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Abstract 32 

Sustainable water resources management is an important issue in developing and 33 

established communities; particularly with the challenges associated with surface and 34 

groundwater contamination and potential precipitation shifts resulting from climate 35 

change. In this work, we develop and test methods to forecast streamflow in ungauged 36 

basins using counterpropagation and generalized regression artificial neural networks 37 

(ANNs). These were selected due to their advantages over other data-driven ANNs; 38 

namely their training speed and guaranteed convergence. The ANN models are driven 39 

with inputs of local climate records and antecedent streamflow predictions (through a 40 

recurrent feedback loop). The incorporation of this feedback loop allows the ANNs to 41 

forecast flow in ungauged basins, where no flow observations are available.  These 42 

methods are compared with traditional, data-driven flow forecasting models (multiple 43 

linear regression and autoregressive moving average with exogenous inputs), where 44 

applicable. Climate and USGS streamflow records from three basins in Northern 45 

Vermont are used to test and compare the methods.  To validate the prediction of flow in 46 

ungauged basins, the ANNs are trained on climate-flow data from one basin and to 47 

forecast streamflow in a nearby basin, with a different climate record.  Results reveal that 48 

training and predicting with data from nearby basins produce accuracies that are not 49 

statistically different than those attained when training and predicting in the same basin.  50 

In addition, a comparison of the ANN prediction accuracies using data collected on two 51 

time scales (daily and hourly) is presented.  52 

 53 
Keywords: ungauged streamflow forecasts, artificial neural networks, time series 54 

analysis, counterpropagation, generalized regression neural network. 55 

 56 

1. Introduction 57 

Accurate streamflow forecasts are an important component of watershed planning and 58 

sustainable water resource management. Streams and rivers adjust during large flood 59 

events, sometimes with catastrophic damage to human infrastructure; and riverine 60 

ecosystems are often most susceptible during periods of low flow.  The magnitude and 61 
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locality of extreme events can result in degraded surface water quality, loss of 62 

agricultural lands, damaged infrastructure, and the mobilization of phosphorus and 63 

sediment-related pollutants.  The frequency and severity of these extreme events are 64 

exacerbated by climate change and anthropogenic factors. Accurate and timely 65 

predictions of high and low flow events at any watershed location (either gauged or 66 

ungauged) can provide stakeholders the information required to make strategic, informed 67 

decisions. 68 

Data-driven hydrological methods have been widely adopted for forecasting 69 

streamflow.  Such techniques often require similar data types as traditional physics-based 70 

models, but require much less development time and are useful for real-time applications.  71 

Despite their lack of physical interpretation to basin-scale physics, they have proven 72 

capable of accurately predicting flows.  Multiple linear regression (MLR) and variations 73 

of autoregressive moving average (ARMA) models are common data-driven methods for 74 

forecasting streamflow.  More recently, artificial neural networks (ANNs) have been 75 

adopted to forecast flow.   76 

In this paper, we add to previous ANN research for forecasting streamflow using 77 

climactic and hydrologic drivers. However, we focus on a methodology that can be 78 

applied to forecast flow in ungauged basins because it does not use measured streamflow 79 

as an input variable.  Instead, input variables include precipitation and temperature data 80 

in combination with flow predictions lagged in time. To validate the method, we compare 81 

the two proposed ANN algorithms (recurrent generalized regression neural network 82 

(GRNN) and counterpropagation (CPN)) with traditional data-driven methods (MLR and 83 

ARMA), where applicable.  The CPN and GRNN algorithms have been selected because 84 
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they are fast, easy to train, always converge and are widely applicable to smaller 85 

watersheds. 86 

 87 

2. Background 88 

The functional relationship between rainfall and streamflow is complex and highly 89 

non-linear.  It is influenced by the temporal and spatial distribution of rainfall, watershed 90 

topography, soil characteristics, and mechanisms by which surface water recharges 91 

groundwater, among other factors.  It has long been an objective of researchers and 92 

watershed managers alike to accurately forecast this complex and highly non-linear 93 

process. 94 

Water resource practitioners have primary used simple linear regression or time series 95 

models to forecast time-series hydrological processes (Maier and Dandy, 2000).  There 96 

are numerous hydrological applications in which regression methods are used (e.g. 97 

Tangborn and Rasmussen (1976), Phien et al. (1990) and Tolland et al. (1998), among 98 

others). More recently, Schilling and Wolter (2005) use multiple linear regression to 99 

predict streamflow using a wide range of input variables, including short-term temporal 100 

inputs like precipitation and basin scale characteristics like land use, geology and 101 

morphology.  Hsieh et al. (2003) find similar predictive capabilities between multiple 102 

linear regression and feedforward neural networks when relating Columbia River 103 

streamflow with large-scale climatologic variables (e.g. Pacific sea surface temperatures). 104 

Time series autoregressive moving average or ARMA models (Box and Jenkins, 105 

1970) are also used for hydrological estimation applications (e.g. Chaloulakou (1999), 106 

McKerchar and Delleur  (1974), and Yurekli et al. (2005), among others). New 107 
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forecasting methods have been compared with the ARMA-family of models (Firat 108 

(2008), Adamowski (2008), and Cigizoglu (2003)),  and autoregressive moving average 109 

with exogenous input (ARMAX) models; the latter being used to incorporate 110 

precipitation data to forecast streamflow. Chang and Chen (2001) use an ARMAX model 111 

to evaluate the predictive capabilities of their fuzzy-counterpropagation ANN, while Hsu 112 

et al. (1995) found that ANN predictions of stream flow outperform linear ARMAX. 113 

Over the past two decades, there has been a growing interest in ANNs for simulating 114 

and forecasting hydrological variables (Govindaraju, 2000a; Govindaraju, 2000b). 115 

Govindaraju and Ramachandra (2000) provide a broad introduction to the application of 116 

