1	Title: Using Long-term Ecological Data to Identify Altitudinal Shifts of Species and
2	Communities in Response to Recent Climate Change
3	
4 5	Abstract:
6	Aim: To determine whether montane understory plant communities have shifted as intact
7	units or whether species are responding individualistically to documented changes
8	in climate over the past 40 years.
9	Location: Camels Hump in the Green Mountains of Vermont, USA
10	Methods: Using data collected from a repeated vegetation survey done between 1964 and
11	2006, changes to overstory and understory plant communities were examined
12	through the use of non-metric multidimensional scaling (NMDS) and simple
13	Bayesian models.
14	Results: Understory communities across an elevational gradient (549m to 1158m) on
15	Camels Hump, VT have been changing in terms of species composition and have
16	become more homogenous since the mid-1960's. The magnitude of change
17	observed was not equal across elevations however, with the highest survey sites
18	exhibiting the most amount of change despite experiencing the least amount of
19	warming. The lowest elevations in turn exhibited the least amount of community
20	compositional change. Shifts in the optimal elevations of individual species
21	examined through the use of Bayesian models showed a wide range of migration
22	patterns in terms of both magnitude and direction, with some species moving
23	upslope, some remaining fairly stationary and still others shifting their optimal
24	elevation down slope. This pattern was found to be independent of overstory
25	elevational shift due to an average increase in the elevational optimum of
26	understory species almost twice that of overstory species over the same time
27	period (1964-2006) at 28.36m and 15.62m, respectively.
28	Main Conclusions: Spatial and temporal trends in understory communities indicate
29	climate and acid deposition are major drivers of change to species compositions in the Crean Magneting since 1064. However, differences in both the magnitude and
30 21	the Green Mountains since 1964. However, differences in both the magnitude and
31 20	direction of elevational change of individual species suggest that past
32 22	communities are not moving as infact units in response to climate change.
33	Kay Words: Rayasian models, climate change, community shift, elevational shift, non
35	metric multidimensional scaling (NMDS) understory communities
36	metric mutitumensional scaling (1111D5), undersiory communities
37	Authors: Carolyn Pucko*† Brian Beckage †
38	Autory Processing and Secretary and Secretary
39	*Author of correspondence
40	cpucko@uvm.edu
41	<u>opacito e avinteda</u>
42	[†] Department of Plant Biology
43	University of Vermont
44	Burlington, VT 05452.
45	
46	
47	

48 (A) Introduction:

49 Determining the mechanisms by which species move and shift in response to 50 changes in their environment is one of the fundamental objectives of ecology, and one 51 that is gaining significance as the rate of anthropogenic climate change increases (IPCC 52 2007). The effects of recent warming have already been seen globally across terrestrial, 53 aquatic and marine habitats (Walther et al 2002) and can be clearly observed by the 54 shifting ranges of many species either poleward or upward (Krajick 2004; Parmesan & 55 Yohe 2003, Root et al. 2003). However, despite the extensive documentation of this 56 pattern in the literature, two dominant hypotheses persist that each attempt to describe 57 how this shift impacts current biological communities. The first assumes that changes in 58 climate will affect species differently causing species within a single community to shift 59 individualistically (Jackson & Overpeck 2000; Williams et al 2004), thus dissolving 60 current species associations and creating novel communities (le Roux & McGeoch 2008; 61 Walther 2004; Delcourt & Delcourt 1988). The second dominant hypothesis, whose basic 62 structure was set forth by Darwin (1859) and the one that is often used to estimate large 63 scale future vegetation cover (All BIOME and LPJ models) predicts that species within a 64 community coexist due to common climatic tolerances and will likely respond similarly 65 to changes in climate. This would result in species shifting as intact units, preserving 66 current species associations. Evidence of each of these patterns has been observed over 67 geologic time-scales and is present in the literature (McLauchlan et al. 2005); however, 68 studies of the response of modern communities to recent climate change are by in large 69 absent and are of great necessity (Walther 2004; Williams et al 2004; Root & Schneider 70 2006).

