
| Outpatient charge-to-cost ratio     | 3.352  | 2.234 | 0.237  | 24.600 |
| System affiliation (0/1)            | 0.385  | 0.487 | 0      | 1      |
| Medicaid expansion (0/1)            | 0.361  | 0.480 | 0      | 1      |
| Payment classification:             |        |       |        |        |
| Critical access hospital            | 0.624  | 0.484 | 0      | 1      |
| Medicare-dependent hospital         | 0.042  | 0.200 | 0      | 1      |
| Prospective payment system hospital | 0.120  | 0.326 | 0      | 1      |
| Rural referral center               | 0.097  | 0.296 | 0      | 1      |
| Sole community hospital             | 0.117  | 0.322 | 0      | 1      |
| No. of observations                 | 22,812 |       |        |        |

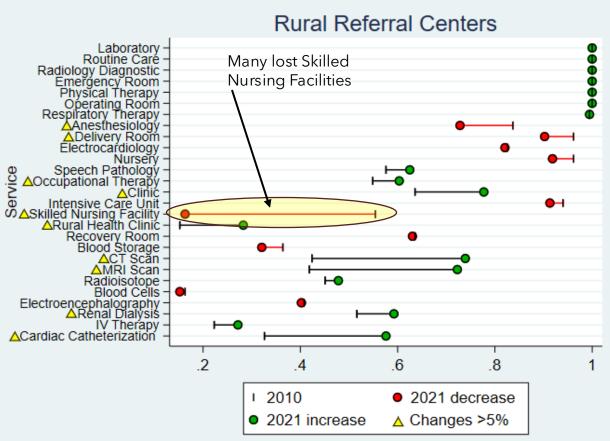


### What Service Lines to Consider?


- HCRIS contains data on 37 inpatient or ancillary "cost centers"
- Documented changes in % of rural hospitals offering each service
- Limited analysis to those that appeared in at least 10% of rural hospitals (any year)
- Service lines of interest defined as those that were added or removed by at least 5% of hospitals over the analysis period.
- Used those services in the panel event study analysis




Changes in Rural Hospital Service Lines, 2010-2021


12 service lines of interest

△ Changes >5%



## Rural Hospital Service Line Changes Across Payment Classifications





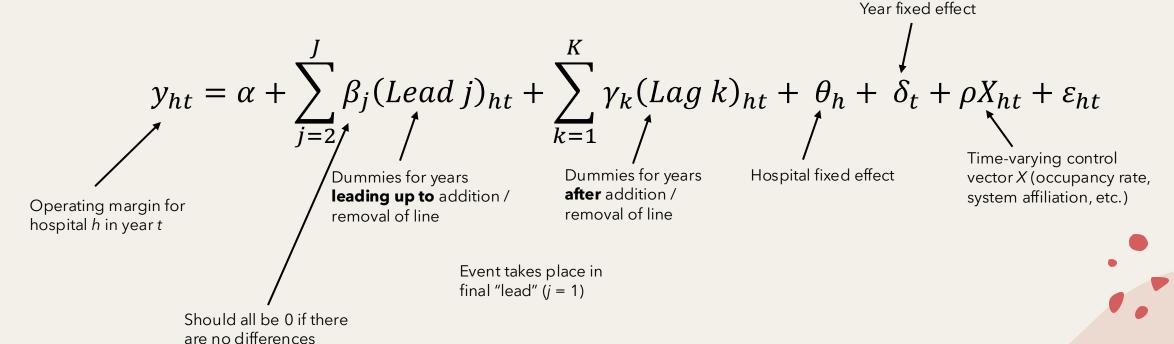
# A Problem...Adding / Removing Multiple Service Lines

Number of Service Lines Added and Removed Across Rural Hospitals

|             |         |      |      |      | # Servi | ce Lines | Remov | red  |         |      |
|-------------|---------|------|------|------|---------|----------|-------|------|---------|------|
| # Service   |         | 0    | 1    | 2    | 3       | 4        | 5     | 6    | Total # | %    |
| Lines Added | 0       | 259  | 194  | 99   | 30      | 9        | 4     | 0    | 595     | 0.31 |
|             | 1       | 217  | 158  | 94   | 32      | 6        | 1     | 0    | 508     | 0.27 |
|             | 2       | 151  | 111  | 75   | 26      | 15       | 3     | 0    | 381     | 0.20 |
|             | 3       | 97   | 92   | 44   | 23      | 2        | 2     | 0    | 260     | 0.14 |
|             | 4       | 33   | 32   | 13   | 5       | 3        | 0     | 0    | 86      | 0.05 |
|             | 5       | 16   | 17   | 8    | 1       | 1        | 0     | 1    | 44      | 0.02 |
|             | 6       | 9    | 11   | 4    | 2       | 1        | 0     | 0    | 27      | 0.01 |
|             | Total # | 782  | 615  | 337  | 119     | 37       | 10    | 1    | 1,901   | 1.00 |
|             | %       | 0.41 | 0.32 | 0.18 | 0.06    | 0.02     | 0.01  | 0.00 | 1.00    |      |

Note. Highlighted cells contain 1,358 hospitals (71%) that had no more than two service lines added and no more than two service lines removed. These hospitals are used in the panel event-study regressions that follow.




## Methods

between treated / control before change!

**Treated**: Hospitals that added (removed) service line of interest

**Control**: Only hospitals NEVER offering service (for additions); Only hospitals ALWAYS offering service (for removals)

- Panel Event Study (Clarke and Tapia-Schythe, 2022):



17

## Results – ADDED Service Lines (6)

|                                         | Rural  | Health C | linic | Tradit | tional Cli | inic | (      | T Scan |     | N      | IRI Scan |     | Occup. Therapy |       |     | Speech Path. |       | 1.  |
|-----------------------------------------|--------|----------|-------|--------|------------|------|--------|--------|-----|--------|----------|-----|----------------|-------|-----|--------------|-------|-----|
|                                         | Coeff  | S.E.     |       | Coeff  | S.E.       |      | Coeff  | S.E.   |     | Coeff  | S.E.     |     | Coeff          | S.E.  |     | Coeff        | S.E.  |     |
| Occupancy Rate                          | 0.082  | 0.017    | ***   | 0.050  | 0.028      | *    | 0.053  | 0.025  | **  | 0.052  | 0.024    | **  | 0.050          | 0.027 | *   | 0.048        | 0.027 | *   |
| Inpatient Charge-Cost Ratio             | -0.004 | 0.004    |       | -0.007 | 0.005      |      | -0.001 | 0.003  |     | -0.004 | 0.004    |     | -0.007         | 0.005 |     | -0.009       | 0.005 | *   |
| Outpatient Charge-Cost Ratio            | 0.012  | 0.003    | ***   | 0.013  | 0.003      | ***  | 0.011  | 0.003  | *** | 0.013  | 0.003    | *** | 0.012          | 0.003 | *** | 0.012        | 0.003 | *** |
| System Affiliation                      | 0.006  | 0.006    |       | 0.012  | 0.009      |      | 0.006  | 0.006  |     | 0.011  | 0.006    | **  | 0.012          | 0.009 |     | 0.018        | 0.009 | **  |
| Medicaid Expansion                      | 0.014  | 0.005    | ***   | 0.023  | 0.006      | ***  | 0.014  | 0.004  | *** | 0.014  | 0.004    | *** | 0.014          | 0.006 | **  | 0.014        | 0.006 | *** |
| Adj. R2                                 | 0.595  |          |       | 0.583  |            |      | 0.585  |        |     | 0.585  |          |     | 0.610          |       |     | 0.601        |       |     |
| #Obs                                    |        | 11,256   |       |        | 8,196      |      |        | 13,044 |     |        | 13,128   |     |                | 7,692 |     |              | 7,644 |     |
| #Treated Hospitals (added service)      |        | 366      |       |        | 232        |      |        | 146    |     |        | 138      |     |                | 103   |     |              | 98    |     |
| # Control Hospitals (never had)         |        | 572      |       |        | 451        |      |        | 941    |     |        | 956      |     |                | 538   |     |              | 539   |     |
| Wald test (all Leads=0), p-value        | 0.568  |          |       | 0.109  |            |      | 0.345  |        |     | 0.710  |          |     | 0.171          |       |     | 0.747        |       |     |
| Wald test (Signif. Lags are =), p-value | 0.000  |          |       | 0.852  |            |      | 0.087  |        |     | 0.313  |          |     | 0.194          |       |     |              |       |     |

Note: \*, \*\*, and \*\*\* denote statistical significance at the p < 0.10, 0.05, and 0.01 levels, respectively