ANNs in hydrology up to 2000.  Several ANN algorithms have been used, including 117 

feedforward backpropagation (FFBP), radial basis function (RBF) (Kisi, 2008; 118 

Moradkhani et al., 2004; Singh and Deo, 2007), and self-organizing maps (SOMs) (Hsu 119 

et al., 1995; Hsu et al., 2002).  120 

Studies have explored a multitude of input variables to increase flow forecasting 121 

accuracies. Makkersorn et al. (2008) include sea surface temperatures and spatio-122 

temporally distributed rainfall data to forecast streamflow, using genetic programming 123 

and FFBP ANN methods. Singh and Deo (2007) compare several ANN algorithms and 124 

generate separate ANN models for each season. Kisi (2008) includes a periodicity 125 

component (month enumerator) as an input to their ANN models to predict monthly 126 

streamflow. Rajurkar et al. (2002) improved their predictive results by forecasting at the 127 

sub-catchment rather than the entire catchment scale (due to spatial variation of rainfall). 128 

Cigizoglu and Kisi (2005) used a GRNN model to estimate upstream daily intermittent 129 

river flows using downstream data. 130 
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Other ANN advancements have proven useful in predicting flow.  Several authors use 131 

an adaptive neuro-fuzzy inference system (ANFIS), which combines fuzzy logic 132 

principles (Zadeh, 1965) and ANNs, to forecast streamflow (Chang and Chen, 2001; 133 

Chang et al., 2001; Firat, 2008; Firat and Gungor, 2008). Other studies found success 134 

using recurrent FFBP algorithms (Chang et al., 2002; Connor et al., 1994). 135 

Despite the abundance of streamflow forecast ANN literature, more than 95% of the 136 

researchers (32 of 33 papers referenced here) use antecedent observations of streamflow 137 

and precipitation (or other climatic variables) to forecast streamflow (e.g. (Firat and 138 

Gungor, 2008; Hu et al., 2005; Imrie et al., 2000; Jeong and Kim, 2005; Kisi, 2005)). One 139 

notable exception is Wang et al. (2006), who use several modified FFBP ANNs to predict 140 

streamflow with a 1 to 10 day lead-time.  To do so, they implement a recursive algorithm 141 

in which future streamflow predictions, say 

€ 

ˆ Q (t+2), are based on predicted streamflow, 142 

say 

€ 

ˆ Q (t+1). 143 

The feed-forward backpropagation (FFBP) algorithm is by far the most commonly 144 

used method in streamflow estimation (e.g. (Khalil et al., 2005; Rajurkar et al., 2002; 145 

Zealand et al., 1999)). Kingston et al. (2005) and Maier and Dandy (2000) provide good 146 

reviews. However, this algorithm requires stochastic training, does not always converge, 147 

and is widely considered a black-box approach to hydrological modeling (Kingston et al., 148 

2005).  To circumvent these challenges, this study focuses on two ANN algorithms that 149 

are not stochastic in nature and do not require iterative training procedures: the 150 

counterpropagation network (CPN) and the generalized regression neural network 151 

(GRNN).  The CPN has been used with concepts of fuzzy logic to predict hourly 152 

streamflow (Chang and Chen, 2001) and to develop fuzzy classification rules that 153 



 7 

accurately reconstruct streamflow (Chang et al., 2001). The GRNN has been shown to 154 

outperform FFBP ANN and ARMA methods to predict daily (Cigizoglu, 2005a) and 155 

monthly streamflow (Cigizoglu, 2005b), respectively. Kisi (2008) also found the GRNN 156 

to be a superior estimator of monthly streamflow than FFBP and RBF ANNs. Aytek 157 

(2008) use GRNNs as a basis for comparing a novel evolutionary computation algorithm 158 

for prediction streamflow. In addition, only a few researchers have looked to train ANNs 159 

on one basin and make predictions in another (e.g. (Cigizoglu, 2003; Kisi, 2008)). 160 

However, all of the studies use antecedent flow observations as inputs.  161 

 162 

2.1. Study site 163 

The Winooski basin has a warm summer continental or Hemiboreal climate (Koppen 164 

classification Dfb), with warm, humid summers and cold winters. The average annual 165 

precipitation in the basin is about 100 cm (Hijmans et al., 2005). Land cover within the 166 

basin is largely forested in the upper regions, while moderate development is primarily 167 

located in the stream valleys (Albers, 2000; Hackett and Bierman, 2009a).  Bedrock is 168 

primarily schist and phyllite in the mountains with Cambro-Ordivician siliclastic rocks 169 

and carbonates to the west in the Champlain Valley Region (Doolan, 1996).  There is an 170 

abundance of glacial till at elevation, stratified glacial sediments in the valleys, and 171 

alluvium near river channels. Unconsolidated cover varies widely throughout the basin, 172 

with less material at the higher elevations and more in the valleys. 173 

The Winooski River basin, located in northwestern Vermont, USA, was selected to 174 

demonstrate the implementation of these forecasting algorithms. The cumulative area of 175 

the Winooski basin is 3,000 km2 with a main branch length of 142 km. The river 176 
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originates in the Green Mountains and receives flow from five major tributaries before 177 

discharging into Lake Champlain (Figure 1). The Mad River, Dog River, Little River, 178 

and North Branch and main stem of the Winooski River are all monitored by USGS 179 

stream gauging stations, while the Huntington River remains ungauged. 180 

This study uses hourly and daily streamflow data from three USGS gauging stations 181 

and climate data from three NCDC weather stations located within the basin (Figure 1). 182 

Although trends (including the NAO cycle) have been observed within the Winooski 183 

River basin climate-discharge record (Hackett and Bierman, 2009b), the prediction focus 184 

of this study is on a small enough timescale to warrant such trends negligible.  185 

2.1.1. Climate and streamflow data 186 

Although more than 70 years of flow and climate data exists for this basin, daily 187 

streamflow at the three USGS sites and climate data at three NCDC weather stations has 188 

been gathered from 1996-2006. Streamflow, Q, in m3/s is an average over the entire day 189 

of instantaneous observations. Climate data consists of daily average temperature, T, in 190 

oC and total precipitation, P, in cm/day. Since not all sub-basins contain a NCDC weather 191 

station, precipitation records associated with the nearest NCDC station are assigned to the 192 

