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EXERCISE 16:  MULTIPLE OCCUPANCY STATES MODELS 
 
 
 

Please cite this work as:  Donovan, T. M. and J. Hines.  2007.  Exercises in 
occupancy modeling and estimation.  

 <http://www.uvm.edu/envnr/vtcfwru/spreadsheets/occupancy.htm> 
 



Exercises in Occupancy Estimation and Modeling; Donovan and Hines, 2007 

Chapter 16 Page 2 5/8/2007 

TABLE OF CONTENTS 
 
SINGLE-SEASON OCCUPANCY MODELS WITH MULTIPLE OCCUPANCY 
STATES ............................................................................................................................3 

OBJECTIVES: ............................................................................................................3 
BASIC INFORMATION ..........................................................................................3 
BACKGROUND.............................................................................................................4 
MULTI-STATE OCCUPANCY PARAMETERS....................................................5 
MULTI-STATE ENCOUNTER HISTORIES......................................................8 
MULTI-STATE ENCOUNTER HISTORY PROBABILITIES ...................... 10 
MULTI-STATE MODEL SPREADSHEET INPUTS........................................ 12 
SPREADSHEET HISTORY PROBABILITIES .................................................. 14 
THE MULT-STATE MODEL MULTINOMIAL LOG LIKELIHOOD .......... 15 
MAXIMIZING THE LOG LIKELIHOOD........................................................... 15 
MULTI-STATE MODEL OUTPUT ...................................................................... 17 
SIMULATING MULTI-STATE DATA .............................................................. 19 



Exercises in Occupancy Estimation and Modeling; Donovan and Hines, 2007 

Chapter 16 Page 3 5/8/2007 

SINGLE-SEASON OCCUPANCY MODELS WITH MULTIPLE OCCUPANCY 

STATES  

 

OBJECTIVES: 

• To learn and understand the single-season occupancy model that 

includes multiple states of occupancy, and how it fits into a 

multinomial maximum likelihood analysis. 

• To use Solver to find the maximum likelihood estimates for the 

probability of occupancy in state 1 and state 2, and the probability of 

detection and site occupancy for each group.  

• To assess the -2LogeL of the saturated model.   

• To introduce concepts of model fit. 

• To learn how to simulate single-season occupancy data with multiple 

states. 

 

BASIC INFORMATION 

If you’ve been completing the exercises in this book in order, you’ve learned 

a great deal about the single-season occupancy modeling, and some 

interesting variations of the basic model.  In this exercise, we describe 

another spin-off of the single-season model, in which “occupancy” can include 

more than 1 state.  This model is described in section 10.1 of the book, 

Occupancy Estimation and Modeling.  Click on the worksheet labeled “Single 

Season Multi-State” and we’ll get started. 
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BACKGROUND 

Hopefully by now you have a solid understanding that the general occupancy 

model assesses occupancy of a site, such that any encounter history with a 

“1” in it indicates (e.g., “001”) that the site was occupied by the target 

species.   In the single season model, occupancy is dichotomous (the site is 

occupied or not). 

 

Often, however, an investigator can separate “occupied” into two or more 

categories, which leads to a multi-state occupancy model.  Here’s a quick 

example.  In breeding bird atlases (such as the Vermont Breeding Bird 

Atlas), field observers not only record which species occur in a census block, 

but further break down the categories into “present,” “probable breeder,” 

and “confirmed breeder.”  In the Occupancy Estimation and Modeling book, 

the authors describe a scenario where individual ponds (sites) are monitored 

for evidence of breeding by amphibians, which might include finding egg 

masses, new metamorphs, or observing animals in amplexus.  In this case, the 

site is classified into one of two states: it contains breeders or it contains 

non-breeders.   In some situations the investigator might classify a site into 

one of three (or even more) categories.   Why might this kind of information 

be useful?  Well, there are many reasons, the simplest of which is that sites 

with breeding populations are more likely to be of high value than site filled 

with only non-breeders from a metapopulation perspective.    

 

The multi-state occupancy model is a straight-forward extension of the 

single-season occupancy model, and also incorporates some elements of the 

error model that we discussed in previous exercises.  In this exercise, we 
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will consider only two states of occupancy:  the site is occupied by non-

breeders (state 1) versus the site is occupied by breeders (state 2).   An 

important and fundamental concept to these models is that one of the states 

is observed without error.  In our example, we assume that that the 

breeding state (state 2) is known with certainty (e.g., if you see frogs in 

amplexus, you know breeding is at least being attempted, if you see egg 

masses, you know breeding has occurred, and so on.)   Thus, it is not possible 

that observers record the species as being breeders when in fact they are 

non-breeders.  The non-breeding state, in contrast, can include some 

uncertainty in assignment.  For instance, we might hear a singing amphibian in 

a pond but find no evidence of breeding; it doesn’t mean that the species 

was not breeding; it means that the species was detected but there was not 

sufficient evidence to indicate breeding status.  So errors can be made in 

assigning the species as non-breeding when it should have been assigned as 

breeding, but the reverse cannot happen. 