71	The aim of this study is to differentiate between the species and community shift
72	hypotheses by examining the understory plant community of a montane forest in the
73	northeastern United States. If this community is shifting as an intact unit, we expect to
74	observe each species moving in the same direction at approximately the same rate.
75	However, if species instead are moving as individuals, we expect to see divergence in
76	both the rate and direction of shift between species. In addition, we want to determine
77	whether any shift observed in the understory is independent or linked to shifts already
78	documented in the overstory (Beckage et al 2008). If responding independently from the
79	overstory, this would further support the hypothesis that understory species are
80	responding individually to complex changes in climate.
81	Just as we have seen in the past, we expect that in the future, novel climatic
82	conditions will arise due to the complex, multidimensional nature of climate (Williams &
83	Jackson 2007). This is possible since each component which defines a climate can change
84	independently of the others, producing combinations of climatic characteristics which
85	have no current analog. The formation of these novel climates may fundamentally shift
86	competitive balances between species and favor species associations that do not currently
87	exist, ultimately leading to shifts in geographic range limits. As we predict rates of
88	climate change over the next century to exceed those experienced at any time since at
89	least the last ice age (Root & Schneider 2006), it is important that we consider the
90	potential impact that novel communities may have on future climate.
91	As we continue to develop and base conservation strategies on dynamic global
92	vegetation models (DGVM's), which incorporate climate-vegetation feedbacks (Bonan
93	2003; Krinner et al. 2005; Bachelet et al. 2001) and are used to forecast climate and biotic

94 distributions, it is increasingly important to correctly model how communities respond to 95 climate and vise versa. However, despite the fact that competitive relationships between 96 species in novel communities are by definition unknown, understanding whether species 97 move as individuals or in intact communities could provide valuable accuracy to models 98 in the future. Using the incorrect framework within DGVM's to model future climate and 99 vegetation could cause predictions of future species distribution to be dramatically 100 incorrect. A more thorough understanding of how communities have responded to recent 101 climate change through direct observation could help to identify the correct framework 102 for use in these models.

Because of their steep slopes which form naturally compact climate gradients, montane environments provide ideal locations to study climate related species shift (Stevens & Fox 1991; Kupfer & Cairns 1996). In many of these communities even relatively small changes in climate are able to produce observable shifts in species elevation (Guisan & Theurillat, 2000). Long-term monitoring of such locations can provide insight into how climate change has impacted species distributions on shorter time scales than may be expected.

In this study historic climate and plant distribution records dating back to 1965 as well as multiple vegetation resurveys through 2006, provide the opportunity to examine climate related species shift during over 40 years of documented climate change (Beckage et al 2008; Siccama 1978, Perkins 1988). Temperature at our study site in the Green Mountain region of Vermont has warmed by between 0.67 and 1.5°C since 1963 (Figure 1) depending on elevation (Beckage et al 2008), resulting in observed shifts in the overstory tree community by as much as 119m in elevation (Beckage et al. 2008). The

117 understory community found here provides an ideal suite of species on which to base this 118 study. With a much greater diversity than the overstory, the understory community allows 119 us to not only look at individual species shift, but to examine how life history traits such 120 as dispersal, influence how quickly a species responds to climate change. In addition, it is 121 expected that many of the understory species are capable of showing similar if not greater 122 amounts of altitudinal shift than the canopy species due to their shorter generation times 123 (Lenoir 2008) and are therefore able to respond more quickly to changes in climate than 124 long-lived tree species. These may also be communities in which the anticipated impact 125 due to climate change has been greatly underestimated (Trivedi et al. 2008).

In order to differentiate between the individualistic and the community shift hypotheses within the understory community of Camels Hump, the results of the repeated vegetation survey were be analyzed through the use of non-metric multidimensional scaling (NMDS) techniques and simple Bayesian models. NMDS was used over other multivariate scaling techniques because of its ability to highlight similarities visually as well as for its ability to incorporate non-normal and categorical data into analyses (REF).

132 (A) Study Site:

As the second highest peak in Vermont, Camels Hump (44° 19' N, 72° 53' W), at 1244 m a.s.l., has been used for many types of biological and ecosystem studies and is an ideal site for the study vegetation change over time due in part to a system of permanent and semi-permanent plots used to monitor plant communities as well as soil, climate and forest health since the early 1960's. The geology of Camels Hump is typical to that of the Green Mountains and is dominated by schist (graphitic, quartz-albite-muscovite) and quartzite (USGS 1948) bedrock. Soils are predominantly entisols and spodosols

consisting of strongly acidic stony loams (NRCS 2003; NRCS 2006; NRCS 2008). The
climate in this region is characterized by a large daily and annual temperature ranges,
particularly in the mountains, with an average January temperature of -7.8°C and an
average July temperature of 21.4°C. Precipitation is fairly evenly distributed throughout
the year averaging 91.6cm annually (Burlington International Airport Station, NOAA
2002).