USGS stations.  Thus the Dog River USGS gauging station uses the Northfield NCDC 193 

precipitation record and the Winooski River at Wrightsville and Montpelier use the 194 

Barre/Montpelier Airport NCDC precipitation record.  Temperature data from the 195 

Burlington International Airport was adjusted for elevation and approximated at the 196 

USGS stations (Citation).  197 

 198 

 199 



 9 

 200 
Figure 1. The Winooski River basin and associated USGS gauging and NCDC 201 
weather stations (NEED to redo NE portion in GIS). (NID – National Inventory of 202 
Dams) 203 

In addition to the daily data, hourly precipitation (cm/hr) and streamflow (m3/s per 204 

hour) data were gathered for the Dog River basin from 1996-2006. Figure 2 shows the 205 

Dog River hydrograph and hyetograph for the summer months of 2002. The data is 206 

displayed at two scales, hourly (Figure 2a) and daily (Figure 2d).  A single storm event 207 



 10 

occurring on September 28th, 2002 is highlighted at both scales (Figure 2b and e 208 

respectively). 209 

 210 
Figure 2. Summer data 2002. (a) Hydrograph and hyetograph for the hourly and (d) 211 
daily flow, Q, and precipitation, P, records.  Inset showing (b) hourly and (e) daily Q 212 
and P for an individual storm event occurring September 28th.  The P-Q cross-213 
correlograms (c) and (f) have been used to determine the temporal relationship 214 
(time lag) between P and Q. 215 

In a few studies involving flow forecasting, time series correlation analysis has been 216 

used to determine the temporal lag (number of time steps) necessary for the input 217 

variables.  Moradkhani et al. (2004) looked at the auto-correlation of streamflow and 218 

cross-correlation of precipitation-streamflow and temperature-streamflow over two 219 

seasons, winter-spring and summer-fall to explore the time dependence among the 220 

hydrologic variables.  Cigizoglu (2005b) and Kisi (2005) used flow auto-correlations to 221 

select the optimal time lag (time steps) of input variables.  222 
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In this study, cross-correlation analyses determined the temporal relationship between 223 

the precipitation and streamflow (hourly and daily data in Figure 2c and Figure 2f, 224 

respectively).  Observed decorrelation ranges were estimated to be 8 hours and 4 days 225 

respectively.  Additional time-series correlation and hydrograph analyses (not shown) 226 

were used to determine the optimal number of input variables, Table 1. The same time-227 

lagged variables are used as inputs to all flow forecasting models. 228 

Table 1. Lag times for hourly and daily models. 229 

Variable Hourly 
(hrs) 

Daily 
(days) 

P 8 4 
T 24* 1 
Q 4 2 

*Temperature is not available at the hourly timescale. 230 
 231 

3. Methods 232 

As this work focuses on data driven methods for predicting flow, input-output data 233 

pairs are required from which to extract and utilize non-linear, climate-flow relationships. 234 

These data pairs consist of antecedent precipitation, climate and flow inputs and flow 235 

outputs. The data is separated into training and prediction sets. Data pairs from 1996-236 

2003 are used for training/model development while data from 2004-2006 are used to 237 

make predictions and evaluate the different forecasting methods.  238 

In regions with distinct seasonal effects, separate seasonal ANNs have been found to 239 

produce the best results (Kisi, 2008; Singh and Deo, 2007).  For example one ANN could 240 

be trained to accommodate snow and snowmelt and another for high (or low) flow events 241 

over summer months. This work focuses only on forecasting summer streamflow 242 

resulting from rainstorm events (where “summer” is defined as the months from May to 243 
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October). To reduce training and prediction errors (e.g. predicting flows with no 244 

precipitation record), dates with missing rainfall and/or precipitation events have been 245 

removed from the record (typically days to weeks). 246 

 247 

3.1. Generalized regression neural network (GRNN)  248 

Traditionally, the multiple linear regression (MLR) models are the most popular 249 

method for predicting streamflow of the form 

€ 

ˆ Q 

€ 

= a1x1 + a2x2 + ... + anxn + ε, where x1, 250 

x2,…xn are the independent input variables (e.g. P, T and Q), a1, a2,…an are the 251 

regression coefficients best fit using a minimum least squares error, 

€ 

ε, between predicted 252 

€ 

ˆ Q  and observed Q. 253 

Developed as a non-parametric extension of MLR, the GRNN is a memory-based 254 

network capable of estimating continuous variables (Specht, 1991). It has a single-pass 255 

training algorithm and can be conceptualized as a nonlinear, non-parametric regression, 256 

algorithm (Figure 3). The hourly streamflow prediction model is used here to describe the 257 

GRNN. 258 

The GRNN consists of four nodal layers: input, pattern, summation and output.  It is 259 

used to regress streamflow, Q, based on a set of input variables, x, defined by some non-260 

linear function Q = f(x), captured by the training data. Training data consists of set of 261 

input vectors, x, and corresponding observed flow, Q.  Input vectors consist of 13 262 

predictor variables, x(t)=[P(t-1),…P(t-8), T(t-1), 

€ 

ˆ Q (t −1) ,…

€ 

ˆ Q (t − 4) ] while the output is 263 

a prediction of streamflow. Observed and predicted streamflows are denoted Q(t) and 264 

€ 

ˆ Q (t) respectively.  The time variable t has been suppressed to simplify the following 265 

notation. 266 
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 267 
Figure 3. Architecture of the hourly streamflow generalized regression neural 268 
network (GRNN) with optional recurrent (feedback) connection (dashed arrow).  269 

Each layer is fully connected to the adjacent layers by a set of weights (or arcs) 270 

between nodes. The pattern layer has one node for each n training pattern (input-output 271 

pairs).  The weights on the left side of the pattern nodes store (e.g. are set equal to) the 272 

input training vectors, x, while the weights on the right side store the associated 273 

streamflows, Q, for all n training patterns (hence no iterative training is necessary). Each 274 

node in the pattern layer is connected to the two summation layer nodes, S1 and S2. The 275 

weights linking the pattern layer nodes with summation node S1 store the streamflows 276 