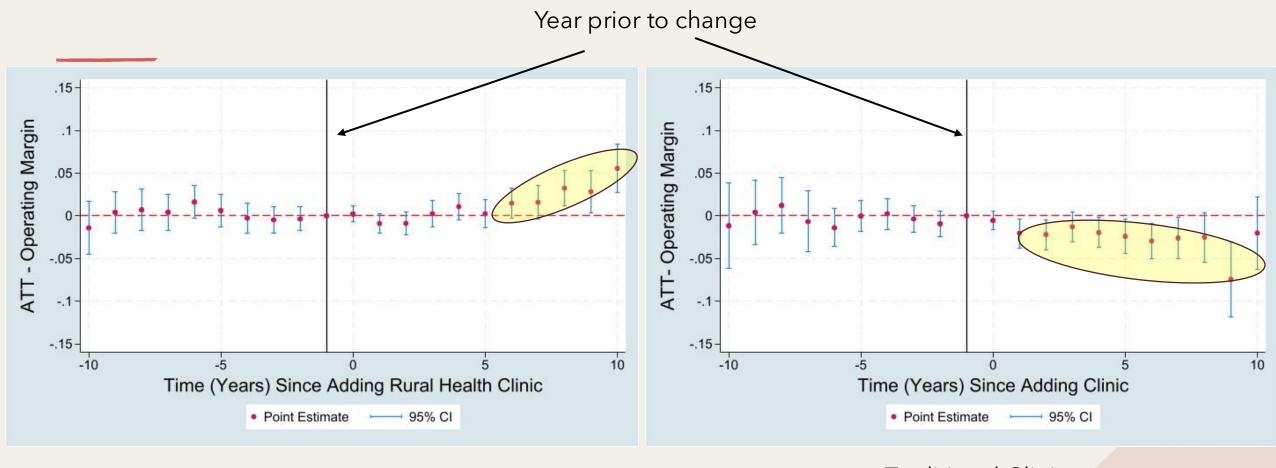
#### **Control variables behave as expected:**

- (+) impact of higher occupancy rates
- (+) impact of outpatient charge cost ratio
- (+) impact of state Medicaid Expansion

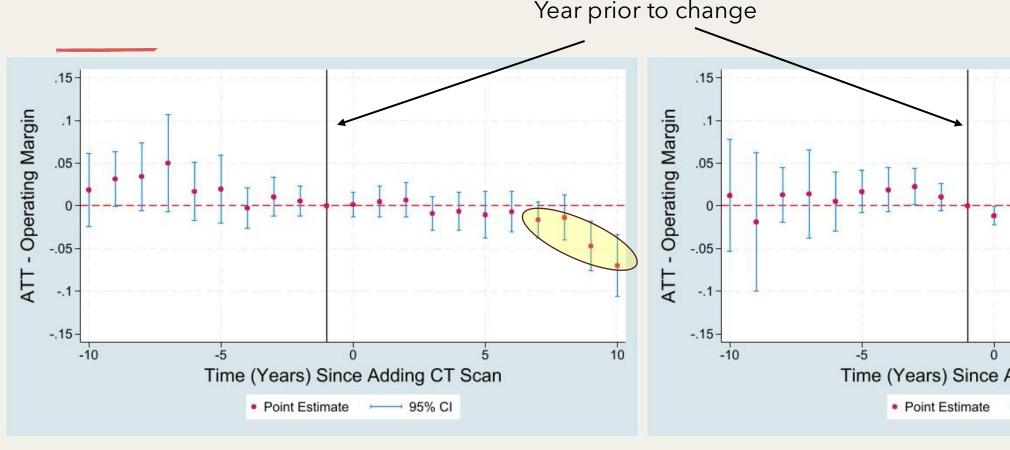


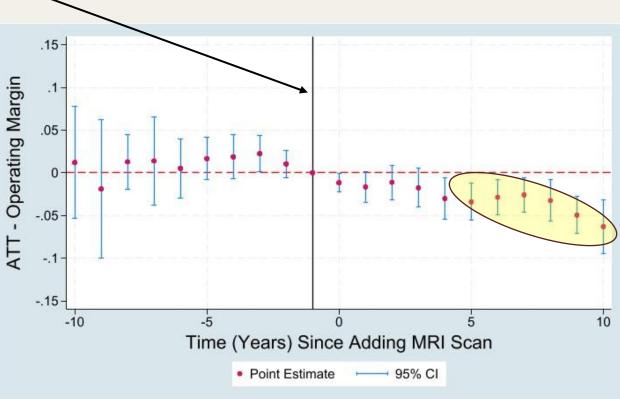
## Results – ADDED Service Lines (6)

