```
Composition of Vehicle Occupancy for Journey-To-Work Trips
 1
 2
     Evidence of Ridesharing from the 2009 National Household Travel Survey Vermont Add-on Sample
 3
 4
     NATHAN P. BELZ, M.S., E.I. (Corresponding Author)
 5
     Doctoral Candidate, School of Engineering
 6
     University of Vermont, Burlington, VT 05405-1757
 7
     (Email: nathan.Belz@uvm.edu)
 8
 9
     BRIAN H. Y. LEE, PhD.
10
     Assistant Professor, School of Engineering
11
     University of Vermont, Burlington, VT 05405-1757
12
     (Email: bhylee@uvm.edu)
13
14
15
     Submission Date: August 1<sup>st</sup>, 2011
16
17
     Word count: 5750
     Tables: 3(x250) = 750
18
19
     Figures: 4(x250) = 1000
20
21
     Total Word Count: 7500
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
```

46 ABSTRACT

- 47 Ridesharing serves to mitigate pollution and congestion with minimal investment of public
- 48 capital while also increasing the efficiency of the transportation system. This research addresses
- 49 the gaps in the literature on the structure and formation of ridesharing by identifying individual,
- 50 household, and physical-environment characteristics that correspond with an individual's choice
- 51 to rideshare instead of drive alone. In order to fully understand ridesharing behavior, there first
- 52 must be a better understanding of *who* is in the vehicle not just *how many*. A distinction is made 53 between *intra*-household (internal) and *inter*-household (external) ridesharing. Using the
- 54 Vermont add-on sample of the 2009 National Household Travel Survey, a multinomial logit and
- 55 nested logit model were developed to examine the determinants of ridesharing. The analysis in
- 56 this research stresses the importance of how ridesharing behavior can be extracted from survey
- 57 data. Further, a new method for calculating household vehicle availability is presented, which
- 58 places less importance on drivers that are not full-time workers. The results indicate that
- 59 employment density, distance to work and working in small urban area have positive influences
- 60 on the likelihood of ridesharing. Vehicle availability, age, sex (male), and time spent per trip on
- 61 the journey-to-work were all found to negatively influence the propensity to rideshare. Cost of
- 62 travel does not significantly affect ridesharing.

63

64 INTRODUCTION

- 65 Continuing growth in vehicle ownership and sprawl has led to dramatic increases in automobile
- 66 usage. The resulting air pollution, energy expenditure, time consumption, and congestion are
- 67 significant concerns. Furthermore, the popularity of single occupant vehicle (SOV) trips
- 68 propagates these problems. The US National Report on Commuting Patterns and Trends
- 69 indicates that the average daily one-way commute trip increased by approximately three minutes
- between 1990 and 2000, and 13 million solo drivers were added to the US transportation system
- 71 (1). This can also be seen in the steady loss of the ridesharing market share to driving alone (2).
- 72 Multiple occupant vehicle (MOV) trips, termed as ridesharing, are one way to increase efficiency
- of our transportation system, yet little is known about ridesharing behaviors. Even less is
- available in the literature about structure and formation of rideshares.
- 75 The definition of ridesharing takes on several forms throughout the literature, but in general
- refers to sharing of a personal vehicle by two or more individuals traveling between same or
- similar origins and destinations. Advantages for rideshare participants include sharing vehicle
- 78 operation and maintenance costs; being able to use carpool lanes, bypasses, and parking where
- available; and having travel companionship. Ridesharing is especially advantageous for
- 80 congestion and pollution mitigation since it makes use of existing infrastructure and does not
- 81 require extensive investment of public capital (3) while also being a viable alternative to other
- 82 modes of ground transportation (4).
- 83 This paper aims to identify factors that influence an individual's decision to rideshare by
- 84 analyzing travel behaviors with discrete choice models. Using the 2009 National Household
- 85 Travel Survey (NHTS) Vermont add-on sample, the relationships between various travel
- 86 behavior determinants (e.g., travel time and length, socio-demographics, and spatial
- 87 characteristics) and the propensity to rideshare on the journey-to-work are explored. Socio-
- demographic variables considered were gender, age, total household income, household size,
- 89 number of drivers, and household automobility. Household automobility is a relationship
- 90 between total number of vehicles with respect to the number of workers and registered drivers in
- 91 a household. Spatial variables include employment density surrounding the workplace,
- 92 household density surrounding the residence, stated distance and time traveled to work, and
- calculated shortest path distance to work. A distinction was made between *inter*-household
 (external) and *intra*-household (internal) ridesharing to consider how different factors may
- 94 (external) and *intra*-household (internal) ridesharing to consider how different factors may
 95 influence the formation of each MOV type. The nature of vehicle occupancy will be referred to
- influence the formation of each MOV type. The nature of vehicle occupancy will be referred toherein as "composition of vehicle occupancy" (CVO). More specifically, vehicle occupancy
- 97 refers to *how many* people are in the vehicle whereas CVO refers also to *who* is in the vehicle.
- 98 Further analysis suggests that certain variables serve as significant predictors of ridesharing
- 99 likelihood. Multinomial Logit (MNL) and Nested Logit (NL) models were developed to help
- 100 explain the utility of ridesharing for respondents in the survey dataset. This research is limited
- 101 by the absence of travel cost and attitudes towards rideshare participation in the NHTS data.

102 **DEFINING A SHARED RIDE**

- 103 Ridesharing or carpooling take on numerous definitions throughout the literature and slight
- 104 modifications create ambiguity that affect the way these behaviors are extracted from travel data.