(Q1, Q2, …Qn) for each input-output training patterns. The weights from the pattern layer 277 

nodes to summation node S2 are set equal to 1. 278 

With the weights set, the GRNN may be used to make a prediction, 

€ 

ˆ Q . An input 279 

vector, x, is passed to the pattern layer and the Euclidean distance is computed between 280 

the input vector and all pattern weight vectors, w, as: 

€ 

Di
2 = w− x i( )T w− x i( ) , where w is 281 

the weight matrix representing the stored input training data and xi is the ith input vector. 282 
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The distance between the input vector and stored data, 

€ 

Di
2, is passed to the summation 283 

layers and the prediction is computed as: 284 

€ 

ˆ Q = S1

S2

=

Qi exp −
Di

2

2σ 2

 

 
 

 

 
 i=1

n
∑

exp −
Di

2

2σ 2

 

 
 

 

 
 i=1

n
∑

, 285 

where 

€ 

σ 2 is a smoothing parameter that is pivotal when estimating 

€ 

ˆ Q . A large value for 286 

€ 

σ 2 smoothes the regression surface and produces estimates that approach the sample 287 

mean; while a smaller value produces a surface with greater chance of discontinuity 288 

resulting in nearest neighbor estimates. Intermediate values of 

€ 

σ 2 produce well behaved 289 

estimates that approximate the joint probability density function of x and Q (Specht, 290 

1991). The prediction 

€ 

ˆ Q  is a weighted average of all stored response observations (Q1, 291 

Q2, …Qn), where each response is weighted exponentially according to its Euclidean 292 

distance from input vector xi. The GRNN algorithm described in this work was written in 293 

MatLab V. 7.4.0.287 (R2007a). 294 

We modified the traditional GRNN architecture to allow for the recurrent (feedback) 295 

connection (dashed line of Figure 3). With this connection, recently predicted 296 

streamflows 

€ 

ˆ Q (t-1), 

€ 

ˆ Q (t-2),… are passed back to the network input layer and used as an 297 

input to predict 

€ 

ˆ Q  (t) at the next time step(s). The modification involves incorporating the 298 

observed antecedent streamflow Q(t-1),… into the training input vector, x=[x1, x2, …xm, 299 

Q(t-1),…] and does not change the GRNN algorithm. It adds information to the input 300 

layer when training and making predictions. Therefore, when using the network for 301 

prediction, an initial value of Q(t-1) must be ideally know or estimated. In this work we 302 

use observed values to seed the recurrent model. 303 
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3.2. Counterpropagation network (CPN) 304 

The relatively simple, yet powerful counterpropagation algorithm sequentially 305 

combines the Kohonen self-organizing map and a Grossberg classification layer (Hecht-306 

Nielsen, 1987).  The combination leverages the unsupervised clustering self-organizing 307 

map with known output responses (a priori categories) to create a statistical mapping 308 

between predictor and response vectors (input-output pairs).  309 

The CPN architecture consists of three nodal layers: input, Kohonen and Grossberg 310 

(Figure 4). All nodes in adjacent layers are connected via weights; matrix wij represents 311 

the weights between the I input and the J Kohonen nodes, likewise ujk represents the 312 

weights linking the J Kohonen and K Grossberg nodes. The execution of the CPN is 313 

defined by two phases: a training phase and a prediction phase. 314 

 315 

Figure 4. Architecture of counterpropagation network (CPN) with recurrent 316 
(feedback) connection (dashed line).  317 

During training, the weights are iteratively adjusted to map the set of input predictor 318 

vectors, x, to the set of associated response vectors, Q, defined by some non-linear 319 

function Q = f(x), represented by the training data. A given input vector, x, consisting of 320 
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M variables (x1, x2, …xI), is passed to the hidden layer and a similarity metric is 321 

computed that compares the input vector and each weight vector, wj, associated with the 322 

Kohonen nodes.  The Kohonen node with the weight vector most similar to the input 323 

vector is identified as the winning node and the weights associated with this winning 324 

hidden node are adjusted to be more similar to the input vector by: 325 

€ 

Δw j =
α(x −w j ),  for  j = winning node,

0,    for  j ≠winning node,
 
 
 

 326 

where 

€ 

α  is the Kohonen learning rate (

€ 

α=0.7), x is the input vector, and wj is the weight 327 

vector connecting the I input nodes to the jth Kohonen node.  Through a winner-take-all 328 

activation function, the winning Kohonen node propagates zj=winner = 1 to the weights uj 329 

of the Grossberg layer, while all other Kohonen nodes pass zj

€ 

≠winner = 0. The network 330 

output 

€ 

ˆ Q  is computed as 

€ 

ˆ Q k = u jkz jj=1

J
∑ , where zj is the activation value passed from the 331 

jth Kohonen node, ujk is the Grossberg weight connecting the jth Kohonen node and the kth 332 

Grossberg node and 

€ 

ˆ Q k  is the kth component of the output vector, 

€ 

ˆ Q .  The predicted flow 333 

vector 

€ 

ˆ Q  and observed flow vector Q are used to adjust the Grossberg weights as: 334 

€ 

Δu j =
β(Q − ˆ Q ),  for  j = winning node,

0,  for j ≠winning node,

 
 
 