|                                         | Rural F | lealth Cli | nic | Traditi | ional Clinic | С | C      | T Scan |     | M      | RI Scan |     | Occup   | . Therap | y   | Spee    | ch Path.  |
|-----------------------------------------|---------|------------|-----|---------|--------------|---|--------|--------|-----|--------|---------|-----|---------|----------|-----|---------|-----------|
|                                         | Coeff   | S.E.       |     | Coeff   | S.E.         | С | oeff   | S.E.   |     | Coeff  | S.E.    |     | Coeff S | S.E.     | (   | Coeff S | i.E.      |
| Occupancy Rate                          | 0.082   | 0.017 *    | *** | 0.050   | 0.028 *      |   | 0.053  | 0.025  | **  | 0.052  | 0.024   | **  | 0.050   | 0.027    | *   | 0.048   | 0.027 *   |
| Inpatient Charge-Cost Ratio             | -0.004  | 0.004      |     | -0.007  | 0.005        |   | -0.001 | 0.003  |     | -0.004 | 0.004   |     | -0.007  | 0.005    |     | -0.009  | 0.005 *   |
| Outpatient Charge-Cost Ratio            | 0.012   | 0.003      | *** | 0.013   | 0.003 **     | * | 0.011  | 0.003  | *** | 0.013  | 0.003   | *** | 0.012   | 0.003    | *** | 0.012   | 0.003 *** |
| System Affiliation                      | 0.006   | 0.006      |     | 0.012   | 0.009        |   | 0.006  | 0.006  |     | 0.011  | 0.006   | **  | 0.012   | 0.009    |     | 0.018   | 0.009 **  |
| Medicaid Expansion                      | 0.014   | 0.005      | *** | 0.023   | 0.006 **     | * | 0.014  | 0.004  | *** | 0.014  | 0.004   | *** | 0.014   | 0.006    | **  | 0.014   | 0.006 *** |
| Lead10                                  | -0.014  | 0.016      |     | -0.011  | 0.026        |   | 0.018  | 0.022  |     | 0.012  | 0.033   |     | 0.007   | 0.023    |     | -0.007  | 0.020     |
| Lead9                                   | 0.004   | 0.013      |     | 0.004   | 0.019        |   | 0.031  | 0.016  | *   | -0.019 | 0.041   |     | -0.013  | 0.025    |     | 0.000   | 0.021     |
| .ead8                                   | 0.007   | 0.012      |     | 0.012   | 0.017        |   | 0.034  | 0.020  | *   | 0.013  | 0.016   | **  | -0.070  | 0.019    |     | -0.001  | 0.017     |
| Lead7                                   | 0.004   | 0.011      |     | -0.007  | 0.018        |   | 0.049  | 0.029  | *   | 0.014  | 0.026   | *   | -0.001  | 0.021    |     | -0.005  | 0.019     |
| Lead6                                   | 0.016   | 0.010 *    | *   | -0.014  | 0.011        |   | 0.016  | 0.018  |     | 0.005  | 0.018   |     | -0.018  | 0.022    |     | 0.017   | 0.020     |
| Lead5                                   | 0.006   | 0.010      |     | 0.000   | 0.009        |   | 0.019  | 0.020  |     | 0.017  | 0.013   |     | -0.008  | 0.014    |     | -0.005  | 0.015     |
| Lead4                                   | -0.003  | 0.009      |     | 0.002   | 0.009        |   | -0.002 | 0.012  |     | 0.019  | 0.013   |     | -0.021  | 0.013    | *   | -0.015  | 0.014     |
| Lead3                                   | -0.005  | 0.008      |     | -0.004  | 0.008        |   | 0.010  | 0.012  |     | 0.022  | 0.011   | **  | -0.038  | 0.012    | *** | -0.010  | 0.011     |
| Lead2                                   | -0.004  | 0.007      |     | -0.009  | 0.008        |   | 0.005  | 0.009  |     | 0.010  | 0.008   |     | -0.014  | 0.008    |     | -0.005  | 0.009     |
| .ag0                                    | 0.002   | 0.005      |     | -0.006  | 0.005        |   | 0.001  | 0.007  |     | -0.012 | 0.005   | **  | 0.008   | 0.007    |     | -0.009  | 0.010     |
| .ag1                                    | -0.009  | 0.006      |     | -0.020  | 0.009 **     | • | 0.004  | 0.009  |     | -0.017 | 0.009   | *   | 0.016   | 0.009    | *   | 0.003   | 0.013     |
| .ag2                                    | -0.009  | 0.007      |     | -0.022  | 0.009 **     | : | 0.007  | 0.010  |     | -0.011 | 0.010   |     | 0.031   | 0.014    | **  | 0.021   | 0.015     |
| .ag3                                    | 0.002   | 0.008      |     | -0.013  | 0.009        |   | -0.009 | 0.010  |     | -0.018 | 0.012   |     | 0.030   | 0.015    | **  | 0.017   | 0.016     |
| .ag4                                    | 0.011   | 0.007      |     | -0.020  | 0.009 **     |   | -0.006 | 0.011  |     | -0.030 | 0.012   | **  | 0.003   | 0.015    |     | 0.007   | 0.015     |
| .ag5                                    | 0.002   | 0.008      |     | -0.024  | 0.010 **     | • | -0.010 | 0.014  |     | -0.034 | 0.011   | *** | -0.007  | 0.014    |     | 0.003   | 0.018     |
| Lag6                                    | 0.014   | 0.009 *    | Ė   | -0.030  | 0.010 **     | * | -0.007 | 0.012  |     | -0.029 | 0.010   | *** | -0.011  | 0.016    |     | -0.010  | 0.019     |
| Lag7                                    | 0.016   | 0.010      |     | -0.026  | 0.013 **     | • | -0.016 | 0.011  |     | -0.026 | 0.010   | **  | -0.023  | 0.019    |     | -0.013  | 0.019     |
| .ag8                                    | 0.032   | 0.011 *    | *** | -0.025  | 0.015 *      |   | -0.014 | 0.013  |     | -0.032 | 0.012   | *** | -0.009  | 0.017    |     | 0.029   | 0.018     |
| .ag9                                    | 0.028   | 0.012 *    |     | -0.074  | 0.022 **     |   | -0.047 | 0.015  | *** | -0.049 | 0.011   | *** | 0.033   | 0.016 '  | ••  | 0.017   | 0.023     |
| Lag10                                   | 0.055   | 0.014 *    | *** | -0.020  | 0.021        |   | -0.069 | 0.019  | *** | -0.063 | 0.016   | *** | 0.056   | 0.023    | **  | -0.008  | 0.038     |
| Constant                                | -0.047  | 0.010 *    | *** | -0.041  | 0.013 **     |   | -0.040 | 0.011  | *** | 0.041  | 0.011   | *** | -0.041  | 0.013    | *** | -0.037  | 0.012 *** |
| Adj. R2                                 | 0.595   |            |     | 0.583   |              |   | 0.585  |        |     | 0.585  |         |     | 0.610   |          |     | 0.601   |           |
| ‡ Obs                                   |         | 11,256     |     |         | 8,196        |   |        | 13,044 |     |        | 13,128  |     |         | 7,692    |     |         | 7,644     |
| #Treated Hospitals (added service)      |         | 366        |     |         | 232          |   |        | 146    |     |        | 138     |     |         | 103      |     |         | 98        |
| # Control Hospitals (never had)         |         | 572        |     |         | 451          |   |        | 941    |     |        | 956     |     |         | 538      |     |         | 539       |
| Wald test (all Leads=0), p-value        | 0.568   |            |     | 0.109   |              |   | 0.345  |        |     | 0.710  |         |     | 0.171   |          |     | 0.747   |           |
| Wald test (Signif. Lags are =), p-value | 0.000   |            |     | 0.852   |              |   | 0.087  |        |     | 0.313  |         |     | 0.194   |          |     |         |           |


Lead coefficients largely insignificant

Some positive (and negative!) impacts after addition

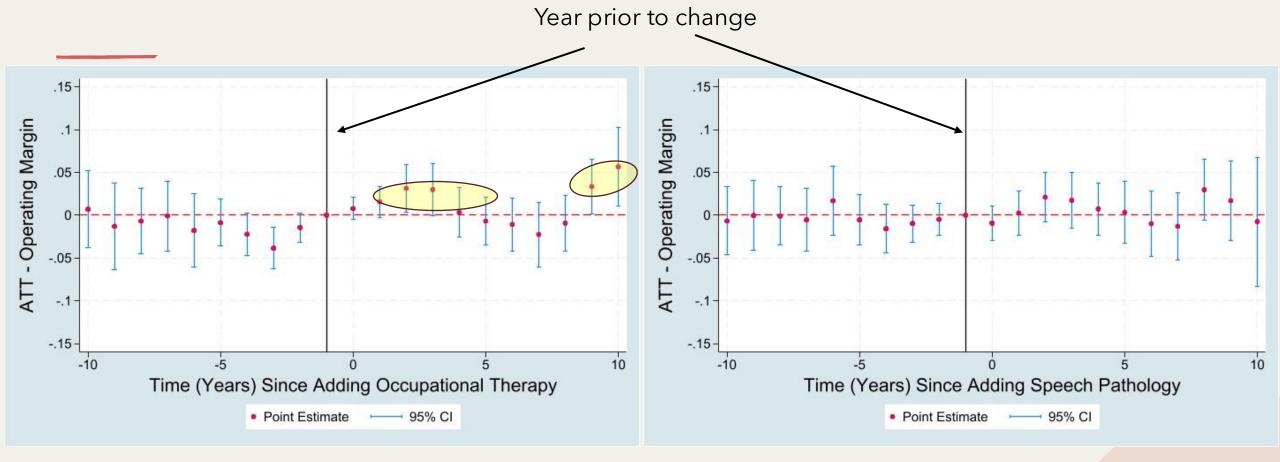




Note: \*, \*\*, and \*\*\* denote statistical significance at the p<0.10, 0.05, and 0.01 levels, respectively Grey cells denote lag coefficients with statistical significance for more than 1 consecutive period at the p<0.05 level

# Results – ADDED Service Line Event-Study Plots



# Results – ADDED Service Line Event-Study Plots






CT Scan

MRI Scan

## Results – ADDED Service Line Event-Study Plots



## Results – REMOVED Service Lines (6)

|                                         | Deli  | very Roc | m   | N     | lursery |     | Anes   | thesiolo | gy  | Electr | ocardiolog | /       | ICU   | Sk      | Skilled Nursing |     |
|-----------------------------------------|-------|----------|-----|-------|---------|-----|--------|----------|-----|--------|------------|---------|-------|---------|-----------------|-----|
|                                         | Coeff | S.E.     |     | Coeff | S.E.    |     | Coeff  | S.E.     |     | Coeff  | S.E.       | Coeff   | S.E.  | Coeff   | S.E.            |     |
| Occupancy Rate                          | 0.058 | 0.019    | *** | 0.060 | 0.021   | *** | 0.036  | 0.017    | **  | 0.044  | 0.028      | 0.039   | 0.022 | * 0.03  | 16 0.030        |     |
| Inpatient Charge-Cost Ratio             | 0.005 | 0.006    |     | 0.013 | 0.005   | *** | -0.001 | 0.008    |     | -0.004 | 0.005      | 0.009   | 0.004 | ** 0.00 | 0.003           | į.  |
| Outpatient Charge-Cost Ratio            | 0.009 | 0.003    | *** | 0.006 | 0.003   | **  | 0.009  | 0.004    | **  | 0.011  | 0.003 **   | * 0.005 | 0.003 | * 0.00  | 0.030           | **  |
| System Affiliation                      | 0.005 | 0.006    |     | 0.001 | 0.006   |     | -0.003 | 0.005    |     | 0.003  | 0.006      | 0.008   | 0.007 | -0.00   | 0.008           | i.  |
| Medicaid Expansion                      | 0.013 | 0.004    | *** | 0.013 | 0.004   | *** | 0.012  | 0.004    | *** | 0.014  | 0.005 **   | * 0.004 | 0.005 | 0.03    | 0.006           | *** |
|                                         |       |          |     |       |         |     |        |          |     |        |            |         |       |         |                 |     |
| Adj. R2                                 | 0.581 |          |     | 0.560 |         |     | 0.521  |          |     | 0.552  |            | 0.594   | ļ.    | 0.53    | 4               |     |
| # Obs                                   |       | 10,284   |     |       | 9,216   |     |        | 10,776   |     |        | 10,644     |         | 6,432 |         | 5,460           |     |
| # Treated Hospitals (removed service)   |       | 244      |     |       | 88      |     |        | 149      |     |        | 167        |         | 70    |         | 237             |     |
| # Control Hospitals (always had)        |       | 613      |     |       | 680     | )   |        | 749      |     |        | 720        |         | 466   |         | 218             |     |
| Wald test (all Leads=0), p-value        | 0.121 |          |     | 0.656 |         |     | 0.203  |          |     | 0.519  |            | 0.166   | i     | 0.03    | 13              |     |
| Wald test (Signif. Lags are =), p-value | 0.000 |          |     |       |         |     |        |          |     |        |            |         |       |         |                 |     |