 

MULTI-STATE OCCUPANCY PARAMETERS 

So, how can the single-season occupancy model be extended to account for 

multiple occupancy states?  To begin, we’ll define our two states again for 

clarity:  state 1 will be the “non-breeding” state in which the species was 

detected but no evidence of breeding was observed, while state 2 will be the 

“certain state” in which the species was detected and breeding was 

confirmed.  Now, let’s define the occupancy parameters associated with each 

state: 
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• ψ1 is the probability that the site is occupied by individuals in state 1 

(non-breeders).   

• ψ2 is the probability that the site is occupied by individuals in state 2 

(breeders).   

• And of course, (1-ψ1 − ψ2) is the probability that the site is not 

occupied. 

 

A simple diagram will help differentiate between ψ, ψ2, and 1-ψ1−ψ2.  Note 

the total area of the box must be 1. 

 

 

It’s critical to note that the breeding state is assumed to be constant 

across all animals at a site throughout the entire study period. 

 

We also need our standard detection probabilities, p, associated with each 

survey.  Note that detection probabilities, p, are state-specific (as you 

might guess because breeders and non-breeders may have very different 

probabilities of detection).  Thus, with a three survey study, there are 6 p 

(1-y) 

ψ1                ψ2     1-ψ1−ψ2 
Non-       breeders 
breeders 

State 1      State 2 
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estimates, denoted by a subscript in which the first number indicates the 

survey period and the second number indicates the state: 

 

• P1,1 = the probability the species is detected in survey 1, given it is in 

state 1 (non-breeding) 

• P2,1 = the probability the species is detected in survey 2, given it is in 

state 1 (non-breeding) 

• P3,1 = the probability the species is detected in survey 3, given it is in 

state 1 (non-breeding) 

• P1,2 = the probability the species is detected in survey 1, given it is in 

state 2 (breeding) 

• P2,2 = the probability the species is detected in survey 2, given it is in 

state 2 (breeding) 

• P3,2 = the probability the species is detected in survey 3, given it is in 

state 2 (breeding) 

 

OK.  Now, given that the species is detected, we also need to determine 

whether errors in assignment were made.  The figure below will help us sort 

through the possibilities.  In this table, the true state is given in cells 

H39:I39, while the field observations are given in cells G40:G41.  In cell 

H40, the true state of the site was state 1 (non-breeding), and the field 

data indicated this, yielding a correct classification.  In cell H41, the true 

state of the site is state 1 (non-breeding), but the field data indicated the 

state was 2 (breeding).  We previously indicated that this error is not 

possible: if you observe state 2, then state 2 it is.  In cell I41, the true 

state of the site is state 2, and the field data indicate such, yielding a 
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correct classification.  We’ll let the parameter delta (δ) be the probability 

of correct assignment into state 2.  Delta is formally defined as the 

probability that the site is identified as state 2, given it is in state 2 

(breeders).  And finally, in cell I40, the true state of the site is state 2, but 

field data indicated it was state 1, yielding an error of (1-δ).   

 

38

39
40
41

F G H I

State 1 State 2
1 correct incorrect:  (1-δ)
2 not possible correct:  δ

Truth

D
at

a

 

 

So the delta parameters (δ and 1-δ) will come into play when discussing state 

2 only.  Delta is survey specific, so if you conduct a study in which there are 

three surveys per site, you’ll estimate δ1, δ2, and δ3 (or you can constrain 

them to be equal).   Make sense?  Study this table now because it will come 

into play when we go through the encounter history probabilities in the next 

section.  

 

MULTI-STATE ENCOUNTER HISTORIES  

The easiest way to learn how the multi-state model works is to dive right 

into the encounter histories.  Now, you’ve probably guessed that instead of 

entering 0 vs 1 data, you now have three data options: 0 (species was 

undetected), 1 (the species was detected and classified as non-breeding), or 

2 (the species was detected with breeding status confirmed).  With three 

options per survey, this quickly leads to a large number of possible encounter 

histories.  If there are two surveys conducted per site, the number of 
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possible encounter histories is 32 = 9.  If three surveys are conducted per 

site, there are 33 = 27 possible histories.  And if there are 4 surveys per 

site, the number of possible encounter histories is 34 = 81 possible encounter 

histories.  In our spreadsheet exercise, we’ll consider a study in which 3 

surveys are done in a single season, resulting in 27 histories (cells D4:D30).  