146 There are two general forest types that occupy the majority of the area on Camels 147 Hump and other montane regions of New England and are stratified by elevation. The 148 forest below approximately 760m is primarily a sugar maple (Acer saccharum), 149 American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis) northern 150 hardwood forest. Between 760 and 880 m lies a narrow ecotone (Siccama et al. 1982) 151 principally controlled by climate (Kupfer & Cairns 1996; Beckage 2008), which 152 transitions from the lower deciduous forest into the high elevation boreal forest, which is 153 dominated by red spruce (*Picea rubens*), balsam fir (*Abies balsamea*) and high elevation 154 paper birch (Betula cordifolia) (Siccama 1974; Siccama et al. 1982). This boreal forest 155 extends upward until it reaches the small alpine summit.

The vegetation survey plots used in this analysis are located in the Camels Hump Forest Ecology Research Area which has a well-documented land use and disturbance history (Siccama 1968; Whitney 1988), allowing us to identify major disturbances that may influence the stand dynamics of our sites (Pearson et al. 2004) and avoid areas of recent human interference. While the majority of the upper slopes of Camels Hump have not been logged, some salvage and selective logging has taken place at lower elevations. However, with the exception of some selectively cut yellow birch and red spruce

163	extending up to 700m, all other potentially disruptive logging activity has been located
164	outside of the research area (Siccama 1968; Whitney 1988).
165	(A) Methods:
166	(B) Field Methods
167	Vegetation was sampled using a nested plot design established in 1965 (Siccama
168	1968; Voglemann 1985) and based on previous studies done by Cain (1935), Cantlon
169	(1953) and Oosting and Billings (1951), in order to capture both overstory and understory
170	characteristics on Camels Hump. In 1965, the understory quadrats were destructively
171	sampled, requiring that at the time they were made permanent in 1979, they be shifted
172	slightly (Perkins 1988). Overstory plots were distributed up the western slope of Camels
173	Hump at intervals of 60 vertical meters between 549 and 1158 m for a total of 11 sample
174	elevations. At each elevation, 3m x 30m overstory plots were laid down perpendicular to
175	the contour and separated by 6m. Rebar was used to permanently mark the top and
176	bottom of each plot's centerline. The six lower elevation sites were each assigned 10
177	plots, while the upper five were only assigned five in order to maintain a westerly aspect.
178	Within each of these overstory plots, the species and dbh for each tree with a diameter $>$
179	2cm was recorded. Nested in each of these plots were six- meter square quadrats evenly
180	distributed along the center line for a total of 510 understory quadrats. To sample
181	understory vegetation within each quadrat, a collapsible PVC frame was laid out at the
182	pre-defined locations at which point the stem count and estimated percent cover of each
183	species present was recorded. All woody species with a dbh less than 2cm were measured
184	as part of the understory. In all, more than 118 species were identified, 15 of which were
185	trees.

(B) Species Data

While attempting to differentiate between community and species shift, it became necessary to define a community in a way that would be meaningful and could capture subtle changes in species composition over time. With this in mind, we defined communities as multivariate entities described by the average percent cover of each species within a plot. The average percent cover was calculated from the percent covers of each species recorded from within the six meter-squared understory quadrats nested within each plot.

194 In order to reduce the impact of field misidentifications and to account for other 195 uncertainties such as taxonomic changes, it was often necessary to aggregate data from 196 some species present in the understory. After 1965 when destructive sampling no longer 197 took place, field identifications of some individuals to the species level were impossible 198 due to the fact that flowers were not always observed at the time of data collection. These 199 aggregations typically took place at the genus level, though grasses (Poaceae) and sedges 200 (Cyperaceae) were grouped by family. Additionally, information on moss cover was 201 collected which combined all species of moss with the exception of the genus Sphagnum.