Note: \*, \*\*, and \*\*\* denote statistical significance at the p<0.10, 0.05, and 0.01 levels, respectively

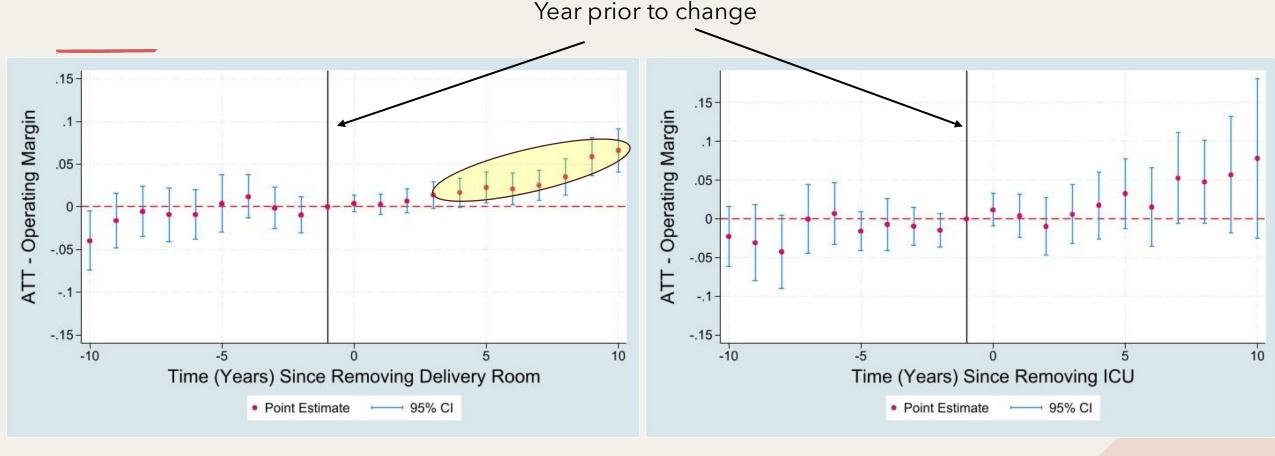
#### **Control variables still behave as expected:**

- (+) impact of higher occupancy rates
- (+) impact of outpatient charge cost ratio
- (+) impact of state Medicaid Expansion



# Results – ADDED Service Lines (6)

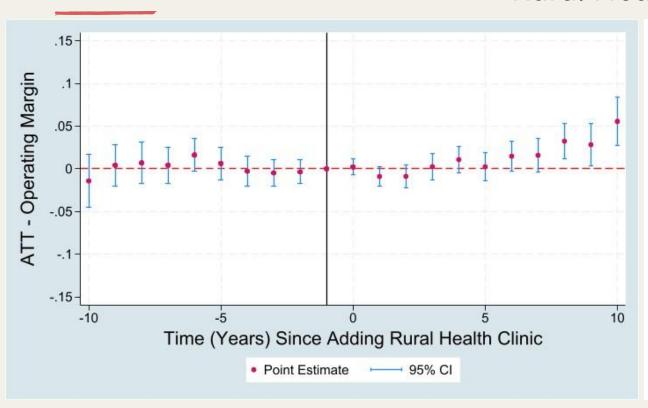
|                                         | Deliv  | ery Roo | m   | N      | lursery |     |        | thesiolo | gy  | Electr | ocardiolo |          | ICU      |     |         | d Nursing |
|-----------------------------------------|--------|---------|-----|--------|---------|-----|--------|----------|-----|--------|-----------|----------|----------|-----|---------|-----------|
|                                         | Coeff  | S.E.    |     | Coeff  | S.E.    |     | Coeff  | S.E.     |     | Coeff  | S.E.      | Coeff    | S.E.     |     | Coeff S | S.E.      |
| Occupancy Rate                          | 0.058  | 0.019   | *** | 0.060  | 0.021   |     | 0.036  | 0.017    | **  | 0.044  | 0.028     | 0.03     |          |     | 0.016   | 0.030     |
| Inpatient Charge-Cost Ratio             | 0.005  | 0.006   |     | 0.013  | 0.005   | *** | -0.001 | 0.008    |     | -0.004 | 0.005     | 0.00     | 0.004    | **  | 0.001   | 0.003     |
| Outpatient Charge-Cost Ratio            | 0.009  | 0.003   | *** | 0.006  | 0.003   | **  | 0.009  | 0.004    | **  | 0.011  | 0.003 *   | ** 0.00  | 0.003    | *   | 0.007   | 0.030 **  |
| System Affiliation                      | 0.005  | 0.006   |     | 0.001  | 0.006   |     | -0.003 | 0.005    |     | 0.003  | 0.006     | 0.00     | 0.007    | 7   | -0.006  | 0.008     |
| Medicaid Expansion                      | 0.013  | 0.004   | *** | 0.013  | 0.004   | *** | 0.012  | 0.004    | *** | 0.014  | 0.005 *   | ** 0.00  | 4 0.005  | 5   | 0.019   | 0.006 *** |
| Lead10                                  | -0.040 | 0.018   | **  | -0.041 | 0.020   | **  | -0.007 | 0.019    |     | -0.026 | 0.025     | -0.02    | 0.019    | )   | 0.006   | 0.024     |
| Lead9                                   | -0.016 | 0.016   |     | -0.026 | 0.018   |     | 0.010  | 0.018    |     | 0.018  | 0.015     | -0.03    | 0.025    | 5   | -0.006  | 0.027     |
| Lead8                                   | -0.005 | 0.015   |     | -0.015 | 0.017   |     | 0.015  | 0.018    |     | 0.021  | 0.017     | -0.04    | 0.024    | *   | 0.026   | 0.020 *   |
| Lead7                                   | -0.009 | 0.016   |     | -0.013 | 0.018   |     | -0.001 | 0.018    |     | 0.006  | 0.015     | 0.00     | 0.230    | )   | 0.034   | 0.015 **  |
| Lead6                                   | -0.009 | 0.015   |     | 0.009  | 0.016   |     | -0.002 | 0.014    |     | 0.007  | 0.012     | 0.00     | 0.020    | )   | 0.024   | 0.017 *   |
| Lead5                                   | 0.004  | 0.017   |     | 0.000  | 0.019   |     | 0.012  | 0.010    |     | 0.013  | 0.012     | -0.01    | .6 0.013 | 3   | 0.009   | 0.013     |
| Lead4                                   | 0.012  | 0.013   |     | 0.001  | 0.014   |     | 0.012  | 0.011    |     | 0.013  | 0.010     | -0.00    | 0.017    | 7   | 0.016   | 0.012     |
| Lead3                                   | -0.001 | 0.012   |     | -0.007 | 0.014   |     | -0.005 | 0.009    |     | 0.003  | 0.010     | -0.01    | 0.013    | 3   | 0.004   | 0.009     |
| .ead2                                   | -0.009 | 0.011   |     | -0.011 | 0.010   |     | -0.010 | 0.007    |     | -0.009 | 0.008     | -0.01    | 4 0.011  | l   | -0.014  | 0.010     |
| .ag0                                    | 0.004  | 0.005   |     | -0.009 | 0.007   |     | 0.010  | 0.008    |     | 0.007  | 0.006     | 0.03     | 2 0.011  | L   | 0.004   | 0.006     |
| ag1                                     | 0.003  | 0.006   |     | -0.006 | 0.009   |     | -0.003 | 0.010    |     | 0.001  | 0.007     | 0.00     | 0.014    | 1   | 0.004   | 0.007     |
| .ag2                                    | 0.007  | 0.007   |     | 0.000  | 0.011   |     | -0.012 | 0.013    |     | 0.002  | 0.008     | -0.01    | 0.019    | )   | 0.006   | 0.008     |
| .ag3                                    | 0.014  | 0.008   | •   | 0.011  | 0.014   |     | 0.002  | 0.011    |     | 0.010  | 0.009     | 0.00     | 0.019    | )   | 0.010   | 0.008     |
| Lag4                                    | 0.017  | 0.009   |     | -0.001 | 0.018   |     | 0.002  | 0.013    |     | 0.015  | 0.009     | 0.01     | 7 0.022  | 2   | 0.012   | 0.088     |
| Lag5                                    | 0.023  | 0.009   | **  | 0.006  | 0.017   |     | -0.008 | 0.013    |     | 0.019  | 0.012     | 0.03     | 2 0.023  | 3   | 0.012   | 0.009     |
| .ag6                                    | 0.021  | 0.010   | **  | -0.003 | 0.016   |     | -0.017 | 0.012    |     | 0.034  | 0.018 *   | 0.0      | 5 0.025  | 5   | 0.008   | 0.011     |
| Lag7                                    | 0.025  | 0.009   | *** | 0.018  | 0.022   |     | 0.002  | 0.016    |     | 0.020  | 0.015     | 0.05     | 0.029    | *   | 0.009   | 0.011     |
| Lag8                                    | 0.035  | 0.011   | *** | 0.007  | 0.023   |     | -0.012 | 0.019    |     | 0.006  | 0.019     | 0.04     | 7 0.027  | *   | 0.014   | 0.013     |
| Lag9                                    | 0.059  | 0.012   | *** | 0.012  | 0.024   |     | 0.002  | 0.024    |     | -0.009 | 0.026     | 0.05     | 7 0.039  | )   | 0.014   | 0.014     |
| Lag10                                   | 0.066  | 0.013   | *** | 0.078  | 0.038   | **  | 0.002  | 0.039    |     | 0.011  | 0.042     | 0.07     | 8 0.052  | 2   | 0.003   | 0.016     |
| Constant                                | -0.048 | 0.011   | *** | -0.049 | 0.012   |     | -0.021 | 0.009    | **  | -0.032 | 0.012 *   | ** -0.03 | 9 0.013  | *** | -0.029  | 0.016 *   |
| Adj. R2                                 | 0.581  |         |     | 0.560  |         |     | 0.521  |          |     | 0.552  |           | 0.59     | 14       |     | 0.534   |           |
| ‡ Obs                                   |        | 10,284  |     |        | 9,216   |     |        | 10,776   |     |        | 10,644    |          | 6,432    |     |         | 5,460     |
| #Treated Hospitals (removed service)    |        | 244     |     |        | 88      |     |        | 149      |     |        | 167       |          | 70       | )   |         | 237       |
| # Control Hospitals (always had)        |        | 613     |     |        | 680     |     |        | 749      |     |        | 720       |          | 466      | j   |         | 218       |
| Wald test (all Leads=0), p-value        | 0.121  |         |     | 0.656  |         |     | 0.203  |          |     | 0.519  |           | 0.16     | i6       |     | 0.033   |           |
| Wald test (Signif. Lags are =), p-value | 0.000  |         |     |        |         |     |        |          |     |        |           |          |          |     |         |           |