- 105 Current definitions are discussed and a new method for defining vehicle sharing behavior is
- 106 presented to facilitate data extraction consistency. Hunt and Macmillan (5) broadly defined
- 107 carpooling as any instance where more than one person was in a vehicle, whether or not there
- 108 was any formal arrangement and marked differences between *regular* and *occasional* carpools.
- 109 Regular carpools are considered to be those that are scheduled and on a recurring basis (or at least a few times a month with someone who he or she did not live with) while occasional
- 110
- 111 carpools are those that are situational only (6, 7).
- 112 Minimal research exists on CVO in rideshares. Ridesharing composition refers to whether the
- 113 carpool had an internal structure (i.e., riders are members of the same household) or an external
- 114 structure (i.e., riders are from different households). Teal (8) noted that external carpoolers
- 115 comprised 58% of the entire carpool sample from the 1978 Nationwide Personal Transportation
- Survey, while 40% were internal carpoolers. Internal carpooling has also been referred to as 116
- "fampooling" (9). A study of the 2001 NHTS indicated that carpooling is much more prevalent 117
- 118 amongst immigrants than non-immigrants (10). Further, the same study found that internal
- 119 carpooling is much more influenced by the amount of time one has been in the country than is
- 120 external carpooling. With declining amounts of *inter*-household ridesharing and *intra*-household
- 121 ridesharing now comprising a more significant portion of the market, it is expected that commute 122 trip reduction programs would not likely lead to large regional reductions in vehicle trips (11).
- 123 This illustrates the importance of making a distinction between MOV types.
- 124 Care must also be exercised when defining the way in which ridesharing information is extracted
- 125 from the NHTS dataset or other travel data. For example, when considering ridesharing and
- 126 commuting to work, one may simply extract trips identified as having work as the destination
- 127 and then filter by vehicle occupancy. This kind of approach, however, could lead to a gross
- 128 underestimation of ridesharing occurrences since a person's journey-to-work may include
- 129 multiple trips chained together and the passenger is dropped off before the final destination.
- 130 Ridesharing encompasses all forms of MOV travel and includes formations that extend out to
- 131 broader networks with different means of connectivity (e.g., online databases or other social
- networks) which includes the unique form of "slugging" where strangers are picked up 132
- 133 informally in order to utilize high occupancy vehicle lanes. Carpooling, a subset of ridesharing,
- 134 is considered to be organizing a ride with another person through some direct network (e.g., a
- 135 household or workplace) which inherently means that there is a shared origin and/or destination.
- Fampooling would then be a subset of carpooling since riders share a common origin. 136
- 137 Chauffeuring would be specific to instances where the passenger is unable to drive (e.g., is too
- 138 young to have a driver's license or has a condition that limits or restricts driving ability).
- 139 In this study, only journey-to-work rideshares are considered and ridesharing in this context was
- 140 defined as having more than one person in the vehicle at any point before arriving at the work
- 141 destination. A further distinction of ridesharing is made when the composition of the riders is
- 142 either strictly made up of members from the same household (i.e., *intra*-household ridesharing),
- 143 regardless of relations, or individuals from different households (i.e., inter-household
- 144 ridesharing) both of which may include chauffeuring.
- 145

146 LITERATURE REVIEW

147 Research surrounding an individual's choice to carpool suggests that formation and use is

148 particularly sensitive to socio-economic characteristics (e.g., gender, age, and income), ability to

be matched with other carpool users, mobility status (e.g., the number of household automobiles

150 available), value of time, and attitudes toward cost and environment (3). It has also been

- 151 proposed that the decline of carpooling during the mid-eighties was in direct response to social
- and demographic changes in the commuting population and the evolution of urban form
- 153 designed with SOV in mind (12).
- 154 The personal vehicle can be regarded as an expression of an individual's social status, and not
- 155 just a means of conveyance. Carpooling melds the space-saving characteristic of public
- transportation while retaining the advantages of an automobile (11). Nevertheless, many people
- are hesitant to carpool for different reasons. One may expect that carpooling generally requires
- 158 more travel time (unless the origin and destination are the same for everyone in the vehicle) and
- 159 reduces flexibility in travel due to demands of meeting different, possibly conflicting, schedules.
- 160 Perceptions of carpooling (e.g., constraints on independence, social requirements and
- 161 interpersonal rapport) have also been found to play a larger role than cost or convenience (13).
- 162 For some, the anonymity of using transit is more appealing than the induced social climate of
- 163 carpooling (7).
- 164 Negative relationships have been established with income and access to household vehicles and
- 165 positive relationships with number of workers in the household and trip length (7, 12-14), yet
- 166 income is thought to have an indirect effect on carpooling where it directly affects automobile
- 167 ownership (13). Some researchers maintain that socio-demographic characteristics only play a
- small role in the choice to carpool (7, 15). Hartgen (16) suggests that vehicle availability is a
- 169 more important determinant and that educational attainment plays a larger role than other socio-
- 170 demographics. The relationship between work-trip ridesharing and demographics have been
- identified as being extremely weak (17), and the contradiction to Buliung (3) suggests that
- 172 further research is needed on work-trip ridesharing.
- 173 Carpooling has also been found to have a negative relationship with residential density and
- 174 metropolitan size; this is attributed to dense and larger urban areas having better established
- 175 public transit services (7, 13, 18). Other studies have suggested that residential density
- 176 (households per acre), employment density (employees per acre), and mixed land use have
- 177 strong influences on not only mode choice but the probability of commuting by personal
- automobile (19-22). More specifically, employment density and spatial characteristics (e.g.
- 179 distance to a central business district and industrial area percentage) at the workplace are found
- 180 to have correlations with work commute mode choice (23, 24).
- 181 Carpool users tend to travel further than SOV drivers, indicating that the choice to carpool is
- 182 driven by location and destination (8), and that carpooling becomes appealing at a travel distance
- 183 of 10 miles (25). The attractiveness of carpooling is also positively correlated with the number
- 184 of household workers (suggesting that internal carpooling became more likely) and negatively
- 185 correlated with the ratio of vehicles to licensed drivers (26). Gender, multiple worker
- 186 households, commute length, and workplace size have been found to correlate with frequency of
- 187 ridesharing (12). Even with apparent links between these variables and carpooling, attitudes

about the environment and pro-social concerns have strong influences on carpooling propensity
 (27). Trip type, trip length and land use are variables that have considerable contradiction in the

190 literature surrounding rideshare modeling and will be examined in this research.