202

(B) Statistical Analysis

203 (C) Non-metric Multidimensional Scaling (NMDS)

Whether or not understory communities have shifted on Camels Hump or in what direction they have shifted was examined through the use of NMDS analyses. NMDS was used in this study in order to illustrate how species and communities are changing over time. Similar to a principle component analysis (PCA), the goal of NMDS is to use multivariate data to group similar observations together. However, where NMDS differs

209 from PCA is that instead of preserving the spatial relationships between observations 210 within a multidimensional space, similarities and dissimilarities are exaggerated by 211 adjusting the location of points slightly in order to group more similar points more 212 tightly. This property of NMDS was advantageous to this analysis since the changes to 213 many of the understory communities we observed have not been drastic but instead have 214 been subtle changes over the past 40 years, which can be difficult to identify with other 215 methods. All NMDS analyses were performed in the R statistical software package 216 (REF?) using the isoMDS (MASS) function. Results were generated from a two 217 dimensional (k=2) analysis and were based on an initial Euclidean distance matrix. The 218 data used in these analyses were summarized by plot (community analyses) or elevation 219 (species analyses). Additionally, to avoid the artificial grouping of species or 220 communities by elevation, this information was not included when calculating similarity. 221 Instead, only frequency or percent cover for each species was utilized in order to produce 222 the graphic representations of the data. This also ensured that from year to year, the 223 similarity of communities was independent of elevation.

224 (C)Bayesian Modeling

Bayesian models were developed to estimate the elevational shift of individual species over the 40 year duration of this study. Model fits for understory species were generated using species frequency data summarized by elevation. Overstory tree data was also summarized by elevation but instead of frequency, parameter estimates were based on average basal area per plot. Quadratic model fits were used to predict the optimum elevation or the elevation where a species is most likely to be found. Changes in optimum elevations indicate range shift in a given direction. Many studies of range shift focus

232	solely on the fringes of a species' range (Beckage et al. 2008? – plenty of others too),				
233	however, by also identifying and tracking how the core of a species range is responding				
234	to climate change, we gain valuable information on how species are affected by changes				
235	in climate (Lenoir et al. 2008). Parameter estimates fit to the data were generated using				
236	the WinBugs computer program utilizing a Markov Chain Monte Carlo (MCMC)				
237	sampler using the following models.				
238	Understory Model:				
239	$P[Quadrats \ Occupied] \sim Binomial (y : \beta_0, \beta_1, \beta_2, N_{plots})$				
240	<i>Logit</i> (<i>p</i> [<i>i</i>]) <- $\beta_0 + \beta_1$ * <i>Elevation</i> + β_2 * <i>Elevation</i> ²				
241	β Priors ~Normal(0.0,0.1)				

242 Overstory Model:

243
$$E[Basal Area] \sim Normal(y:\mu,\tau)$$

244
$$\mu[i] < -\beta_0 + \beta_1 * Elevation + \beta_2 * Elevation^2$$

245
$$\tau \sim Gamma (0.001, 0.001)$$

The parameter estimates (β_0 , β_1 , β_2) were then used to plot the modeled distributions in R in order to estimate shifts in optimum elevations over time.

In order to improve the reliability of our results, the data used in both statistical analyses were cropped to include only understory species present in greater than 50% of the years sampled, or 3 of the 5 years. In terms of NMDS, this was done to avoid the characterization of communities by the presence or absence of a rare plant and allowed us instead to examine how general community compositions had changed over time. Tree species were also excluded from the understory analyses even when they met the understory criteria of having a dbh of < 2cm in order to prevent the influence of mast years. For the Bayesian model fitting, the same suite of 48 species was used in order to reduce the frequency of incorrect estimations of shift based on years when a species was not observed. This method of exclusion did not distinguish between species that were not observed due to limited sampling capabilities and those that were not observed because their range had shifted outside of the elevational scope of this study.

260 (A) Results and Discussion

261 (B) Community Shift

262 Understanding if and how communities in the Green Mountains are shifting in 263 response to recent climate change was one of the primary goals of this study and one that 264 was well captured in our analyses. Through the use of NMDS it becomes clear that 265 between the first vegetation survey done in 1965 and the last in 2006, current understory 266 communities at a given elevation are more similar to communities found at higher 267 elevations in the past (Figure 2). This is evidenced by the migration of the NMDS points 268 toward the left side of the parameter space as time goes forward, converging toward the 269 position occupied by the lowest elevation points. This illustrates a situation where high 270 elevation points are moving closer and closer to lower elevation points, suggesting a 271 homogenization in species composition across elevations and that communities are in 272 general following an upward migratory trend as expected when climate warms (Parmesan 273 & Yohe 2003).