The number of sites with each history is given in cells E4:E30, for a total of 

250 sites (cell E31).  The naïve estimate of occupancy is the sum of all site 

frequencies except the “000” history, divided by the total number of sites.   

 

Just so we’re all on the same page, a history 

of 111 indicates that the species was 

observed in all three sampling periods, but no 

evidence of breeding was found on any 

occasion.  A history of 121 indicates that the 

species was observed in all three sampling 

periods, and on occasion 2 evidence of 

breeding was detected but on occasions 1 

and 3 no evidence of breeding was observed.  

Because we know that mistakes can’t be 

made for observations of breeding, this 

history indicates that assignment errors 

were made in periods 1 and 3.  A history of 

002 indicates the species was detected in 

the breeding state on the third survey, but 

was totally missed in surveys 1 and 2.  No 

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

D E
History Frequency

111 10
112 1
110 10
121 1
122 5
120 3
101 10
102 3
100 11
211 1
212 5
210 3
221 5
222 22
220 12
201 3
202 12
200 6
011 10
012 3
010 11
021 3
022 12
020 6
001 11
002 6
000 63

# Sites = 250
# Histories = 27
Naïve Estimate = 0.749
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assignment errors were made in surveys 1 or 2 because the species was not 

detected in those surveys. A history of 000 still means that the species was 

not detected at the site. 

 

 

MULTI-STATE ENCOUNTER HISTORY PROBABILITIES 

Now, let’s go through some examples of how the encounter history 

probabilities are determined.  Let’s start with an easy history:  222.  In this 

case, the species was detected in all three surveys, and on each occasion 

evidence of breeding was recorded.  So, we know this site is occupied by 

breeders, and we also know breeders were detected on every survey.  So the 

history is ψ2*p1,2*δ1*p2,2*δ2*p3,2*δ3.  In other words, the site was occupied in 

state 2 (ψ2), the species was detected on survey 1 and correctly classified 

as state 2 (p1,2*δ1), the species was detected on survey 2 and was correctly 

classified as state 2 (p2,2*δ2), and the species was detected on survey 3 and 

correctly classified as state 2 (p3,2*δ3).   

 

What about history 102?  Well, again, we know that the site was occupied by 

breeders because they were detected on the third survey.  So we will use 

the parameters associated with state 2 only.  The species was detected in 

survey 1, but a mistake was made in state assignment.  Then, the species was 

not detected at all in the second survey.  Finally, it was detected and 

correctly classified into state 2 in the third survey.  So the history 

probability is: 

 ψ2*(p1,2)*(1-δ1)*(1-p2,2)*p3,2*δ3.  In other words, the site was occupied by 

breeders (ψ2), the species was detected on survey 1 but was not correctly 
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classified as breeding (p1,2)*(1-δ1), the species was not detected on survey 2 

(1-p2,2), but was detected on survey 3 with probability δ3 of being correctly 

identified as breeding (p3,2*δ3). 

 

These can be brain-teasers, so let’s go through two more, starting with 111.  

In the multi-state model, a 111 history indicates that an observer went into 

the field and documented that the species was present in all three surveys, 

but on no survey was evidence of breeding detected.  Because we know that 

non-breeding observations can be made with error, we have two alternative 

possibilities to consider.   

 

In the first option, the species was truly in state 1 (non-breeding), which is 

ψ1*p1,1*p2,1*p3,1.   

In the second option, the species could really be in state 2 (breeding), in 

which three errors in assignment were made (the history really should have 

been “222”).  In this case, the probability is which is ψ2*p1,2*(1-δ1)* 

p2,2 (1−δ2)*p3,2*(1-δ3).   

Because both options are possible, we add the two probabilities together so 

that the probability of observing this history is:  

ψ1*p1,1*p2,1*p3,1 + ψ2*p1,2*(1-δ1)* p2,2 (1−δ2)*p3,2*(1-δ3).   