191 DATA AND METHODOLOGY

192 The 2009 NHTS is the most recent comprehensive survey regarding personal travel in the United 193 States. It allows for analysis of daily travel by all modes used by the respondents and includes 194 information on characteristics of the people traveling, their household, and their vehicles. For 195 Vermont, a predominantly rural state with sparse population, an over sample was purchased to 196 ensure a robust sample size. The Vermont sample was used in this research because geocoded 197 household locations were available in the survey and the availability of other geographic 198 information system (GIS) data. The findings can be expected to have transferability to other 199 areas that are primarily rural and have low population densities with small urban areas. The 200 Vermont add-on sample includes 1690 households, 3550 individuals, and represents a sampling rate of 2.1% compared to the national average of 0.4%. The version of data analyzed was the 201 November 2010 release and also includes updated household and work geocoded locations 202

released in June 2011.

204 Methods

205 The purpose of this research is to broaden the understanding of rideshare formation and identify

- 206 factors influencing this phenomenon. To this end, a mode choice problem is developed to
- 207 consider how commuters choose between driving alone and either participating in an *intra* or
- 208 *inter*-household rideshare. Only respondents who have at least one vehicle in the household
- were included so each individual in the dataset would have the option to drive alone. Since the
- research question here regards ridesharing more generally, the nature of *vehicular* use on the
- drive to work the dataset was limited to respondents who made a trip from home to work by
- automobile as either a driver or passenger with non-zero distance. The intent was to examine
- 213 individuals who have access to a personal vehicle and choose to rideshare on their journey-to-214 work.
- 214 215
- 216 The dataset was filtered to remove individuals who had null data for home and workplace
- 217 locations as well as distance and time to work. The final dataset included 873 individuals, 336 of
- whom shared a ride (129 *inter*-household and 207 *intra*-household) on at least one trip segment
- 219 of their journey-to-work.
- 220 A number of variables were extracted from the dataset or calculated with a priori knowledge
- from the literature review. Descriptive statistics of the variables retained for use in the discrete
- 222 choice model are shown in Table 1. Also presented are results of the chi-square and t-test
- analysis which indicated variables likely to have a significant contribution to the discrete choice
- model.
- 225
- 226

Variable	Drive Alone (N=537)		Rideshare (Intra) (N=207)		Rideshare (Inter) (N=129)	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Age (years) ^{a c}	49.2	12.6	44.5	11.7	44.2	14.1
Female (dummy) ^{a d}	0.47		0.57		0.56	
# of HH drivers ^{b d}	2.17	0.71	2.33	0.82	2.14	0.88
# of HH workers ^{a c}	1.80	0.67	1.99	0.75	1.86	0.77
# of vehicles in HH ^{c b}	2.55	1.07	2.45	1.02	2.43	1.22
HH vehicle availability ^{c b}	1.41	0.61	1.23	0.55	1.30	0.62
Cost of travel is most important travel issue (dummy)	0.35		0.40		0.34	
Time to work (minutes)	22.67	16.48	20.49	15.51	20.98	17.15
Distance to work <i>(miles)</i> ^a	13.64	12.79	11.91	11.12	12.13	10.68
Employment density around workplace (jobs per square-mile) ^{a c}	1961	2481	2690	3461	2203	3131
Housing density around home (<i>HH per square-</i> <i>mile</i>) ^b	525	1137	729	1504	705	1249

227	Table 1	Descriptive statisti	cs of variables of	considered for t	he discrete choice model
-----	---------	----------------------	--------------------	------------------	--------------------------

228 Notes: ^ap < 0.01, ^bp < 0.05 for t-test between driving alone and ridesharing

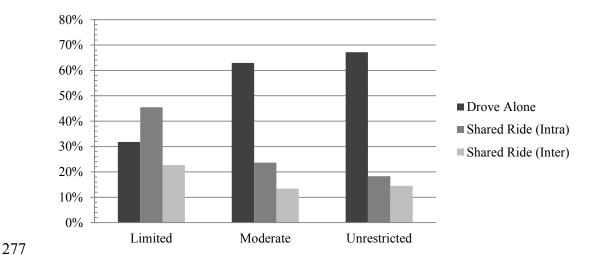
229 ${}^{c}p < 0.01$, ${}^{d}p < 0.05$ for chi-squared analysis between drive alone, *intra*-household 230 ridesharing and *inter*-household ridesharing

231 Source: 2009 NHTS

232 Drive alone was considered available to everyone in the choice set since the data were limited to 233 only individuals who reside in a non-zero vehicle household. Inter-household ridesharing was 234 considered to be available for everyone in the sample; it is assumed that if one owns a vehicle, 235 then there will always be the possibility of asking someone to ride as a passenger or leave one's 236 vehicle at home and ask to ride with another person. Intra-household ridesharing was considered 237 to be available if there was more than one working adult in the household, where adult is defined 238 as an individual who was of driving age. It should also be noted that for simplicity of the model, 239 the case when *intra*-household and *inter*-household ridesharing are happening concurrently (i.e., 240 there are passengers in the vehicle from both their own household and another household) is 241 considered to have more in common with inter-household ridesharing and are included with 242 those cases herein. Availability for this case was considered to be the same as *intra*-household

share of driving alone is 61% (*inter*-household and *intra*-household ridesharing account for approximately 15% and 24%, respectively).