 335 

where 

€ 

β  is the Grossberg learning rate (

€ 

β=0.1). This process is repeated for all input-336 

output pairs until the network has learned the input-output streamflow mapping defined 337 

by Q = f(x) to some user-defined convergence criterion (in this work, a summed root-338 

mean-square error value less than 10-6). 339 

After convergence, the network weights are fixed and the CPN may be used for 340 

prediction. During this phase, input vectors that were not used to train the ANN are 341 
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presented to the network for prediction. The number of hidden nodes used to generate 342 

predictions can be set to one for nearest neighbor or three for inverse distance weighted 343 

predictions (Besaw and Rizzo, 2007). Three winning nodes results in smoother 344 

predictions and was used for these applications. 345 

Unlike the traditional feed-forward backpropagation ANNs, the counterpropagation 346 

algorithm cannot be over-trained and requires very little time for convergence. The 347 

algorithm was written in MatLab V. 7.4.0.287 (R2007a). For more details refer to (Besaw 348 

and Rizzo, 2007); pseudo-code is provided in Rizzo and Dougherty (1994).  349 

Like the recurrent GRNN, the CPN architecture has been modified to incorporate a 350 

recurrent feedback loop (dashed lines in Figure 4). This allows antecedent predictions to 351 

be passed back to the network input layer to improve future predictions. As with the 352 

recurrent GRNN, this modification does not change the CPN algorithm; it simply adds 353 

information to the input layer when training and making predictions. 354 

 355 

3.3. Autoregressive moving average with exogenous inputs (ARMAX) 356 

ARMAX is a typical time series modeling approach frequently used in the flow 357 

forecasting literature for comparison with new flow prediction methods. A time-series 358 

analysis of the daily data, found the autoregressive and moving average components to be 359 

of order 2, while exogenous variables precipitation and temperature of orders 4 and 1, 360 

respectively (see Table 1).  Thus our ARMAX model for the basins was expressed as: 361 

€ 

ˆ Q (t) = a1Q(t −1) + a2Q(t − 2) + b1iP(t − i) +
i=1

4
∑ b21T(t −1) + c1ε(t −1) + c2ε(t − 2) , 362 

where Q(t) is streamflow at time t, P(t-i) is the precipitation associated with the previous 363 

i=1,2,…4 days, T(t-1) is the one day prior average temperature, 

€ 

ε is the model error for 364 
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the previous day (e.g. 

€ 

ε(t-1)=

€ 

ˆ Q (t −1) −Q(t −1) ). The ARMAX model parameters have 365 

been found using a time-series analysis and the MatLab V. 7.4.0.287 (R2007a) System 366 

Identification Toolbox.  The best fit autoregressive coefficients a1 and a2 are the 367 

associated with the antecedent streamflow; b1i and b21 are the exogenous coefficients 368 

associated with precipitation t-i days prior and average temperature one day prior; c1 and 369 

c2 are the moving average coefficients. 370 

 371 

3.4.  Evaluation Criteria: 372 

Several fundamental metrics are used to evaluate streamflow forecasting methods 373 

(Krause et al., 2005). The coefficient of determination, r2, is the square of the sample 374 

correlation coefficient and is calculated as:  375 

€ 

r2 =
Qi −Q ( ) ˆ Q i − ˆ Q ( )i=1

N
∑

Qi −Q ( )2

i=1

N
∑ ˆ Q i − ˆ Q ( )i=1

N
∑

2

 

 

 
 
  

 

 

 
 
  

2

 376 

where

€ 

ˆ Q i  and Qi are the predicted and observed streamflow;

€ 

ˆ Q  and 

€ 

Q  are the mean 377 

predicted and observed streamflow respectively, and N is the total number of 378 

observations.  The coefficient of determination describes how much of the observed 379 

variance is explained by the model.  It ranges from 0 to 1; 0 implies no correlation, while 380 

a value of 1 suggests that the model can explain all of the observed variance. 381 

Nash-Sutcliffe coefficient of Efficiency, E, measures the ability of a model to predict 382 

variables different from the mean and gives the proportion of the initial variance 383 

accounted for by the model (Nash and Sutcliffe, 1970).  It is calculated as: 384 
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€ 

E =1−
Qi − ˆ Q i( )

2

i=1

N
∑

Qi −Q ( )2

i=1

N
∑

, 385 

where E ranges from 1 (perfect fit) to -∞. Values less than zero indicate that the 386 

observation mean would be a better predictor than the model.  387 

Root mean square error (RMSE) is calculated as: 388 

€ 

RMSE =
Qi − ˆ Q i( )

2

i=1

N
∑

N
, 389 

and is another common metric used for evaluating how closely predictions match 390 

observations. Values can range from 0 (perfect fit) to +∞ (no fit) based on the relative 391 

range of the data. 392 

In addition, measures of central tendency and dispersion based on prediction residuals 393 

and evaluation of conditional biasedness will be used to evaluate the methods.  Mean 394 

residuals significantly different from zero often indicate a sub-optimal prediction method.  395 

 396 

4. Results 397 

4.1. Daily predictions using gauged streamflow observations  398 

The goal of this work was predict streamflow in ungauged streams, using time-lagged 399 

streamflow predictions and local climate data as using inputs. In order to establish the 400 

prediction accuracies for these Vermont climate-flow systems, we first compare the four 401 

data-driven methods. The MLR, ARMAX, CPN and GRNN are used to forecast daily 402 

streamflow on two small basins; the Dog River, which has no impoundments, and 403 

Winooski River at Wrightsville, whose flow is regulated by a dam. In this proof of 404 

concept, precipitation lagged four days in time, temperature lagged one day and 405 
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antecedent observed streamflows lagged by two days, were used as inputs to the models 406 

to forecast Q(t). Seven years of data (total of 2,922 training patterns) were used to train 407 

and three years data (1,096 training patterns) were used to evaluate the methods 408 

(including both summer and winter months).  409 

The GRNN smoothing parameter (

€ 

σ 2) was determined through trial-and-error to be 410 

€ 

σ 2=7 (without normalization).  This was the only parameter to optimize as the GRNN 411 

had as many nodes in the pattern layer, as there were training patterns.  The MLR and 412 

ARMAX regression coefficients were determined using built-in MatLab functions (V. 413 

7.4.0.287 R2007a).  The CPN had no parameters to optimize, as an inverse distance-414 

weighting algorithm with three winning nodes was implemented. 415 

Summary statistics (prediction residuals and global error metrics (R2, E, RMSE)) 416 

comparing the four model predictions against the observed streamflow at the Dog River 417 

and Winooski River are shown in Table 2.  Additional scatter plots for the Dog River are 418 

shown in Figure 5. On the Dog River, CPN, GRNN and MLR model predictions have 419 

measures of central tendency (median) and dispersion that are statistically similar to the 420 

observed flow, as determined by the Wilcoxon-rank-sum and Brown-Forsyte tests 421 

respectively (type I error rate 

€ 

α=0.05); while the ARMAX prediction distributions are 422 

not. For the Winooski River, all models show statistically similar measures of central 423 

tendency and dispersion.  424 

4.2. Recurrent CPN and GRNN 425 

The CPN and GRNN implemented recurrent feedback connections (dashed lines in 426 

Figure 3 and Figure 4) to forecast Dog River streamflow at the hourly and daily time 427 

scale. The number of time-lagged inputs to the recurrent ANNs was determined through  428 
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Table 2. Comparing four streamflow prediction models in the Dog and Winooski 429 
Rivers. 430 