 

OK, the last history we’ll review is 000.  In this case, there are three 

options.  First, the site could have been unoccupied, which is 1-ψ1-ψ2.   OR, 

the site could have been occupied by non-breeders, but missed on all three 

surveys, which is ψ1*(1-p1,1)*(1-p2,1)*(1-p3,1).  OR, the site could have been 

occupied by breeders, and missed on all three surveys:  ψ2*(1-p1,2)*(1-
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p2,2)*(1-p3,2).  This history should hammer home the point that the delta 

parameters only come into play when detection occurs; δij is the probability 

that the species was identified as breeders, given the patch is occupied by 

breeders and animals are detected.  

 

MULTI-STATE MODEL SPREADSHEET INPUTS 

OK, with that background, let’s get oriented to the spreadsheet.  In this 

example, the investigator surveys 250 study sites, with each site being 

surveyed 3 times.  The encounter histories are recorded in cells D4:D30, and 

the frequency of each history is recorded in cells E4:E30.  The total number 

of sites is given in cell E31, and the number of unique histories is given in cell 

E32 (which you might remember indicates the number of terms in our 

multinomial likelihood function).  To avoid over-parameterization, you can 

only run models with 26 or fewer parameters.  We definitely don’t need to 

worry about overparameterization in this exercise.  The naïve estimate for 

occupancy (occupancy unadjusted for detection probability) is computed in 

cell E33 as the total number of sites which had one or more detections 

divided by the total number of sites.  In this case the estimate is around 

75%.   

 

OK, now let’s look at the parameters.  Notice the spreadsheet is divided into 

two sections.  
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3
4
5
6
7
8
9
10
11
12
13
14
15
16

F G H I
Parameter Estimate? Betas MLE

ψ 1 1 0.50000
p1,1 1 0.50000
p2,1 1 0.50000
p3,1 1 0.50000

ψ2 1 0.50000
p1,2 1 0.50000
δ1 1 0.50000

p2,2 1 0.50000
δ2 1 0.50000

p3,2 1 0.50000
δ3 1 0.50000

State 1

State 2

 

In the first section (cells F5:I8), we list the parameters associated with 

state 1, consisting of sites that are truly occupied by non-breeders (ψ1, p1,1, 

p2,1, p3,1).  The second section of the spreadsheet (cells F10:I16) lists the 

parameters for state 2, which consists of sites that are truly occupied by 

breeders (ψ2, p1,2, δ1, p2,2, δ2, p3,2, δ3).   As with other spreadsheet exercises, 

you enter a 1 when a parameter is being uniquely estimated, or enter a 0 if 

the parameter is being forced to be equal to some other parameter.  This 

set-up is very similar to the mixture models we covered in previous 

exercises. 

 

MULTI-STATE LINKS 

The betas for each parameter are listed in cells H5:H8, H10:H16, and the 

MLE parameter estimates that correspond to each beta are computed in 

cells I5:I8, I10:I16 through a logit link.  Click on cell I5 and you’ll see the 

logit link transformation:  =EXP(H5)/(1+EXP(H5)).  Remember the logit link 

constrains the MLE’s to be between 0 and 1, which is what we want for ψ, 

and the pi’s, and the δi’s.  Because this exercise doesn’t include covariates, 
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we also could have used the sin link, but we stuck with the logit in case we 

decide to add covariates some day.   

 

Keep in mind that we don’t know what the beta values are…..we are going to 

let Solver find the betas that maximize the multinomial log likelihood 

function (see below).   

 

SPREADSHEET HISTORY PROBABILITIES 

OK!  Now we are ready to compute the probability of realizing each history.  

Let’s start with the first history listed, 111, in cell J4.   

 

As we indicated previously, the probability of realizing a 111 history 

considers two options: the probability of realizing a 111 history if the site is 

truly in state 1, plus the probability of realizing a 111 history if the site is 

truly in state 2.  If sites are truly in state 1, the probability of realizing a 

111 history is ψ1 * p1,1 * p2,1 * p3,1.  If sites are truly in state 2, the probability 

of realizing a 111 history is ψ2 * p1,2 *(1-δ1) * p2,2*(1-δ2) * p3,2 * (1-δ3).   Across 

both states, the probability of realizing a 111 history is the sum of the two 

probabilities, and is entered in cell H4:  =I5*I6*I7*I8+I10*I11*(1-

I12)*I13*(1-I14)*I15*(1-I16).  The natural log of the combined history 

probabilities is computed in cell K4.  And so it goes for the remaining 

histories. 

 

Make sense?  Spend time now clicking on the formula for each history and 

for each group.  In our experience, if students understand how the 

encounter histories are calculated, the rest is a piece of cake.   
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Notice that the sum of cells J4:J30 must equal 1 (cell J31):  there are 27 

possible histories, and each history has a probability of being realized, but 

the sum of the probabilities must be 1.00.   