Sixty percent of all ridesharing in the NHTS sample were *intra*-household shared rides, a more even split than findings by Blumenberg and Smart (10) using the 2001 NHTS and Ferguson (13) using the 1990 Nationwide Personal Transportation Survey. This is thought to be attributed to the way in which shared rides were extracted from the data and that only journey-to-work trips were being analyzed. This eliminated many of the "chauffeuring-type" ridesharing trips that occurred on tours, did not include a work trip, and were likely to be primarily *intra*-household in nature.

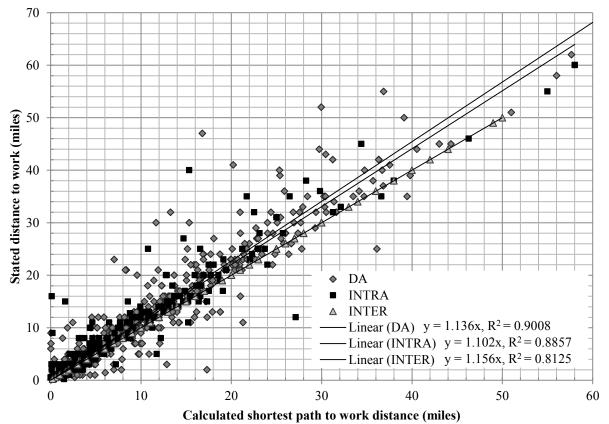

Household Vehicle Availability (HHVA), shown in Equation 1, is defined as the number of vehicles available in the household divided by the sum of number of workers in the household and one-quarter of the difference between number of drivers and number of workers in the household (vehicle need). This is a novel approach for calculating HHVA. Past research tends to look at vehicle availability as a ratio of personally owned vehicles to drivers in the household without a greater importance being placed on the workers in the household. The distinction of available versus non-available is typically marked at one vehicle per driver (23, 24).

$$HHVA = \frac{Vehicles}{Workers + 0.25 (Drivers - Workers)}$$
 Equation 1

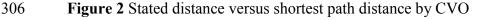
260 The assumption being made here is that if there are more *drivers* than *workers* in the household, 261 the "extra" drivers are not full-time worker status and would, therefore be in less need of and 262 place less importance on using a vehicle. Dalirazar (28) indicates that approximately one-quarter of individuals report "taking care of children/others" as being the main reason for not working. 263 264 A coefficient of 0.25 is used to retain vehicle need for this proportion of non-working drivers. 265 Limited refers to a ratio less than 1.0, moderate vehicle availability is greater than or equal to 1.0 but less than 1.5, and unrestricted is anything greater than or equal to 1.5. Figure 1 depicts the 266 267 increase in the percentage of individuals ridesharing for households with limited vehicle availability, with more of these individuals opting for *intra*-household ridesharing. Driving 268 269 alone becomes more prominent when approaching unrestricted vehicle availability.

A dummy variable was created to reflect if price of travel was the respondents' most important
transportation issue. Age was transformed into a dummy variable reflecting if the respondent was
40 years of age or older, which is based on past research suggesting that while mobility of
individuals peaks when they are in their 30s, transportation expenditures peak in their 40s (12,

- 274 *29*). A dummy variable was also included to indicate the sex of the respondent. Lastly, a
- dummy variable was created to indicate whether or not the individual worked in Chittenden
- 276 County (the only metropolitan planning organization in the State of Vermont).



279 Residential Density and Employment Density


280 The 2009 NHTS dataset includes specific geographic information regarding the individuals' 281 household and work locations specified by latitude and longitude. This information was 282 combined with information available from the Vermont E911 database and a business location 283 database using geographic information systems (GIS) processing to allow for extremely accurate 284 measures of employment and housing densities. Residential density values were determined at 285 the respondents' home location by summing the number of housing within a one-mile radius. Similarly, employment density was calculated by summing number of jobs within a one-mile 286 287 radius of the respondents' workplace. It is expected that higher residential densities and business densities would provide more opportunities for a person to find a ridesharing "opportunity" or 288 289 match.

290 Travel Time and Distance to Work

Similar to work by Witlox (30), the relationship between a respondent's stated distance and 291 292 shortest path distance between home and work was examined, which can help show how much 293 further people who rideshare deviate for passenger accommodation. Figure 2 shows 294 relationships between stated and shortest path distances for drive alone, intra-household and 295 inter-household modes. This illustrates that respondents are not deviating much from their 296 shortest-path and suggests that origins and destinations (or diversions) must be close to a typical 297 work travel route in order for ridesharing to be appealing. This is similar to the findings of Li et 298 al. (9) who found that the additional time incurred from carpool formation was only five minutes 299 on average, attributed in part to the high rate of fampooling and inherrent time savings from high 300 occupancy vehicle lanes. The average deviations, expressed in the r-squared values, between 301 stated versus shortest path distances are greater for intra-household and inter-household 302 ridesharing as compared to driving alone; this is considered to be indicative of deviations from the shortest path. However, it is important to recognize a few limitations: First, some portion of 303 these deviations may be the result of poorer judgment of distance by rideshare passengers. 304

307 Second, stated distance to work will always remain constant (i.e., a persons' typical route) but

308 the actual distance could have day-to-day variations due to participation in different activities.
309 Lastly, values of time exceeding ten minutes are typically reported in five-minute intervals –

310 likely imparting a small amount of rounding bias to the dataset. Similarly, distances to work

311 values were often reported in five-mile increments over a distance of 20 miles.