Given that there are differences in the rate of warming experienced at high and low altitudes (Figure 1), we would not, correspondingly, expect that the rate of community shift would be equal across elevations. Instead, given the climate data, we would expect low elevations to be shifting more rapidly since they are experiencing a

278 greater amount of change in terms of temperature. However, this is contradictory to what 279 was observed (Figure 3). The lowest elevations appear to shift very little if at all in the 280 NMDS parameter space between years and it is not until 732m that we see significant 281 amounts of shift over the course of the study. Additionally, the magnitude of this shift 282 continues to increase with elevation.

283 While part of this seemingly inconsistent result is likely explained by the location 284 of the boreal/deciduous ecotone (BDE), the amount of change observed at the highest 285 elevations is perhaps the result of interacting anthropogenic disturbances. Between 732 286 and 853m, northern hardwood and high elevation boreal forest form the BDE and 287 understory community change observed here may be the result of the advancement 288 upslope of species normally found under the hardwood canopy. Less change would be 289 expected at the low elevations despite a greater amount of warming since the forests 290 found at elevations extending some distance below our study range are also composed of 291 northern hardwoods with understory vegetation communities fairly similar to those 292 observed at our lowest study sites. Consequently, this pattern may also be expected to 293 hold true for the uppermost elevations of our study since the communities below them are 294 also similar in overstory composition. However, other anthropogenic forces may be at 295 work in these locations acting synergistically to alter understory communities. Most 296 notably among them is acid deposition.

With thin, rocky soils and increased exposure to acid deposition through cloud moisture (Voglemann et al. 1968, Siccama et al. 1982), high elevation montane forests in the northeast are disproportionately prone to acidification (Wargo & Auclair 2000;). This decrease in soil pH, in conjunction with increased temperatures may have caused the

301 rapid change we observed at high elevations in the NMDS analysis (Figure 3) by creating 302 soil conditions unsuitable for some species typically found in these high elevation 303 communities (REF). Acid deposition may also have influenced understory communities 304 by causing alterations in the light environment through increases in canopy gap formation 305 (Anderson et al. 1969; Anderson & Leopold 2002). Acid deposition is indirectly capable 306 of causing gaps by reducing soil calcium levels, which can contribute to overstory loss in 307 species such as red spruce where calcium levels are linked to cold tolerance and frost 308 injury (Battles & Fahey 2000; DeHayes 1992; Schaberg et al. 2000). Since the 1960's red 309 spruce decline at mid to high elevations has been documented on Camels Hump with a 310 near 50% reduction in basal area between 1964 and 1979 (Siccama 1982). Despite these 311 differences observed in the magnitude of compositional change over the elevational 312 gradient of this study, communities did exhibit a unified direction of shift suggesting a 313 common driver such as climate (Figure 3).

314 (B) Species Shift

Despite the evidence for community shift, it is impossible to ascertain from the NMDS analysis whether the changes observed in Figures 2 and 3 are being driven by a consistent pattern of movement by every species within a community or whether those changes are being driven instead by a small subset of species. In order to explore whether these communities are remaining intact, or whether most species are shifting independently and in different directions, it becomes necessary to look at each species individually.

Through the use of simple Bayesian models, we were able to identify an optimum elevation for each species in each year, indicating the elevation at which that species is

324 most likely to be found. Changes in that optimum elevation indicate both the direction 325 and magnitude of shift. Only species which were observed in both 1965 and 2006, and 326 those whose optimum elevation for each of those time periods fell within our studied 327 elevational range were considered for this analysis. Evidence from the estimated 328 optimum elevations suggests that species are not moving in a consistent fashion and are 329 instead exhibiting independent directional shift (Figure 4). While many species are 330 moving upslope (Figure 4a,c,e,f,g), others are shifting very little if at all (Figure 4d,j) and 331 some are even exhibiting a downward migration pattern (Figure 4b,h,i,l). When all 332 species are considered collectively however, the average direction of elevational shift is 333 still positive (Figure 5) as we would expect given the warming climate (Figure 1). 334 In addition to identifying the magnitude and direction in which understory species 335 are shifting, it is important to determine whether the observed shift is a reaction to 336 climate or whether understory species are simply tracking the shifts observed in the 337 overstory (Beckage et al. 2008). There are inherent links between the two including the 338 effects of canopy cover on soil chemistry (Finzi et al. 1998) and light availability 339 (Anderson et al. 1969; Reader et al. 1992). However, in this case, the average elevational 340 shift of the understory species almost doubles that of the canopy species (Figure 6, Table 341 1), indicating a sensitivity to climate that overwhelms the influences of soil and light. 342 (A)Conclusions: 343 Despite the consistent and unidirectional shift of communities at every elevation 344 sampled on Camels Hump, the examination of individual species leads us to believe that 345 communities are not shifting as intact units. Instead, species are shifting independently in