 Dog River (m3/s) Winooski River at Wrightsville  (m3/s) 
 Q CPN GRNN MLR ARMAX Q CPN GRNN MLR ARMAX 

Mean 4.8 4.1 4.4 4.6 3.5 5.0 4.8 4.8 4.9 4.7 
Median 3.1 2.6 2.7 3.3 2.2 2.8 2.7 2.7 2.9 2.6 
Mode 1.0 1.3 1.3 1.7 0.4 0.8 1.0 1.4 1.1 0.7 

St. Dev. 6.0 4.4 5.0 4.9 4.8 5.8 5.2 5.1 5.2 5.6 
Min 0.4 0.4 1.0 -1.1 -2.1 0.23 0.3 0.6 0.0 0.0 
Max 71 55 53 61 46 25.4 24.6 26.5 25.8 26.0 
R2 1 0.53 0.51 0.51 0.42 1 0.80 0.77 0.79 0.79 
E 1 0.51 0.49 0.50 0.36 1 0.80 0.77 0.80 0.78 

RMSE 0 4.2 4.3 4.3 4.8 0 2.6 2.8 2.6 2.7 
R. Mean 0 -0.7 -0.4 -0.2 -1.3 0 -0.3 -0.2 -0.1 -0.3 

R. Median 0 -0.1 0.1 0.4 -0.7 0 0.1 0.3 0.3 -0.1 
R. St. Dev. 0 4.2 4.3 4.3 4.7 0 2.6 2.8 2.6 2.7 

 431 

 432 
Figure 5. Comparison of predicted and observed streamflow using and (a) CPN, (b) 433 
GRNN, (c) MLR and (d) ARMAX predicted on the Dog River.  Displayed are the 434 
flows (.), flow quantiles (+) and theoretical quantile line. 435 

 436 

cross-correlation analysis.  The hourly precipitation and flow were correlated up to 8 437 

hours (Figure 2c), while streamflow was autocorrelated four hours. A daily temperature 438 

record was used as input because it was the finest temperature increment available. Thus, 439 

recurrent CPN and GRNN uses inputs of P(t-1), P(t-2)…P(t-8), T(t-1 day), 

€ 

ˆ Q (t-1), 

€ 

ˆ Q (t-440 

2)… 

€ 

ˆ Q (t-4) to forecast hourly flow. In a similar manner, daily precipitation, temperature 441 

and flow recurrent CPN and GRNN inputs were found to be 4 days, 1 day and 2 days 442 
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respectively.  The ANNs were trained on eights years of input-output data pairs and made 443 

flow predictions for three years.  All training and prediction data was from the Dog 444 

River. The hourly data consisted of 30,953 training and 9,612 prediction patterns, while 445 

daily data had 1,114 and 381 respectively.  Both CPN and GRN used as many 446 

hidden/pattern nodes as there were training patterns.  The GRNN smoothing parameter, 447 

€ 

σ 2, was found via trial and error to be 0.0089 and 0.00125 for the daily and hourly data, 448 

respectively. 449 

Streamflow predictions were made for the summer months from 2004-2006.  Figure 6 450 

presents CPN and GRNN flow predictions over a 90-day window in the summer of 2004.  451 

This 90-day window was selected to show time-series predictions without compromising 452 

the readability of the figure. The qq-plots comparing 

€ 

ˆ Q  and Q are provided for the 3 453 

forecasting years. Evaluation criteria over three years of forecasting at the hourly and 454 

daily timescales are presented in Table 3. 455 

4.3. Predicting ungauged streamflow 456 

In this section the CPN and GRNN were trained on data from the Dog River to 457 

predict flow in the Winooski River at Montpelier) To more accurately predict flow at the 458 

Winooski River, climate data from the nearest weather station (Barre/Montpelier Airport) 459 

were used as inputs. Inputs include daily precipitation (lagged 4 days), temperature 460 

(lagged 1 day) and estimated flow (lagged 2 days).  The GRNN smoothing parameter was 461 

determined previously (

€ 

σ 2=0.0089).  Thus, the recurrent ANNs were trained on the 462 

climate-flow records for one basin (Dog River) and used to predict flow at a nearby basin 463 

(Winooski River) using new climate data (Barre/Montpelier Airport) as the 464 

environmental driver. 465 
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 466 
Figure 6. Time series streamflow observations (-) and ANN predictions at the (a) 467 
hourly and (c) daily timescales for a 90-day window of summer 2004.  The inset 468 
figures represent the qq-plots for all predictions made for summers 2004-2006 at (b) 469 
hourly and (c) daily timescales. 470 

Table 3. Hourly and daily error metrics for CPN and GRNN predictions at the Dog 471 
River. 472 

 Hourly Data Daily Data 
 CPN GRNN CPN GRNN 

R2 0.5 0.45 0.29 0.29 
E 0.28 0.28 0.16 0.02 

RMSE 5.2 5.5 5.5 5.9 
Corr 0.7 0.67 0.53 0.53 

n 9,612 9,612 381 381 

 473 

To account for the increase in drainage area from the Dog River (197 km2) to the 474 

Winooski River (1028 km2), the flow predictions were scaled by the ratio of areas (e.g. 475 

Qwinooski=Qdog*(Awinooski/Adog)). The relationship between bankfull discharge (Qbk) and 476 

drainage area of basin (A) is well established in the literature as: Qbk=eAf (Leopold et al., 477 
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1964). Many empirical studies have found f to vary between 0.7 (semi-arid regions) and 1 478 