312 In order to examine these differences further, the travel distance to work was broken down into

313 five distance classes. A diversion factor (DF_{dm}) was calculated as the ratio of stated distance to

shortest path distance (Equation 2 and values shown in Table 2). Note that the largest

315 differences between modes exist in the less than four mile distance class with both *inter*-

316 household and *intra*-household diversion factors being approximately twice that of the drive

317 alone diversion factor. Distance classes were chosen so that there would be close to an equal

- 318 number of respondents in each distance class within modes. These calculations are used to
- formulate a factor $(MF_d^{(nc)})$ to estimate distance traveled for the non-chosen alternatives (as
- 320 shown in Equation 3) which is the diversion factor for each non-chosen alternative $(DF_d^{(nc)})$
- 321 divided by the diversion factor for the chosen alternative $(DF_d^{(c)})$ in each respective distance
- 322 class *d*.

$$DF_{dm} = \frac{\sum_{k \in K_{dm}} SD_k}{k} / \frac{\sum_{k \in K_{dm}} MIN(PD_{ij})_k}{k}$$
Equation 2

323

$$MF_d^{(nc)} = \frac{DF_d^{(nc)}}{DF_d^{(c)}}$$
 Equation 3

324 where:

325	K _{dm}	is the set of respondents whose stated distance is in range d for each trip mode m
326	SD_k	is the stated distance of respondent k in distance class d
327 328	MIN(PD	$(D_{ij})_k$ is the shortest-path-distance from origin <i>i</i> to destination <i>j</i> for respondent <i>k</i> in distance class <i>d</i> for the chosen alternative <i>c</i>
329	$DF_d^{(nc)}$	is the diversion factor for each non-chosen alternative nc in distance class d
330	$DF_d^{(c)}$	is the diversion factor for the chosen alternative c in distance class d

331

For example, the alternative specific distance-to-work variable was created for the non-chosen *intra*-household alternative for someone who drove alone less than four miles to work would be 1.86 times the stated distance traveled (2.62 divided by 1.41). Note that in two of these cases the deviation factor is slightly larger for the drive alone case than the ridesharing cases, but is

thought to be minimal enough as to not have an effect on the model.

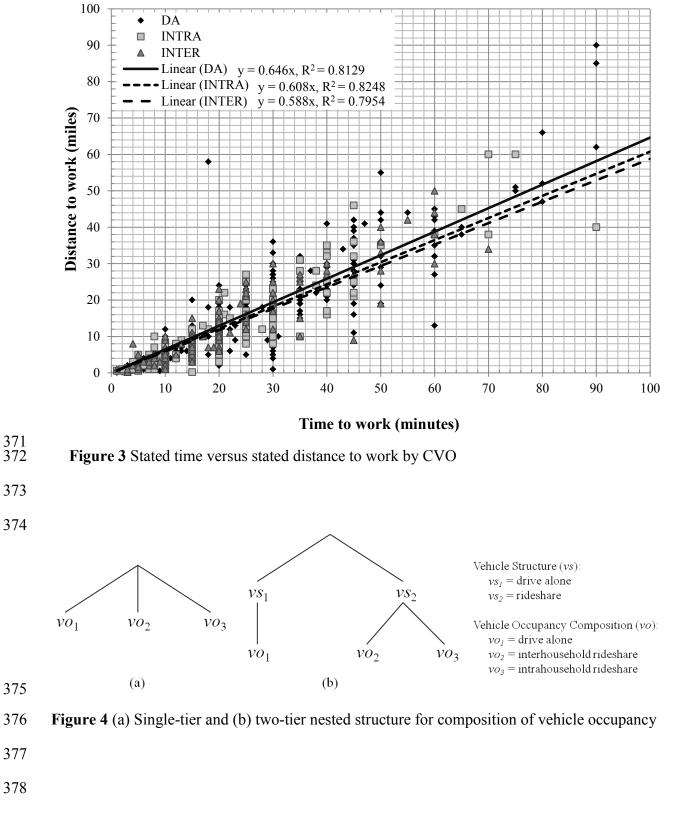
337 The stated time and stated distance to work were examined to determine "time penalties" for 338 choosing to rideshare. Linear regression plots of stated time versus stated distance for each 339 mode are presented in Figure 3 which illustrates that, in general, individuals choosing to 340 rideshare spend more time covering the same distance as someone who drives alone. For 341 example, a person who travels 20 miles to work would spend 31 minutes if driving alone, 33 342 minutes if intra-household ridesharing, and 34 minutes if inter-household ridesharing. This 343 corresponds with analysis results of the stated versus shortest path distances in which distance 344 penalties diminish as distance to work increases and time penalties increase as distance to work 345 increases. This is assumed to be an accurate reflection of the extra time required to pick up and drop of an individual who is not a member of the same household. The extra time incurred for 346 347 intra-household ridesharing is considered to be less than that for inter-household ridesharing

348 because the ridesharing members have a common origin.