both elevational direction and magnitude, causing past community associations to

347	dissolve and novel communities to be created (Williams & Jackson 2007). This
348	reshuffling of species is likely to have far reaching effects in terms of competitive
349	interactions and ecosystem function (Millennium Ecosystem Assessment 2005). While
350	some species are likely to benefit from these changing community dynamics (Walther et
351	al. 2003), others may be negatively affected, causing declines in abundance and
352	increasing extinction probabilities (Root & Schneider 2006; Thomas et al. 2004). This
353	will likely impact conservation efforts, particularly those aimed at a single species. In
354	addition, while acknowledging the practical necessity of modeling future vegetation in
355	terms of communities at large scales, it is clear that efforts to move towards modeling
356	individual species are justified and would be more biologically accurate.
357 358 359	(A) Literature Cited:
360 361 362	Anderson, K.L., Leopold, D.J. (2002) The role of canopy gaps in maintaining vascular plant diversity at a forested wetland in New York state. <i>Journal of the Torrey Botanical Society</i> , 129 , 238-250.
363 364 365	 Anderson, R.C., Loucks, O.L., Swain, A.M. (1969) Herbaceous response to canopy cover, light intensity and throughfall precipitation in coniferous forests. <i>Ecology</i>, 50, 255-263.
366 367	Battles, J.J., Fahey, T.J. (2000) Gap dynamics following forest decline: A case study of red spruce forests. <i>Ecological Applications</i> , 10 , 760-774.
368 369 370 371	 Beckage, B., Osborne, B., Gavin, D.G., Pucko, C., Siccama, G.H., Perkins, T. (2008) A rapid upslope shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. <i>Proceedings of the National Academy of Sciences</i>, 105, 4197-4202.
 372 373 374 375 	 Bonan, G.B., Levis, S., Sitch, S., Vertenstein, M., Oleson, K.W. (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. <i>Global Change Biology</i>, 9, 1543-1566. Cain, S.A. (1935) Ecological studies of the vegetation of the Great Smoky Mountains.
376 377 378 370	 Cani, S.A. (1955) Ecological studies of the vegetation of the Oreat Shloky Mountains. American Midland Naturalist, 16, 566-584. Cantlon, J.E. (1953) Vegetation and Microclimates on North and South Slopes of Cushetunk Mountain, New Jersey. Ecological Monographs, 23, 241-270. Cubaseh, H., Maehl, G.A., Boer, G.L. et al. (2001) Projections of future alignets abased
379 380 381	Climate Change, 2001, The scientific basis. Contribution of working group 1 to the third assessment report of the Intergovernmental Panel on Climate Change