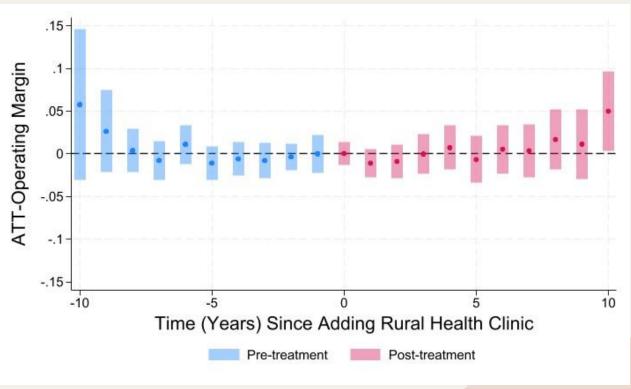

Lead coefficients largely insignificant

Only removal of Delivery Room has any impact



Note: \*, \*\*, and \*\*\* denote statistical significance at the p<0.10, 0.05, and 0.01 levels, respectively Grey cells denote lag coefficients with statistical significance for more than 1 consecutive period at the p<0.05 level


# Results – REMOVED Service Line Event-Study Plots

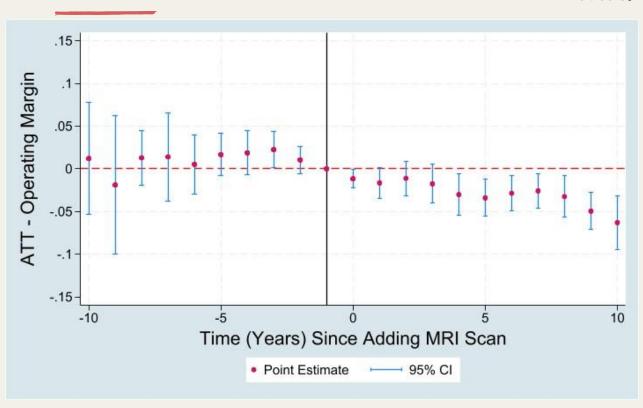


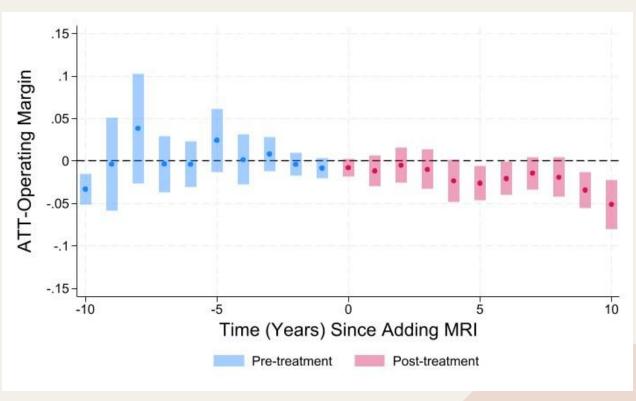

#### Robustness Checks

Comparison with Callaway and Sant-Anna (2021) correcting for problematic variation in treatment timing ("forbidden comparisons)

#### Rural Health Clinic







Callaway and Sant-Anna

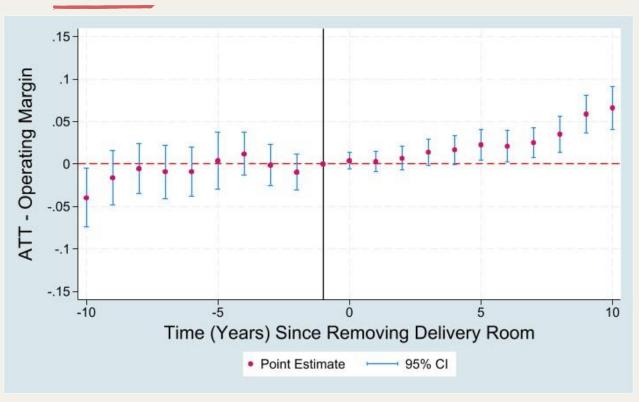
### Robustness Checks

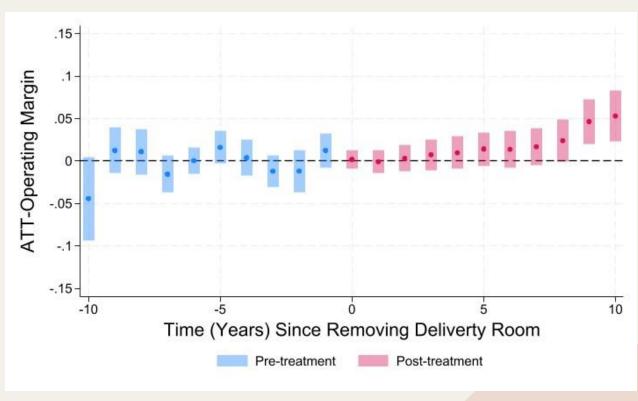
Comparison with Callaway and Sant-Anna (2021) correcting for problematic variation in treatment timing ("forbidden comparisons)

#### MRI Scan






Clarke and Tapia-Schythe


Callaway and Sant-Anna

#### Robustness Checks

Comparison with Callaway and Sant-Anna (2021) correcting for problematic variation in treatment timing ("forbidden comparisons")