349

- 350
- 351

Distance Class		Mean	Deviation Factor	
Distance Class (miles)	Ν	Stated Distance (SD)	Shortest Path Distance (SPD)	SD/SPD
Drove Alone				
<4	91	3.78	2.69	1.41
4 - 7	121	5.24	4.74	1.11
7.1 – 12	118	10.19	8.94	1.14
12.1 - 21	93	16.81	14.57	1.15
>21	113	33.42	28.04	1.19
Shared Ride (Intra)				
<4	50	4.54	1.74	2.62
4 - 7	39	5.26	4.87	1.08
7.1 – 12	46	10.30	8.81	1.17
12.1 - 21	40	16.14	13.77	1.17
>21	32	32.75	27.62	1.19
Shared Ride (Inter)				
<4	30	4.23	2.03	2.08
4 - 7	27	5.48	4.94	1.11
7.1 – 12	26	10.12	8.48	1.19
12.1 - 21	21	16.71	14.68	1.14
>21	25	31.36	24.60	1.27


352	Table 2 Diversion	factors of stated	distances

353

354 Model Specification

355 A multinomial logit (MNL) model was developed to examine the influence of variables shown in Table 1 and Table 2 on CVO. This model assumes that the likelihood of selecting one CVO over 356 another remains unchanged regardless of the availability of alternatives and that the choices are 357 358 not substitutes for one another, known as irrelevance of independent alternatives (IIA). 359 Although though the MNL model was found to not violate the IIA property, a nested logit (NL) 360 model was also developed to test whether the two ridesharing alternatives (intra-household and 361 inter-household) have enough in common to be grouped under a single rideshare nest. The toplevel of the nesting structure differentiates between driving alone and ridesharing and the 362 bottom-level accounts for the two ridesharing types. The MNL and NL model structures are 363 364 depicted in Figure 4. A respondent was determined to have driven alone if their journey-to-work 365 had no other individuals in their car. *Intra*-household ridesharing was regarded as chosen by the respondent if the occupants of the vehicle on the journey-to-work were comprised only of 366 367 individuals from the same household. Inter-household ridesharing was considered chosen by 368 anyone who rode in a vehicle with another occupant not from the same household. The mixed-369 form of a shared *inter*- and *intra*-household ridesharing structure was considered to have enough 370 commonality with *inter*-household ridesharing that a separate category was not necessary.

Belz & Lee

379

- 380 The drive alone mode was set as the reference alternative for the discrete choice analysis for
- three reasons: 1) it was the most widely available alternative to each individual; 2) the market
- 382 share of driving alone was observed to be notably higher than that of ridesharing; and 3) each
- household in the selected sample owns at least one vehicle so everyone has the option of drivingalone.

385 Before including the time-to-work variable in the model, it was normalized by number of stops 386 on the journey-to-work. While the distance-to-work and time-to-work variables are highly 387 correlated, number of stops on the journey-to-work and distance-to-work are not. Using time per 388 trip allows the model to consider the "effort overhead" (31) of the journey-to-work that is not 389 directly proportional to length. The rationale is that there is a distinct difference between 390 someone who spends a certain amount of time traveling to work because they ran a number of 391 "errands" on their way and someone who spends the same amount of time but went directly from 392 home to work. This variable was calculated by dividing stated time-to-work by number of trips

393 made on the home-to-work portion of their travel day tour.

394 MODEL RESULTS

395 The model results (shown in Table 3) indicate that all else being equal, one prefers to share a ride

- 396 with someone from the same household, but favors driving alone to sharing a ride with someone
- from a different household other than their own (as indicated by the alternative specific
- constant). Females are more likely to rideshare than males. This supports other research that
- 399 women tend to participate in carpools more than men *(10)*. Individuals working in areas with 400 higher employment densities are also more likely to rideshare. This fits with the expectation that
- 400 inglief employment densities are also more fixery to fideshare. This fits with the expectation th 401 there are more opportunities to find a rideshare candidate in areas where people work more
- 402 closely together. Individuals working in Chittenden County have a higher propensity to
- 403 rideshare. Chittenden County has the highest employment densities in the state, suggesting
- 404 something other than just proximity of jobs in small urban areas influences ridesharing. This is
- supported anecdotally by a higher presence of rideshare lots and the challenges (e.g., costs) and
- 406 availability of parking when comparing Chittenden County with other counties in the state.
- 407 Housing density appears to have some relationship with ridesharing, but does not lend a
- 408 significant contribution to the discrete choice model. This implies more importance is being
- 409 placed on the destination (i.e., work) end of the trip and likely means that those who are *inter*-
- 410 household ridesharing care more about sharing proximal work locations than proximal housing
- 411 locations.
- 412 Ridesharing is less likely for individuals that are 40 years of age or older. These individuals also
- 413 have a slight preference for *intra*-household ridesharing over *inter*-household ridesharing which
- 414 fits with expectations and literature that older drivers are likely to be more set in their established
- 415 commute patterns. The utility of ridesharing also decreases as household vehicle availability
- 416 increases. This is interpreted as diminished motivation in rideshare coordination when concern
- 417 for access to household vehicles does not exist.
- 418 The time variable indicates that the likelihood for both *inter*-household and *intra*-household
- 419 ridesharing will decrease as travel time per trip on the tour to work increases. Conversely, the
- 420 distance variable indicates that ridesharing is more likely as distance to work increases. One

421 interpretation is that there are a number of individuals having long (i.e., time) but not necessarily

422 lengthy (i.e., distance) commutes to work, whereby the user is more sensitive to changes in time.

423 Coupled with this is the idea that lengthy commutes will always be long (relatively speaking)

- 424 and thus time is inherently considered with length. Hence, there is a need to utilize a time metric
- 425 in conjunction with the distance variable in order to account for this. The significance of the

time variable in the model reinforces this hypothesis.