(humid landscapes draining small catchments) (Vianello and D'Agostino, 2007).   479 

Again, a 90-day snap shot of predicted and observed flow are presented in Figure 7. 480 

The qq-plot is also provided for the entire three years of forecasts. Error metrics 481 

comparing the two ANN algorithms for predicting daily flow in the Winooski River over 482 

the 3 forecasting years are presented in Table 4. 483 

 484 
Figure 7. Time series streamflow observations (-) and ANN predictions on the 485 
Winooski River at Montpelier (a) over a 90 day forecast period (summer of 2004) 486 
and (b) qq-plots for the entire three years of prediction.  487 

 488 

Table 4. Error metrics for the Winooski River at Montpelier flow predictions from 489 
2004-2006. 490 

 CPN GRNN 

R
2
 0.24 0.16 

E 0.12 -0.35 
RMSE 18.0 22.7 
Corr 0.49 0.37 

n 540 540 
 491 



 25 

5. Discussion 492 

The goal of this work was to test the accuracy of two ANN methods for predicting 493 

streamflow in ungauged streams, using training data from a nearby, gauged stream.  To 494 

predict on ungauged basins, model inputs consist of time-lagged streamflow predictions 495 

and local climate data. In order to establish the relative prediction accuracies for these 496 

climate-flow systems, we first compare daily streamflow forecasts of the CPN and 497 

GRNN algorithms with traditional methods.  498 

 499 

5.1. Forecasts using observed antecedent observations 500 

The forecasting models CPN, GRNN, MLR and ARMAX, using time-lagged 501 

antecedent streamflow observations and climate data as inputs, have been used to predict 502 

daily streamflow on the Dog River and Winooski River at Wrightsville. In the Dog River, 503 

the CPN, GRNN and MLR prediction measures of central tendency (median) and 504 

dispersion (Table 2) are statistically similar to that of the observed streamflow, 505 

suggesting these estimation methods are superior to ARMAX in preserving the observed 506 

streamflow distribution. The estimated streamflow ranges (maximum – minimum) 507 

suggest that ARMAX over-smoothes the predictions. In addition, MLR and ARMAX 508 

predict negative streamflows, an undesirable effect resulting from linear combinations of 509 

training patterns. The CPN and GRNN residual central tendencies (median) are 510 

statistically more similar to zero than those of MLR and ARMAX, suggesting that these 511 

methods are less globally bias. Although the error metrics for CPN, GRNN and MLR are 512 

statistically similar (e.g. R2=0.52, E=0.5 and RMSE=4.3), they are lower than those 513 

typically shown in the literature for these methods (e.g. R2=0.80 E=0.80). This 514 
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discrepancy is most likely due to the very rapid hydrological response of this basin and 515 

the aggradation of data to the daily time scale (Figure 2e).  These findings suggest that 516 

the CPN, GRNN and MLR are equally well suited to predict streamflow in the 517 

unregulated (no reservoirs) streams such as the Dog River. 518 

The error metrics at the Winooski River in Wrightsville, suggest all four methods 519 

produce statistically similar streamflow estimates and distributions when compared with 520 

the measured flow data. None of the prediction residuals have measures of central 521 

tendency statistically different than zero. The error metrics for these four methods are 522 

also statistically similar around R2=0.79, E=0.78 and RMSE=2.7. These are similar to 523 

those typically provided in the literature suggesting all four methods accurately predict 524 

streamflow in the regulated Winooski River at Wrightsville basin. 525 

Across both watersheds, the CPN, GRNN and MLR provide the most accurate and 526 

unbiased estimators of streamflow. There is no statistical difference in their predictions at 527 

these sites for these particular inputs (P, T and Q).  It should be noted that the predictions 528 

for individual methods could have been improved had number of antecedent inputs been 529 

optimized for each method (as opposed to using time-series analysis principles).  530 

However, our goal was to allow for a fair evaluation by comparing the method accuracies 531 

using identical inputs.   532 

Using antecedent streamflow observations as model inputs will always result in more 533 

accurate predictions than using antecedent streamflow predictions. However, using 534 

predicted flow rather than observed flow enables forecasts at any location within the river 535 

network (e.g. ungauged basins). Given the accuracies attained using observed antecedent 536 
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streamflows as inputs, the relative accuracies associated with the recurrent ANNs can be 537 

evaluated. 538 

 539 

5.2. Recurrent CPN and GRNN 540 

The recurrent ANNs were used to prediction hourly and daily streamflow in the Dog 541 

River.  Figure 6 shows a 90-day window of predictions and observations for the summer 542 

months of 2004.  Both the recurrent CPN and GRNN capture the streamflow trends 543 

within this time frame. There are noticeably different accuracies between the two 544 

timescales.  A comparison of prediction error metrics at the hourly and daily timescales 545 

(Table 3) reveals hourly models are superior.  As expected, both the CPN and GRNN do 546 

a better job capturing the climate-flow relationship when trained on the hourly data (R2 of 547 

0.45 vs. 0.29).  The improved flow predictions using hourly data is a function of the scale 548 

and basin characteristics. The Dog River basin tends to have very flashy responses to 549 

precipitation events.  This flashiness is a function of numerous basin characteristics (e.g. 550 

drainage area, percent impervious surface, slope, soils, and geologic materials, etc.). 551 

Recall from Figure 2 and Table 1, the differences in characteristic lags times between P 552 

and Q.  The hourly data reveal that P and Q are correlated up to 8 hours.  This was also a 553 

typical length of time between the peak rainfall and peak storm flow, as revealed by 554 

hydrographs (not shown). Thus, the daily data is not capturing the temporal relationship 555 

between P and Q (see Figure 2b and e).  This loss of temporal information is the root 556 

cause of the difference in predictive capabilities at the hourly and daily timescales. The 557 

reduced prediction capability at the daily scale is not a result of the forecasting 558 

algorithms, but is rather a function of the data measurement scale in this particular basin. 559 
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Both the GRNN, and to a greater extent, the CPN predictions contain conditional bias 560 

in that they tend to under predict high flows (Figure 6b and d).  This is to be expected as 561 

the majority of recorded data (both training and prediction) consist of base flow events. 562 