#### **Delivery Room**





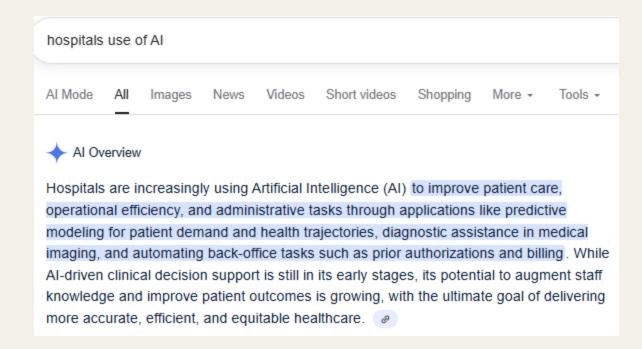
Clarke and Tapia-Schythe

Callaway and Sant-Anna

## Other Robustness Checks

- Common combinations of service changes
  - MRI and CT scans: operating losses similar to those for each service individually
  - Delivery rooms and Nurseries: operating margin increases by year 6-7
- Shortened period of analysis to 2010 2019
  - Avoid overlap with COVID-19 (some geographies hit harder)
  - Largely similar results
- Restrictions to system affiliated vs. independent rural hospitals
  - Impact of line changes more pronounced for independent hospitals
- Alternative control groups:
  - Hospitals adding service lines vs. those that always had it
  - Hospitals removing service lines vs. those that never had it J

More likely to be different *prior to* treatment but converge after


## Conclusion

- Service line changes are common across rural U.S. hospitals
  - 6 services added / 6 removed by more than 5% of hospitals during 2010-2021 period
  - Most frequently added: rural health clinics
  - Most frequently removed: delivery rooms
- Addition / subtraction of most of these services did not have meaningful impact on hospital operating margins!
  - May be disappointing for hospital administrators looking for "quick fix"
  - Only rural health clinic addition / delivery room removal had positive effect on operating margin
  - Some had negative impacts! High cost of MRI / CT equipment may be to blame
- Not able to assess drivers of these findings (capital or labor categories) given data constraints



## Rural Hospital AI Use & Evaluation

- Background
- Al & Healthcare in the press
- Al Definition
- Current Literature
- Results
- "So what?"



# Background

- Summer of 1956
  - Dartmouth Conference on Artificial Intelligence hosted first formal discussions on Al
  - Framingham Heart study laid a foundation for predictive models in healthcare

The researchers recruited 5,209 men and women between the ages of 30 and 62 from the town

of Framingham, Massachusetts, and began the first round of extensive physical examinations

and lifestyle interviews that they would later analyze for common patterns related to CVD



Dartmouth Conference participants; many referred to as "founding fathers" of Al

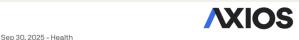


Framingham, MA around the time the study began

32

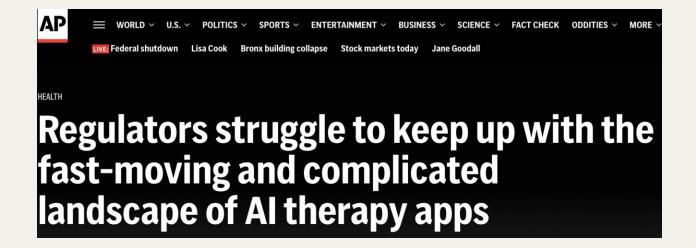


- Acute Physiology and Chronic Health Evaluation (APACHE)
  - 1981: APACHE I, 1985: APACHE II, 1991: APACHE III, 2006: APACHE IV
  - Estimates illness severity/mortality among Intensive Care Unit patients
  - Initially hard to implement with different health recordkeeping systems.
- 2009 Health Information Technology for Economic and Clinical Health (HITECH) Act
  - Provided incentive payments for hospitals that used electronic health records
  - Established 62 Regional Extension Centers to train hospital staff
  - A year before passing the act 4.6% of rural hospitals used EHRs, 3 years after a third did
- Advance Alert Monitor (AAM)
  - Created by Kaiser Permanente in 2013, uses machine learning
  - Over 500 deaths per year prevented




#### Al is Making Medical Decisions — But For Whom?

Doctors warn that without an ethical framework, patients could be left behind.


Olivia Farrar | Harvard Magazine | May 23, 2025

#### AI & Healthcare in the Press



Trump orders \$50M for Al in pediatric cancer research





#### **Forbes**

# The Accelerating State Of Al Health In Hospitals And Homes

By <u>Gil Press</u>, Senior Contributor. ① Gil Press writes about technology, entrepr...

Follow Author

Published Apr 27, 2025 at 09:00am EDT, Updated Apr 28, 2025 at 02:25pm EDT

#### FINANCIAL TIMES

Microsoft claims AI diagnostic tool can outperform doctors

# AI Defined

- According to the European Commission (2018), Al "refers to systems that display intelligent behavior by analyzing their environment and acting, with some degree of autonomy, to achieve specific goals"
- For the first time in 2023, the American Hospital Association Annual Survey's Information Technology supplement included multiple questions on "machine learning or predictive model" use
  - Marked the first large-scale data collection on AI use in the United States healthcare industry



# AHA Annual Survey IT Supplement

- Rural hospitals in particular benefit from **evaluating** whether predictive models are valid for their specific subset of patients (which may be unique from the sets of patients, typically in larger cities, which models were trained on)

| re       | es your hospital use any machine learning or other predictive models that display output or<br>commendations (e.g., risk scores or clinical decision support) in your EHR or an App embedded in or<br>inched by your EHR?                                                                                                         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a.       | Machine Learning                                                                                                                                                                                                                                                                                                                  |
| b.       | Other Non-Machine Learning Predictive Models (e.g., APACHE IV)                                                                                                                                                                                                                                                                    |
| c.       | Neither (Go to 29)                                                                                                                                                                                                                                                                                                                |
| d.       | Don't know (Go to 29)                                                                                                                                                                                                                                                                                                             |
|          | which of the following uses has your hospital applied machine learning or other predictive models?<br>ease check all that apply)                                                                                                                                                                                                  |
| a.       | Predicting health trajectories or risks for inpatients (such as early detection of onset of a disease or condition like sepsis; predicting in-hospital fall risk)                                                                                                                                                                 |
| b.       | Identify high risk outpatients to inform follow-up care (e.g., readmission risk)                                                                                                                                                                                                                                                  |
| c.       | Monitor health (e.g., through integration with wearables)                                                                                                                                                                                                                                                                         |
| d.       | Recommend treatments (e.g., identify similar patients and their outcomes)                                                                                                                                                                                                                                                         |
| e.       | ☐ Simplify or automate billing procedures                                                                                                                                                                                                                                                                                         |
| f.       | Facilitate scheduling (e.g., predicting no-shows or block utilization).                                                                                                                                                                                                                                                           |
| g.       | Other operational process optimization (e.g., supply management)                                                                                                                                                                                                                                                                  |
| h.       | Other clinical use cases                                                                                                                                                                                                                                                                                                          |
| i.       | None of the above                                                                                                                                                                                                                                                                                                                 |
| j.       | Don't know                                                                                                                                                                                                                                                                                                                        |
| 28. V    | Who developed the machine learning or other predictive models used at your hospital? (Select all that pply)  a. □ Our EHR Developer b. □ A third-pacty developer c. □ Self-developed  d. □ Public domain e. □ Don't know  What share of your machine learning or other predictive models have been evaluated using data from your |
| <u>h</u> | ospital or health system for:                                                                                                                                                                                                                                                                                                     |
|          | (1) (2) (3) (4) (5) (6) All models Most Some Few None Don't know models models                                                                                                                                                                                                                                                    |

a. Model Accuracy (e.g., sensitivity

 Model Bias (e.g., false positive parity across patients from

different races, conditions, or

or specificity)





Ongoing project related to Artificial Intelligence use by hospitals

- Rural urban differences in specific tasks?
- Determinants of Al adoption in rural hospitals
- Potential impacts of AI use by rural hospitals

### Current Literature

- Descriptive statistics (see table) show that some Al uses are more common than others:
  - Predicting inpatient health trajectories (92%)
  - Automate billing (36%)
- Nong et al. also ran 2 weighted multivariate Poisson regressions with a binary outcome to analyze Al <u>use</u> & evaluation

By Paige Nong, Julia Adler-Milstein, Nate C. Apathy, A. Jay Holmgren, and Jordan Everson