	MNL N	Aodel	NL Model		
Variable	β	p-value	β	p-value	
Drive Alone	(Base Alte	ernative)	(Base Alte	(Base Alternative)	
Rideshare Alternative					
Gender (base female)	-0.279	0.07	-0.280	0.07	
Works in Chittenden County	0.527	0.00	0.528	0.00	
Employment Density (jobs/1000)	0.037	0.17	0.037	0.17	
Inter-household Rideshare Alternative					
Alternative Specific Constant	-0.371	0.32	-0.215	0.72	
Time-to-work/#Trips (minutes/trip)	-0.162	0.00	-0.167	0.00	
Distance-to-work (miles)	0.046	0.00	0.048	0.00	
Household Vehicle Availability	-0.154	0.41	-0.172	0.36	
Age 40+	-0.718	0.00	-0.728	0.00	
Intra-household Rideshare Alternative					
Alternative Specific Constant	0.575	0.07	0.600	0.05	
Time-to-work/#Trips (minutes/trip)	-0.233	0.00	-0.227	0.00	
Distance-to-work (miles)	0.071	0.00	0.068	0.00	
Household Vehicle Availability	-0.454	0.01	-0.437	0.02	
Age 40+	-0.620	0.00	-0.621	0.00	
Rideshare nesting coefficient (μ_m)	(n/c	<i>a)</i>	0.870	0.76	
Observations (N)	873		873		
Final Log-Likelihood	-707.09		-707.01		
Null Log-Likelihood	-929.32		-929.32		
LL Ratio (ρ)		0.239		0.239	
Adjusted $\rho(\rho')$		0.225	0.223		

427 **TABLE 3** Best-fit model estimation results

428 *Note: bolded coefficients indicate statistically significant variables*

429

430 Lastly, nesting ridesharing alternatives together with drive alone as its own nest did not result in

431 any model improvement. The estimated logsum parameter (μ_m) for the rideshare nest is

432 relatively large at 0.87 which suggests that *inter*-household and *intra*-household ridesharing do

433 not share enough characteristics in common to be combined in a hierarchical NL model

434 structure. Although the two ridesharing alternatives are similar with regard to MOV, the nature

435 of riding with someone from your household is quite different from riding with a person from

another household which requires establishing personal relationships. Coordinating rides and

437 sharing vehicles also becomes much more difficult when *inter*-household ridesharing.

438 CONCLUSIONS

439 The findings support the initial hypothesis that demographic, spatial, and automobility

440 characteristics influence the composition of vehicle occupancy. The results of the discrete

441 choice analysis developed here align well with the previously documented research on the

442 journey-to-work mode choice. Several household, individual, and trip characteristics were found443 to have a significant effect on the composition of vehicle occupancy during the journey-to-work.

444 Individuals working in higher employment densities are more likely to rideshare – with a slightly

445 greater tendency for *inter*-household ridesharing than *intra*-household ridesharing as the distance

- to work increases. This supports past research suggesting that land use at the work-end of a trip
- has the most influence on mode choice, and confirms that this influence plays a significant role
- in rideshare formation. The likelihood of ridesharing decreases as the average time spent per trip
- on the journey-to-work increases and has a stronger influence on *inter*-household ridesharing,
 providing an indication that a relationship exists between ridesharing likelihood and presence of
- 450 providing an indication that a relationship exists between ridesharing likelihood and presence of 451 trip-chaining during the journey-to-work. Individuals over the age of 40 are less likely to

451 trip-chaining during the journey-to-work. Individuals over the age of 40 are less likely to 452 rideshare compared to the younger population, with a preference for *intra*-household ridesharing

- 452 indesnare compared to the younger population, with a preference for *intra*-household ridesnaring 453 over *inter*-household ridesharing. Ridesharing is also more likely for females and individuals
- 453 over *inter*-nousehold fidesharing. Kidesharing is also hore fixery for females and 454 working in a metropolitan planning organization (Chittenden County).

455 Ridesharing becomes less likely as household vehicle availability increases. This research also

- 456 presents a new method for calculating vehicle availability which places less importance on
- 457 drivers that are not full-time workers. This variable was found to have greater statistical
- 458 significance than using only household size and automobile ownership. This has potential for

459 contributing to future research concerning vehicle need of home-makers and allocation of vehicle

- 460 usage to teen drivers. Cost of travel does not appear to be a motivating factor for ridesharing,
- 461 which is interesting since it is expected that a person might rideshare to reduce their overall
- travel cost (i.e., split the cost with another person), and suggests further research is needed on the
- 463 role of monetary incentives and rideshare formation.

464 **REFERENCES**

- Pisarski, A. (2006). Commuting in America III: The Third National Report on Commuting Patterns and Trends. Washington, D.C.: Transportation Research Board of the National Academies.
- 468
 469
 469
 469 Metropolitan Areas; 1960 2000. Washington, D.C.: United States Department of
 470 Transportation Federal Highway Administration.
- Buliung, R., Soltys, K., Habel, C., & Lanyon, R. (2009). The Driving Factors Behind
 Successful Carpool Formation and Use. *Conference Proceedings from the 88th Annual Meeting of the Transportation Research Board* (p. 17pp.). Washington, D.C.: Transportation
 Research Board of the Naitonal Academies.
- 475 4. Morency, C. (2007). The Ambivalence of Ridesharing. *Transportation, Vol. 34*, 239-253.