382	(eds. Houghton JT, Ding Y, Griggs DJ, Noger M, van der Linden PJ, Dai X,
383	Maskell K, Johnson CA), 525–582. Cambridge University Press, Cambridge, UK.
384	Darwin, C. (1859) The origin of species. J. Murray. London.
385	DeHayes, D.H. (1992) Winter injury and developmental cold tolerance in red spruce. In:
386	The ecology and decline of red spruce in the Eastern United States. Eds. C. Eager
387	and M.B. Adams. Springer-Verlag, New York. 296–337.
388	Delcourt, H.R., Delcourt, P.A. (1988) Quaternary landscape ecology: Relevant scales in
389	space and time. Landscape Ecology, 2, 23-44.
390	Finzi, A.C., Canham, C.D., van Breeman, N. (1998) Canopy tree-soil interactions within
391	temperate forests: Species effects on pH and cations. <i>Ecological Applications</i> , 8,
392	447-454.
393	Guisan, A., Theurillat, J. (2000) Assessing alpine plant vulnerability to climate change: A
394	modeling perspective. Integrated Assessment, 1, 307-320.
395	Jackson, S.T., Overpeck, J.T. (2000) Responses of plant populations and communities to
396	changes of the late Quaternary. Paleobiology, 26, 194-220.
397	Krajick, K. (2004) Climate change: All downhill from here? Science, 303, 1600-1602.
398	Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P.
399	Ciais, P., Stich, S., Prentice, I.C. (2005) A dynamic global vegetation model for
400	studies of the coupled atmosphere-biosphere system. Global Biogeochemical
401	<i>Cycles</i> , 19 GB1015.
402	Kupfer, J.A., Cairns, D.M. (1996) The suitability of montane ecotones as indicators of
403	global climatic change. Progress in Physical Geography, 20, 253-272.
404	Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H. (2008) A aignificant
405	upward shift in plant species optimum elevation during the 20 th century. Science,
406	320 , 1768-1771.
407	le Roux, P.C., McGeoch, M.A. (2008). Rapid range expansion and community
408	reorganization in response to warming. <i>Global Change Biology</i> , 14 , 2950-2962.
409	Millennium Ecosystem Assessment. (2005) Ecosystems and human wellbeing:
410	biodiversity synthesis. World Resources Institute, Washington, D.C.
411	National Oceanic and Atmospheric Administration (NOAA). (2002) Climatography of
412	the United States No. 81. Monthly station normals of temperature, precipitation
413	and heating and cooling degree days 19/1-2000. Vol: 43: Vermont.
414	Natural Resources Conservation Service (NRCS). 2003. Keys to soil taxonomy: Ninth
415	Edition. Ed: Soll Survey Stall.
410	County Vermont
417	Natural Resources Conservation Service (NRCS) 2008 Soil survey of Washington
410	County Vermont
420	Oosting H I Billings W D (1939) Edapho-vegetational relation in Ravenels' Woods a
420	virgin hemlock forest near Highlands North Carolina American Midland
422	Naturalist 22. 333-350
423	Parmesan, C., Yohe, G. (2003) A globally coherent fingerprint of climate change impacts
424	across natural systems. <i>Nature</i> . 421 , 37-42.
425	Reader, R.J., Bricker, B.D. (1992) Response of five deciduous forest herbs to partial
426	canopy removal and patch size. American Midland Naturalist, 127, 149-157.

427	Root, T.L., Schneider, S.H. (2006) Conservation and climate change: The challenges
428	ahead. Conservation Biology, 20, 706-708.
429	Schaberg, P.G., DeHayes, D.H. (2000) Physiological and environmental causes of
430	freezing injury in red spruce. In: Mickler, R.A., Birdsey, R.A., Hom, J. (eds.)
431	Responses of northern US forests to environmental change. Springer-Verlag. New
432	York, New York. 181-221.
433	Schaberg, P.G., DeHayes, D.H., Hawley, G.J., Strimbeck, G.R., Cumming, J.R.,
434	Murakami, P.F., Borer, C.H. (2000) Acid mist and soil Ca and Al alter the
435	mineral nutrition and physiology of red spruce. <i>Tree Physiology</i> , 20 , 73-85.
436	Siccama, T.G. (1968) Altitudinal distribution of forest vegetation in the Green Mountains
437	of Vermont. <i>Ph.D. thesis</i> . University of Vermont, Burlington, Vermont.
438	Siccama, T.G. (1974) Vegetation, soil and climate on the Green Mountains, Vermont,
439	Ecological Monographs, 44, 325-249.
440	Siccama, T.G., Bliss, M., Voglemann, H.W. (1982) Decline of red spruce in the Green
441	Mountains of Vermont <i>Bulletin of the Torrey Botanical Club</i> 109 162-168
442	Stevens, G.C., Fox, J.F. (1991) The Causes of Treeline. Annual Review of Ecology and
443	Systematics 22 177-191
444	Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.L. Collingham,
445	Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L.,
446	Huntley B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A.
447	Peterson, A.T., Phillips, O.L., Williams, S.E. (2004) Extinction risk from climate
448	change. <i>Nature</i> , 427 , 145-148.
449	USGS. (1948) Bedrock geology, Camels Hump Quadrangle, Prepared by: C.G. Doll.
450	Vermont Geologic Survey.
451	Vogleman, H.W., Badger, G.J. Bliss, M., Klein, R.M. (1985) Forest decline on Camels
452	Hump, Vermont. Bulletin of the Torrey Botanical Club, 112 , 274-287.
453	Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin,
454	J., Hoegh-Guldberg, O., Bairlein, F. (2002) Ecological responses to recent climate
455	change. <i>Nature</i> , 416 , 389-395.
456	Walther, G. (2003) Plants in a warmer world. Perspectives in Plant Ecology Evolution
457	and Systematics, 6 , 169-185.
458	Wargo & Auclair, book: see Schaberg comps for citation
459	Webb III, T., Shuman, B., Williams, J.W. (2003) Climatically forced vegetation
460	dynamics in eastern North America during the Late Quaternary Period.
461	Development in Quaternary Science, 1, 459-478.
462	Whitney, H. (1988) Disturbance and vegetation change on Camels Hump, Vermont. Ph.D
463	Thesis. University of Vermont, Burlington, Vermont.
464	Williams, J.W., Shuman, B.N., Webb III, T., Barlein, P.J., Leduc, P.L. (2004) Late
465	Quaternary vegetation dynamics in North America: Scaling from taxa to biomes.
466	Ecological Monographs, 74, 309-334.
467	Williams, J.W., Jackson, S.T. (2007) Novel climates, no-analog communities and
468	ecological surprises. Frontiers in Ecology, 5, 475-482.
469	
470	
471	
472	