# Current Use And Evaluation Of Artificial Intelligence And Predictive Models In US Hospitals

**HealthAffairs** 

Descriptive statistics of artificial intelligence (AI) and predictive model use in US hospitals, 2023

|                                                                                                                                                                                                                                                                                                                                                                                                | Number                                                            | Weighted percent                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|
| Use of any machine learning or other predictive models that display in the EHR Machine learning Other non-machine learning predictive models Neither Do not know                                                                                                                                                                                                                               | 2,425<br>887<br>809<br>482<br>247                                 | 100<br>33<br>32<br>23<br>11                         |
| Specific uses of machine learning or other predictive models, among hospitals that integrated models into the EHR  Predict health trajectories or risks for inpatients Identify high-risk outpatients for follow-up care Facilitate scheduling Recommend treatments Simplify or automate billing procedures Monitor health Other (clinical use cases) Other (operational process optimization) | 1,688<br>1,569<br>1,380<br>849<br>772<br>633<br>600<br>548<br>442 | 100<br>92<br>79<br>51<br>44<br>36<br>34<br>34<br>25 |
| Developer of predictive models used by the hospital, among hospitals that integrated models into the EHR  EHR developer  Third-party developer  Self-developed  Public domain                                                                                                                                                                                                                  | 1,689<br>1,381<br>995<br>909<br>77                                | 100<br>79<br>59<br>54<br>4.4                        |
| Local evaluation of most or all models for accuracy or bias <sup>a</sup> Model accuracy  Model bias  Model accuracy and bias                                                                                                                                                                                                                                                                   | 1,660<br>1,009<br>711<br>709                                      | 100<br>61<br>44<br>44                               |

# Nong et al. (2025)

- Weighted multivariate Poisson regressions to analyze Al <u>use</u> & <u>evaluation</u>
- Use was associated with many variables, including top quintile operating margins (RR=1.27), being urban (rural hospital RR=0.90), being a system member (RR=2.31), & having 400 beds or more (RR=1.23)
- Though less extreme, these relationships are the same (besides size) for an Al evaluation dependent variable

# Current Use And Evaluation Of Artificial Intelligence And Predictive Models In US Hospitals

Use of artificial intelligence (AI) and predictive models and local evaluation in US hospitals, by hospital

**Health Affairs** 

| ose of artificial artemperior (711) and predictive models to                                              | and total evaluation as | oo noopitals, by noopital               |
|-----------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|
|                                                                                                           |                         | er predictive models<br>EHR (n = 2,425) |
| Variables                                                                                                 | RR                      | 95% CI                                  |
| Top quintile, operating margins                                                                           | 1.27****                | 1.21, 1.39                              |
| Top quintile, uncompensated care                                                                          | 1.06                    | 0.99, 1.13                              |
| Top quintile, percent of discharges from Medicaid                                                         | 1.003                   | 0.94, 1.08                              |
| Top quintile, hospital service area SDI                                                                   | 0.92**                  | 0.85, 0.99                              |
| Critical access hospital                                                                                  | 0.87***                 | 0.79, 0.95                              |
| Rural (ref: urban)                                                                                        | 0.90***                 | 0.83, 0.97                              |
| Count of Alternative Payment Models                                                                       | 1.07****                | 1.05, 1.09                              |
| System member (ref: independent)                                                                          | 2.31***                 | 2.02, 2.65                              |
| Size (ref: small [fewer than 100 beds]) Medium (100–399 beds) Large (400 beds or more)                    | 1.08**<br>1.23****      | 1.01, 1.17<br>1.12, 1.34                |
| Ownership (ref: nonprofit) For-profit Government owned <sup>b</sup>                                       | 0.75****<br>0.86***     | 0.67, 0.85<br>0.77, 0.96                |
| Teaching status (ref: nonteaching) Resident program/minor teaching Academic medical center/major teaching | 1.02<br>0.97            | 0.96, 1.08<br>0.87, 1.07                |
| Constant                                                                                                  | 0.34****                | 0.29, 0.39                              |

## Results

- Comparing descriptive statistics across urban and rural hospitals

|                                                                                                               |        | Urban            |                  | Rural                           |           |
|---------------------------------------------------------------------------------------------------------------|--------|------------------|------------------|---------------------------------|-----------|
| Category                                                                                                      | Number | Weighted percent | Number           | Weighted percent                | Different |
| Use of any machine learning or other predictive models                                                        |        |                  |                  |                                 |           |
| that display in the EHR                                                                                       | 1,301  | 100%             | 1,018            | 100%                            |           |
| Machine learning                                                                                              | 538    | 41%              | 314              | 31%                             | ***       |
| Other non-machine learning predictive models                                                                  | 539    | 41%              | 246              | 24%                             | ***       |
| Neither                                                                                                       | 145    | 11%              | 306              | 30%                             | ***       |
| Do not know                                                                                                   | 79     | 6%               | 152              | 15%                             | ***       |
| Specific uses of machine learning or other predictive models, among hospitals that integrated models into the |        |                  |                  | Rural H                         | ligher!   |
| EHR                                                                                                           | 1,076  | 100%             | 554              | 100%                            |           |
| Predict health trajectories or risks for inpatients                                                           | 996    | 93%              | 517              | 93%                             |           |
| Identify high-risk outpatients for follow-up care                                                             | 849    | <del>79%</del>   | 484              | 87%                             | ***       |
| Facilitate scheduling                                                                                         | 587    | 55%              | 243              | 44%                             | ***       |
| Recommend treatments                                                                                          | 526    | 49%              | 223              | 40%                             | ***       |
| Simplify or automate billing procedures                                                                       | 400    | 37%              | 218              | 39%                             |           |
| Monitor health                                                                                                | 402    | 37%              | 179              | 32%                             | **        |
| Other (clinical use cases)                                                                                    | 398    | 37%              | 137              | 25%                             | ***       |
| Other (operational process optimization)                                                                      | 286    | 27%              | 144              | 26%                             |           |
| Developer of predictive models used by the hospital,                                                          |        |                  |                  |                                 |           |
| among hospitals that integrated models into the EHR                                                           | 1,076  | 100%             | 553              | 100%                            |           |
| EHR developer                                                                                                 | 845    | 79%              | 488              | 88%                             | ***       |
| Third-party developer                                                                                         | 698    | 65%              | 269              | 49%                             | ***       |
| Self-developed                                                                                                | 616    | 57%              | 260              | 47%                             | ***       |
| Public domain                                                                                                 | 57     | 5%               | <sup>16</sup> Ru | ral Less <sup>3</sup> Likely to | **        |
|                                                                                                               |        |                  | / E              | valuate for Bias                |           |
| Local evaluation of most or all models for accuracy or bias                                                   | 1,052  | 100%             | 549              | 100%                            |           |
| Model accuracy                                                                                                | 650    | 62%              | 320              | 58%                             |           |
| Model bias                                                                                                    | 473    | 45%              | 215              | 39%                             | **        |
| Model accuracy and bias                                                                                       | 342    | 33%              | 124              | 23%                             | ***       |

## Results

- For only rural hospitals, comparing descriptive statistics across CAH, MDH, SCH and none of the above categories