- 476 5. Hunt, J., & McMillan, J. (2007). Stated-Preference Examination of Attitudes Toward
 477 Carpooling to Work in Calgary. *Transportation Research Record 1598, Journal of the*478 *Transportation Research Board of the National Academies, Washington, D.C.*, pp. 9-17.
- 479 6. Ungemah, D., Goodin, G., Dusza, C., & Burris, M. (2007). Examining Incentives and
 480 Preferential Treatment of Carpools on Managed Lane Facilities. *Journal of Public*481 *Transportation, Vol. 10, No. 4*, pp.151-170.
- 482 7. Silvia, J., & Niemeier, D. (2009). Social Network and Dwelling Characteristics that Influence
 483 Ridesharing Behavior of Seniors. *Transportatin Research Record 2118, Transportation*484 *Research Board of the National Academies, Washington, D.C.*, pp. 47-54.
- 485 8. Teal, R. (1987). Carpooling: Who, How, and Why? *Transportation Reserach, Part A, Vol.*486 21A, No. 3, 203-214.
- 487 9. Li, J., Embry, P., Mattingly, S., Sadabadi, K., Rasmidatta, I., & Burris, M. (2007). Who
 488 Chooses to Carpool and Why? Examination of Texas Carpoolers. *Transportation Research*489 *Record 2021, Transportation Research Board of the National Academies, Washington D.C.*,
 490 pp. 110-117.
- 491 10. Blumenburg, E., & Smart, M. (2010). Getting by with a little help from my friends..and
 492 family: immigrants and carpooling. *Transportation, Vol.* 37, 429-446.
- 493 11. Correia, G., & Viegas, J. (2007). A Structured Simulation-Based Methodology for
 494 Varpooling Viability Assessment. *Conference Proceedings of the 88th Annual Meeting of the*495 *Transportation Research Board* (15pp). Washington, D.C.: Transportation Research Board
 496 of the National Academies.
- 497 12. Ferguson, E. (1997). The Rise and Fall of the American Carpool. *Transportation, Vol. 24*,
 498 349-376.
- Hwang, K., & Guiliano, G. (1990). *The Determinants of Ridesharing: Literature Review*.
 University of California at Berkeley: The University of California Transportation Center.
- 501 14. Brownstone, D., & Golob, T. (1992). The Effectiveness of Ridesharing Incentives Discrete
 502 Choice Models of Commuting in Southern California. *Regional Science and Urban* 503 *Economics, Vol. 22(1)*, 5-24.
- 504 15. Kaufman, S. (2002). Why People (Don't) Carpool and Change for the Better. 2nd
 505 International Conference on Sustainable Campuses. Melbourne: RMIT.
- 506 16. Hartgen, D. (1977). *Ridesharing Behavior: A Review of Recent Findings Preliminary* 507 *Research Report 130*. Albany, NY: New York State Department of Transportation.
- 508 17. Kostyniuk, L. (1982). Demand Analysis for Ridesharing: State-of-the-Art Review.
 509 Transportation Research Record 876, Journal of the Transportation Research Board of the
 510 National Academies, pp. 17-26.
- 511 18. Charles, K., & Kline, P. (2004). Relational Costs and the Production of Social Capial:
 512 Evidence from Carpooling. *The Economic Journal, Vol. 116(511)*, 581-604.

- 513 19. Kockelman, K. (1997). Travel Behavior as a Function of Accessibility, Land Use Mixing and
 514 Land Use Balance. *Transportation Research Record 1607, Journal of the Transportation*515 *Research Board of the National Academies*, pp. 117-125.
- 20. Cervero, R. (1996). Mixed Land-uses and Commuting: Evidence from the American Housing
 Survey. *Transportation Resaerch Part A Policy and Practice, Vol. 30(5)*, 361-377.
- 518 21. Leck, E. (2006). The Impact of Urban Form on Travel Behavior: A Meta-Analysis. *Berkely* 519 *Planning Journal, Volume 19*, 37-58.
- 520 22. Frank, L., & Pivo, G. (1994). Impacts of Mixed Use and Density on Utilization of Three
 521 Modes of Travel: Single-Occupant Vehicle, Transit, and Walking. *Transportation Research*522 *Record No. 1466, Journal of the Transportation Research Board of the National Academies*,
 523 pp. 44-52.
- 524 23. Chatman, D. (2003). How Density and Mixed Uses at the Workplace Affect Personal
 525 Commercial Travel and Commute Choice. *Transportation Research Record No. 1831*,
 526 *Journal of the Transportation Research Board of the National Academies*, pp. 193-201.
- 527 24. Shiftan, Y., & Barlach, Y. (2022). Effect of Employment Site Characteristics on Commute
 528 Mode Choice. *Transportation Research Rcord 1781, Journal of the Transportation Research*529 *Board of the National Academies*, pp. 19-25.
- 530 25. Tsao, H., & Lin, D. (1999). Spatial and Temporal Factors in Estimating the Potential of
 531 *Ridesharing for Demand Reduction*. Berkeley: California PATH Program, Institute of
 532 Transportation Studies, University of California.
- 533 26. Ben-Akiva, M., & Atherton, T. (1977). Methodology for Short Term Travel Demand
 534 Prediction: Analysis of Carpooling Incentives. *Journal of Transport, Economics and Policy,*535 *Vol. 11, No. 3*, 224-261.
- 536 27. Van Lange, P., Ban Vugt, M., Meertens, R., & Ruiter, R. (1998). A social dilemma analysis
 537 of commuting preferences: the roles of social value orientation and trust. *Journal of Applied*538 *Social Psychology, Vol. 28, No. 9*, 796-820.
- 53928. Dalirazar, N. (2007). Current Population Reports Reasons People Do Not Work: 2004.
- 540 Washington, D.C.: U.S. Census Bureau, Department of Commerce Economics and Statistics541 Administration.
- 542 29. Ryuichi, K. (2009). Life-Style and Travel Demand. *Transportation 36*, 679-710.
- 30. Witlox, F. (2007). Evaluating the reliability of reported distance in urban travel behaviour
 analysis. *Journal of Transport Geography, Vol. 15*, pp. 172-183.
- 545 31. Choo, S., & Mokhtarian, P. (2004). What type of vehicle do people drive? The role of
 546 attitude and lifestyle in influencing vehicle type choice. Transportation Research Part A 38,
 547 pp. 201-222.
- 548