In addition to training on all summer data, hourly ANNs were also trained only on storm 563 

events from 1996-2003 (results not shown).  This reduced the number of training patterns 564 

from 30,953 to 6,723.  Although the summary statistics were not significantly improved 565 

(R2=0.52, E=0.32 and RMSE=5.2, but again keep in mind the majority of flows are base 566 

flows), the observed and predicted distributions were not statistically different (as 567 

determined with a two sample Kolmogovnov-Smirnov test).  This suggests training on 568 

storm events improves the ANNs’ abilities to forecast peak flows. 569 

Predicting streamflow using recurrent ANNs that feedback lagged predictions of 570 

flow, rather than observations, does reduce prediction accuracies. As a demonstration, 571 

daily CPN predictions on the Dog River using lagged observations of Q as inputs, had 572 

R2=0.53, E=0.51 and RMSE=4.2, while the daily recurrent CPN, using lagged 

€ 

ˆ Q  as 573 

inputs, had R2=0.29, E=0.16 and RMSE=5.2. These statistically different metrics were 574 

expected because the recurrent algorithms may be compounding errors when using 575 

antecedent predictions to drive future predictions. However, these feedbacks are essential 576 

in order to make reasonable forecasts in ungauged basins. 577 

At the onset of this study, the climate and flow records were separated into summer 578 

and winter seasons due to Vermont’s season hydrological responses.  Although all 579 

predictions made using the recurrent ANNs were only made on the summer months, the 580 

time series analysis and ANN methods would prove equally applicable to forecast winter 581 
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flows; given the analyses are rerun to determine the correct lag periods for inputs of P, T 582 

and 

€ 

ˆ Q . 583 

The data-driven methods presented here for predicting streamflow must be trained on 584 

some known (observed) set of climate-flow data.  Therefore, to advance a methodology 585 

for predicting flow in an ungauged basin, the recurrent ANNs were also used to predict 586 

daily flow in an entirely different watershed.   587 

 588 

5.3. ANN transferability and scaling 589 

In the preceding section, the Dog River and associated climate-flow record was used 590 

to train a CPN and GRNN.  In this application, we use these ANNs to predict flow with 591 

input climate data from the nearby Winooski River at Montpelier.  To account for the 592 

increase in drainage area from the Dog River to Winooski River, a simple scaling 593 

algorithm was utilized.  In this particular case, predictions were scaled up to a larger 594 

basin; but the predictions may just as easily be scaled down to a smaller basin. The error 595 

metrics (Table 4) indicate the CPN outperforms the GRNN for this application.  Once 596 

again, the aggregation of data to the daily scale plays an important role in these prediction 597 

accuracies.  Predictions would be improved had the climate-flow relationships been better 598 

captured in the data. The qq-plots (Figure 7) show that both the CPN and GRNN do an 599 

excellent job of producing flows prediction distributions similar to the observed flow 600 

distribution.  This is encouraging given that the ANNs were trained on data from an 601 

different watershed.  Predictions of the extremely high flows deviate from the theoretical 602 

quantile line.  This conditional biasedness could once again be solved by training the 603 

ANNs only on storm events (as previously discussed). 604 
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The transfer of the CPN methodology from one basin to another, and subsequent flow 605 

scaling by area, does not result in a significant reduction in prediction accuracies. 606 

Training the CPN on daily data from the Dog River and predicting in the same basin 607 

resulted in a CPN R2 of 0.29.  Using the Dog River training data and predicting flow on 608 

the Winooski River at Montpelier resulted in a CPN R2 of 0.24.  This is primarily a 609 

function of 1) the use of measured local climate data as the driver (inputs) and 2) the fact 610 

that the network was trained on a sufficiently large number of regional climate-flow data 611 

(e.g. flood and low flow events) over a time period where landuse did not change 612 

significantly.  613 

The CPN and GRNN were selected due to their guaranteed convergence and 614 

avoidance of stochastic training.  The determination of 

€ 

σ 2 for GRNN algorithm is the 615 

only source of training iteration.  Numerous trial-and-error runs are required to determine 616 

the GRNN’s optimal 

€ 

σ 2.  As the CPN does not require this iterating, its training speed 617 

proves to be superior to that of the GRNN.  However, this speed comes as a tradeoff as 618 

the GRNN (with optimized 

€ 

σ 2) can be a more flexible forecasting method, by combining 619 

outputs from more training patterns to compute a prediction. 620 

 621 

6. Conclusions 622 

Eleven years of NCDC climate and USGS flow records from several stations within 623 

Vermont’s Winooski River Basin have been used to make advances in streamflow 624 

forecasting. A simple methodology, using time-series analysis, has been used to 625 

determine the appropriate lag periods between input and output variables. 626 
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Motivated to predict streamflow in ungauged basins, recurrent ANN algorithms were 627 

developed and implemented to forecast streamflow using lagged flow predictions, rather 628 

than lagged observations, as inputs. As expected, using antecedent flow predictions to 629 

predict future flows is less accurate than using antecedent observations.  However, since 630 

observed streamflow is not available at the majority of small (ungauged) basins, using 631 

antecedent predictions to make future predictions produces is more accurate and reliable, 632 

than using climate data alone. In addition, we have provided a straightforward to scaling 633 

technique to predict flow in basins of various drainage area.   634 

The combination of recurrent ANNs with scaling demonstrates these methods may be 635 

applied to predict streamflow in ungauged basins.  As a proof-of-concept, we trained the 636 

ANNs on climate-flow data from the Dog River and predicted flow in the nearby 637 

Winooski River (using local climate data as inputs).  Predictions were scaled account for 638 

the difference in basin areas and predictive accuracies are within the range of those found 639 

for ANNs trained and predicted using climate and flow data within the same basin. 640 

By selecting ANNs that always converge and avoid stochastic training algorithms, 641 

these methodologies are straightforward to execute and widely applicable to small 642 

ungauged basins.  As such, they would prove useful to watershed and water resources 643 

management stakeholders. 644 
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