k.

2000

2500 3000 3500

584 585

• **:** • • •

2000 2500

3000 3500

2000 2500

3000 3500

\$

3000 3500

2000 2500

- 590

- Figure 6: Overstory Shift

- 612 Table 1:

012	Understory shift between 1965 to 1979	Understory shift between 1965 to 1983	Understory shift between 1965 to 1986	Understory shift between 1965 to 2006	Overstory shift between 1964 to 2004
-	4.64m	23.94m	45.30m	28.36m	15.62m
613					
614					
615					
616					
617					
618					
619					
620					
621					
622					
623					
624					
625					
626					
627					
628					
629					
630					
631					
632					
633					
634					
635					
636					
637					
638					
639					
640 641					
041 642					
643					
644					
645					

646 647 648 649 650 651 652 653 654 655 656	
657 658 659	Figure 1: Average annual temperature at the high elevation Mount Mansfield Station (MTM) and the low elevation Burlington Airport Station (BTV). (From Beckage et al. 2008)
660 661 662 663 664	Figure 2: Changes to understory communities over time sampled across 11 elevations (549m to 1158m) as part of a repeated vegetation survey. Communities here are plotted in NMDS parameter space for a) 1965, c) 1979, d) 1983, e) 1986 and f) 2006 with points closer together representing communities with more similar composition.
665 666 667 668	Figure 3: Changes to understory communities sampled 5 times between 1965 and 2006 as part of a repeated vegetation survey and plotted in NMDS parameter space. Arrows indicate the average magnitude and direction of community change by elevation between 1965 and 2006. a) 549m b) 610m c) 671m d) 732m e) 792m f) 853m g) 914m h) 975m i) 1036m j) 1097m k) 1158m.
669 670 671 672 673 674 675 676 677	Figure 4: A subset of species exhibiting the range of directional shifts observed among components of the understory communities on Camels Hump. Points indicate the observed frequency of each species at a given elevation in 1965 (red) and 2006 (green) with lines indicating their corresponding modeled optimum elevations found using Bayesian parameter estimation techniques. Species here represent a wide range of functional forms, dispersal strategies and abundance as: a) <i>Caulophyllum thalictroides</i> b) <i>Clintonia borealis</i> c) <i>Smilacina racemosa</i> d) <i>Trientalis borealis</i> e) <i>Trillium sp.</i> f) <i>Huperzia lucidula</i> g) <i>Polystichum acrostichoides</i> h) <i>Vibernum lantanoides</i> i) <i>Aralia</i> sp. j) <i>Arisaema triphyllum</i> k) <i>Thelypteris noveboracensis</i> l) <i>Phegopteris connectalis.</i>
678 679 680 681	Figure 5: Optimal elevation shift of understory species between 1965 and a) 1979 and b) 2006. Points each represent the amount of shift in meters estimated for a single species whose optimum elevation lies within the elevational scope of this study. The black, vertical line indicates zero change and the red line shows the average estimated change for all species in each year.
682 683 684 685 686 687 688	Figure 6: Optimal elevation shift of overstory tree species between 1964 and 2004. As in figure 5, points indicate the elevational shift in meters of each tree species whose optimum elevation lies between 549 and 1159m. The black line indicates zero change while the red line indicates the average amount of estimated change over all species.
 689 690 691 692 693 694 695 696 697 698 	Table 1: The average amount of elevational shift over the given length of the study for all species whose optimal elevation is within the studied elevational range.
0,0	