|                                                               | Critical Access Hospital |                  | Medicare Dependent Hospital |        | Sole Community Hospital |           |        | None of the Above |          |          |                  |
|---------------------------------------------------------------|--------------------------|------------------|-----------------------------|--------|-------------------------|-----------|--------|-------------------|----------|----------|------------------|
| Category                                                      | Number                   | Weighted percent | Different                   | Number | Weighted percent        | Different | Number | Weighted percent  | Differen | t Number | Weighted percent |
| Use of any machine learning or other predictive models that   |                          |                  |                             |        |                         |           |        |                   |          |          |                  |
| display in the EHR                                            | 611                      | 100%             |                             | 58     | 100%                    |           | 203    | 100%              |          | 147      | 100%             |
| Machine learning                                              | 167                      | 27%              | **                          | 18     | 31%                     |           | 75     | 37%               |          | 54       | 37%              |
| Other non-machine learning predictive models                  | 136                      | 22%              | ***                         | 16     | 28%                     |           | 47     | 23%               | **       | 48       | 33%              |
| Neither                                                       | 206                      | 34%              | ***                         | 17     | 29%                     |           | 53     | 26%               |          | 30       | 20%              |
| Do not know                                                   | 102                      | 17%              | *                           | 7      | 12%                     |           | 28     | 14%               |          | 15       | 10%              |
| Specific uses of machine learning or other predictive models, |                          |                  |                             |        |                         |           |        |                   |          |          |                  |
| among hospitals that integrated models into the EHR           | 301                      | 100%             |                             | 32     | 100%                    |           | 121    | 100%              |          | 101      | 100%             |
| Predict health trajectories or risks for inpatients           | 279                      | 93%              | *                           | 29     | 91%                     | *         | 111    | 92%               | **       | 99       | 98%              |
| Identify high-risk outpatients for follow-up care             | 276                      | 92%              |                             | 27     | 84%                     |           | 95     | 79%               |          | 87       | 86%              |
| Facilitate scheduling                                         | 121                      | 40%              |                             | 17     | 53%                     |           | 57     | 47%               |          | 49       | 49%              |
| Recommend treatments                                          | 117                      | 39%              |                             | 13     | 41%                     |           | 48     | 40%               |          | 46       | 46%              |
| Simplify or automate billing procedures                       | 114                      | 38%              |                             | 15     | 47%                     |           | 53     | 44%               |          | 37       | 37%              |
| Monitor health                                                | 90                       | 30%              |                             | 12     | 38%                     |           | 40     | 33%               |          | 38       | 38%              |
| Other (clinical use cases)                                    | 72                       | 24%              |                             | 11     | 34%                     |           | 30     | 25%               |          | 25       | 25%              |
| Other (operational process optimization)                      | 82                       | 27%              |                             | 4      | 13%                     |           | 33     | 27%               |          | 26       | 26%              |
| Developer of predictive models used by the hospital, among    |                          |                  |                             |        |                         |           |        |                   |          |          |                  |
| hospitals that integrated models into the EHR                 | 301                      | 100%             |                             | 32     | 100%                    |           | 120    | 100%              |          | 101      | 100%             |
| EHR developer                                                 | 276                      | 92%              |                             | 28     | 88%                     |           | 98     | 82%               |          | 87       | 86%              |
| Third-party developer                                         | 137                      | 46%              |                             | 19     | 59%                     |           | 66     | 55%               |          | 47       | 47%              |
| Self-developed                                                | 137                      | 46%              |                             | 14     | 44%                     |           | 61     | 51%               |          | 49       | 49%              |
| Public domain                                                 | 12                       | 4%               |                             | 1      | 3%                      |           | 1      | 1%                |          | 2        | 2%               |
|                                                               |                          |                  |                             |        |                         |           |        |                   |          |          |                  |
| Local evaluation of most or all models for accuracy or bias   | 297                      | 100%             |                             | 32     | 100%                    |           | 120    | 100%              |          | 101      | 100%             |
| Model accuracy                                                | 170                      | 57%              |                             | 19     | 59%                     |           | 71     | 59%               |          | 61       | 60%              |
| Model bias                                                    | 125                      | 42%              |                             | 12     | 38%                     |           | 43     | 36%               |          | 36       | 36%              |
| Model accuracy and bias                                       | 63                       | 21%              |                             | 10     | 31%                     |           | 27     | 23%               |          | 25       | 25%              |
|                                                               |                          |                  |                             |        |                         |           |        |                   |          |          |                  |

# Regression Results To

- Logistic regression (not Poisson as in Nong et al.)
- As such, odds ratios (not relative risks) are provided
- Weights for nonresponse bias derived from a 3<sup>rd</sup> multivariate logistic regression

| n                                                   | Used Al or other | predictive models | Evaluated models for both accurac |               |  |  |
|-----------------------------------------------------|------------------|-------------------|-----------------------------------|---------------|--|--|
|                                                     | integrated into  | EHR (n = 1,018)   | and bia                           | ias (n = 536) |  |  |
| Variables                                           | OR               | 95% CI            | OR                                | 95% CI        |  |  |
| Top quintile, operating margins                     | 2.28***          | 1.36, 3.83        | 1.29                              | 0.82, 2.01    |  |  |
| Top quintile, uncompensated care                    | 2.52             | 0.36, 17.63       | 0.96                              | 0.23, 4.04    |  |  |
| Top quintile, percent of discharges from Medicaid   | 0.73             | 0.48, 1.11        | 1.04                              | 0.62, 1.75    |  |  |
| Top quintile, hospital service area SDI             | 1.11             | 0.73, 1.7         | 0.76                              | 0.44, 1.32    |  |  |
| Critical access hospital                            | 0.47**           | 0.22, 0.99        | 1.58                              | 0.76, 3.29    |  |  |
| System member (ref: independent)                    | 6.72***          | 4.83, 9.35        | 1.63*                             | 0.97, 2.73    |  |  |
| Resident program/minor teaching                     | 1.23             | 0.59, 2.59        | 1.62                              | 0.8, 3.27     |  |  |
| Medicare Specialty Designation (ref: not SCH or MDH | l)               |                   |                                   |               |  |  |
| Sole Community Hospital                             | 0.59*            | 0.32, 1.08        | 1.08                              | 0.59, 1.99    |  |  |
| Medicare Dependent Hospital                         | 0.60             | 0.28, 1.29        | 1.38                              | 0.57, 3.37    |  |  |
| Size (ref: small [fewer than 40 beds])              |                  |                   |                                   |               |  |  |
| Medium (40-100 beds)                                | 1.32             | 0.68, 2.55        | 0.66                              | 0.32, 1.36    |  |  |
| Large (100 beds or more)                            | 1.10             | 0.5, 2.41         | 1.27                              | 0.51, 3.16    |  |  |
| Ownership (ref: nonprofit)                          |                  |                   |                                   |               |  |  |
| For-profit                                          | 0.14***          | 0.08, 0.27        | 2.43*                             | 1.07, 5.51    |  |  |
| Government owned                                    | 0.42***          | 0.29, 0.61        | 0.71                              | 0.39, 1.29    |  |  |
| Constant                                            | 0.95             | 0.43, 2.12        | 0.34**                            | 0.14, 0.79    |  |  |
|                                                     |                  |                   |                                   |               |  |  |



# So what? Potential Impacts of AI Use

- Coarsened Exact Matching (CEM) procedure allows for comparison among treated (AI users) and control (non-AI users)
  - Bins for: operating margins, Medicare inpatient discharge share, system membership, ownership type, number of beds
- 2022 data was used in previous logit regressions; 2023 data on FTE employees, operating margins, total salaries was added to create 1-year change variables
  - A two-year change variable would be preferred, but 2024 Medicare data is only partially released.
- Univariate regressions run on all observations that were matched using CEM weights (2,077 rural and urban hospitals used, while 239 were unmatched/dropped)

#### Preliminary Results (all hospitals)

- FTE Employees: No significant relationship
- Operating Margins: 0.0080 increase for Al users (0.0195 treated vs 0.0115 control) significant at the 10% level
- Total Salaries: \$7.5M (roughly 6%) increase for AI users significant at the 1% level



# Thank You!

Questions / Comments?

brian.whitacre@okstate.edu



As a baby bust hits rural areas, hospital labor and delivery wards are closing down

JULY 15, 2024 · 5:00 AM ET

FROM KFF Health News

Rural health clinics are closing after Trump's 'One Big Beautiful Bill,' raising the legislation's political risks

SEP 22, 2025 >

#### Al Helps to Improve Speed of Radiology Reviews

New AI tool helps rural hospitals improve financial incomes

We're proud to announce that the <u>claims denial navigator</u> is **available now** in the GitHub Models catalog—a free, AI-powered tool developed by Microsoft Partners

# Nonresponse Bias Weighting Results logit response employees\_log discharges\_log acute\_days

- Derivation of weights shown:

logit response employees\_log discharges\_log acute\_days\_log cah ownership\_forprofit
ownership\_nonprofit if rural == 1

Pseudo R2 = 0.0449

| response            | Coefficient | Std. err. | Z    | P>z   | [95% conf. | interval]  |
|---------------------|-------------|-----------|------|-------|------------|------------|
| employees_log       | 0.0064377   | 0.096682  | 0.07 | 0.947 | -0.1830555 | 0.1959309  |
| discharges_log      | 0.3470055   | 0.0680321 | 5.1  | 0     | 0.2136651  | 0.4803459  |
|                     |             |           | -    |       |            |            |
| acute_days_log      | -0.1241613  | 0.0474833 | 2.61 | 0.009 | -0.217227  | -0.0310956 |
| cah                 | 0.4902852   | 0.1280571 | 3.83 | 0     | 0.239298   | 0.7412725  |
|                     |             |           | -    |       |            |            |
| ownership_forprofit | -0.6143767  | 0.1931141 | 3.18 | 0.001 | -0.9928734 | -0.23588   |
| ownership_nonprofit | 0.489873    | 0.1007625 | 4.86 | 0     | 0.292382   | 0.687364   |
|                     |             |           | -    |       |            |            |
| _cons               | -1.723867   | 0.4320669 | 3.99 | 0     | -2.570703  | -0.8770315 |

