20-year results of liming northern hardwoods to ameliorate acidification

Rock Ouimet, DRF, MFFPQ

11th Workshop of the Northeastern Soil Monitoring Cooperative, March 27, 2018

Forêts, Faune et Parcs Ouébec 🖥 🕷

Forest Ecology and Management 400 (2017) 600-606

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

蠹

Rock Ouimet*, Louis Duchesne, Jean-David Moore

Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, 2700 Einstein St., Québec City, QC G1P 3W8, Canada

Decreasing sugar maple, increasing American beech

Sugar maple regeneration: a rare situation

Forêts, Faune et Parcs Québec 🌸 🛊

Importance of soil exch. Ca

<u>1990 Alkalinization – acidification experiment</u>

Table 2: Fertilizer treatments applied at the two sites in spring 1990.

Treatment No.	Fertilizer	Rate [kg ha−1]	Ν	K ₂ O	CaO	Mg	S	ANC ^b [kmol ha−1]
1	elemental S ^a	285					256	-16
2	elemental S ^a	142.5					128	-8
3	$(NH_4)_2SO_4$	370	78				88	-8
4	control							0
5	MgSO ₄	625			14	66	88	0
6a	K₂SO₄ °	500		250	3.5	6	88	0
6b	6a + (CaMg)CO ₃ d	886		250	89.5	59	88	8
7	CaCO ₃	400			160			8
8	CaCO ₃	800			320			16
20 m	40 m					~20 years 1990's depositions		
[Forêt et Pa	rcs Québe	C 🔹 🔹

Resampling 20 years later

Soils: F-H (Oe-Oa) and B horizon
Foliage SM, AB, YB
Increment cores SM, AB, YB

Results : soils

Table 2

Indicators of soil acidity measured in the forest floor and mineral B horizon 20 years after treatment (acid neutralizing capacity [ANC]; acidified: $-16 \text{ kmol}(+) \text{ ha}^{-1}$, control: 0, limed: $+16 \text{ kmol}(+) \text{ ha}^{-1}$). Data shown are adjusted means, with associated standard errors in parentheses.

Treatment	pH _{CaCl2}	Saturation (% of cation exchange capacity)					Ca/Al	C/N
		K	Mg	Ca	Al	Base saturation	(M/M)	
Forest floor								
Acidified	3.06 (0.07)	8.0 (0.5)	10.7 (0.8)	49.1 (3.3)	21.0 (3.9)	68.2 (4.0)	3.6 (1.2)	21.9 (0.7)
Control	3.13 (0.07)	8.9 (0.5)	11.6 (0.8)	54.5 (3.3)	23.4 (4.1)	75.4 (4.0)	3.3 (1.3)	21.9 (0.7)
Limed	3.16 (0.07)	6.5 (0.5)	8.7 (0.8)	51.4 (3.4)	15.3 (3.9)	67.5 (4.1)	5.6 (1.2)	22.0 (0.7)
Mineral B horizon								
Acidified	3.51 (0.09)	1.7(0.2)	1.5 (0.1)	> 3.3 (1.3)	91.6 (0.8)	6.9 (1.2)	0.02 (0.01)	23.1 (0.9)
Control	3.72 (0.09)	1.7 (0.2)	1.4(0.1)	3.8 (1.3)	91.6 (0.8)	7.3 (1.2)	0.03 (0.01)	24.3 (0.9)
Limed	3.72 (0.09)	1.8 (0.2)	1.5 (0.1)	4.1 (1.3)	91.3 (0.8)	7.8 (1.2)	0.03 (0.01)	24.7 (0.9)
ANC × horizon ($p > F$)	0.349	0.019	0.069	0.533	0.334	0.304	0.915	0.512

The *p* values ≤ 0.05 are indicated in bold.

Results: foliage

Table 3

Foliar elemental concentrations of northern hardwoods 20 years after soil treatment (acid neutralizing capacity [ANC]; acidified: -16 kmol(+) ha⁻¹, control: 0, limed: +16 kmol (+) ha⁻¹) from the analysis of individual elements. Data shown are adjusted means, with associated standard errors in parentheses.

Tree species ^a	Treatment	Ν	Р	К	Ca	Mg
				$(g kg^{-1})$		
SM	Acidified Control	17.59 (0.93) 18 48 (0 90)	1.76 (0.13) 1 68 (0 13)	5.85 (0.53) 6.62 (0.53)	→ 3.71 ^c (0.36) 4 57 (0.33)	0.87(0.09) 1.08(0.08)
	Limed	17.52 (0.90)	1.48 (0.13)	5.72 (0.53)	5.47^c (0.33)	1.01 (0.14)
$ANC_{L}^{b}(p > F)$		0.998	0.247	0.982	0.001	0.662
YB	Acidified Control Limed	 25.65^c (0.98) 22.68 (0.98) 22.47 (0.95) 	2.11 (0.09) 1.87 (0.10) 2.10 (0.09)	9.40 (0.90) 7.58 (0.90) 7.05 (0.90)	7.08 (0.53) 7.92 (0.53) 9.61 ^c (0.58)	2.29 (0.11) 2.15 (0.10) 2.38 (0.22)
$ANC_L (p > F)$		0.051	0.996	0.156	0.004	0.927
AB	Acidified Control Limed	18.90 (1.22) 20.74 (1.29) 22.49 (1.29)	1.32 ^c (0.08) 1.67 (0.08) 1.49 (0.08)	6.33 (0.47) 6.37 (0.47) 5.77 (0.47)	4.28 (0.27) 4.66 (0.30) ► 5.47 ^c (0.27)	1.16 (0.08) 1.21 (0.08) 1.18 (0.13)
$ANC_L (p > F)$		0.108	0.254	0.670	0.006	0.989

The *p* values ≤ 0.05 are indicated in bold.

^a SM: sugar maple; YB: yellow birch; AB: American beech.

^b L: linear effect.

^c For a given species, the mean is different from that of the control treatment with a probability of \leq 0.05.

Added Ca has been recirculating in the ecosystem

et Parcs

)uébec

Result: growth

Fig. 2. Average differences in tree growth between the treated and control blocks for sugar maple, yellow birch and American beech. For each species, data is expressed as raw values of tree basal area increment (BAI) relative to the mean BAI for 1970–1989, before (1970–1989), and after (1990–2008) soil treatment in spring 1990. The dashed vertical line indicates the year prior to treatment application.

Conclusions

- The effects of acidification/alkalinisation were no longer noticeable in the soil after 20 years according to the standard methods used;
- Foliar Ca concentrations were still influenced by the treatments applied 20 years before;
- Tree growth was also still influenced by the treatments
 - Sugar maple growth: increased by liming, decreased by acidification
 - Yellow birch growth: increased by liming, not affected by acidification
 - American beech growth: not affected by liming, increased by acidification
- Ca is still recirculating after 20 years
- Soil Ca status appears to influence stand dynamics in northern hardwood forests