 

THE MULT-STATE MODEL MULTINOMIAL LOG LIKELIHOOD 

The goal of the analysis, as you might have guessed, is to find the 

combination of betas that maximizes the multinomial log likelihood function.  

Remember, by changing the betas, we change the parameter estimates linked 

to each beta, which changes the probability of each encounter history, which 

changes the LogeL.   

Betas  MLEs  Encounter Histories  LogeL 

All that’s left is to compute the log likelihood, given the frequencies of each 

history and the history’s probability.  The multinomial log likelihood formula 

that we’ve been using is in the blue box below.   

 

 

 

There are 27 terms in this function, one for each of the encounter histories.  

The yi in the blue box are the frequencies of each kind of history and the pi 

in the blue box equation above are the history probabilities.  The LogeL is 

computed in cell D36 with the equation =SUMPRODUCT(E4:E30,K4:K30), 

which corresponds to the general formula in the blue box.   Now all we have 

to do is maximize this value to find the MLE’s for our dataset.   

 

MAXIMIZING THE LOG LIKELIHOOD 

)ln(.....)ln()ln()ln(),|(ln( 2727332211 pypypypyynpL iii ++++∝
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Before we run our first model, make sure the betas are cleared out and that 

your spreadsheet is set up as follows: 

3
4
5
6
7
8
9
10
11
12
13
14
15
16

F G H I
Parameter Estimate? Betas MLE

ψ 1 1 0.50000
p1,1 1 0.50000
p2,1 1 0.50000
p3,1 1 0.50000

ψ2 1 0.50000
p1,2 1 0.50000
δ1 1 0.50000

p2,2 1 0.50000
δ2 1 0.50000

p3,2 1 0.50000
δ3 1 0.50000

State 1

State 2

 

 

OK, now we’re ready to run this model.  We can call this model “ψ1,2, 

p(1t,2t)δ(t)” to indicate that we’re estimating ψ1, p1,1, p2,1, and p3,1 for state 1, 

and ψ2, p1,2, p2,2, p3,2 and δ1, δ2, δ3 for state 2.   You know the drill.  Open 

Solver, and set cell D36 to a maximum by changing cells H5:H8,H10:H16. 
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Press Solve and Solver will work through the various combinations of betas 

until it finds the maximum.  You probably should also add the constraint that 

ψ1 + ψ2 <=1 (although Solver finds the correct estimates without this 

constraint). 

 

MULTI-STATE MODEL OUTPUT 

First, let’s take a look at the parameter estimates found by Solver: 

 

3
4
5
6
7
8
9
10
11
12
13
14
15
16

F G H I
Parameter Estimate? Betas MLE

ψ 1 1 -0.847290928 0.30000
p1,1 1 3.50942E-05 0.50001
p2,1 1 -2.55984E-05 0.49999
p3,1 1 -5.59954E-06 0.50000

ψ2 1 -4.01545E-06 0.50000
p1,2 1 0.847295017 0.70000
δ1 1 1.386368846 0.80001

p2,2 1 0.84731947 0.70000
δ2 1 1.386232122 0.79999

p3,2 1 0.847319494 0.70000
δ3 1 1.38628594 0.80000

State 1

State 2

 

 

The proportion of sites that were truly occupied by non-breeders (state 1) is 

0.300 (cell I5).  Non-breeders had a 50% probability of being detected, 

given they were present, across all three survey periods.  The proportion of 

sites that were occupied by breeders (state 2) is 0.5 (cell I10).  In all survey 

periods, breeders had about a 70% probability of being detected.  

Additionally, in all survey periods the probability of correctly classifying 

sites to state 2 was 80%.  Even though we ran a model where the p’s and d’s 

were time specific, Solver found estimates that indicated a simpler model 
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with fewer parameters (where p’s and δ’s are constrained to be constant 

across periods) would be a better fit in terms of AIC. 

 

And, in fact, this will be the case because the data you just analyzed were 

simulated by expectation with the parameters indicated below: 

1
2
3
4

Q R S T U V W X Y Z AA AB

N
ψ 1 p1,1 p2,1 p3,1 ψ2 p1,2 δ1 p2,2 δ2 p3,2 δ3

0.3 0.5 0.5 0.5 0.5 0.7 0.8 0.7 0.8 0.7 0.8 250

State 1 State 2
Simulate Data

 

We’ll revisit this section of the spreadsheet in a few minutes.   

 

One word of caution is in order at this point.  Remember that ψ1 + ψ2 cannot 

be greater than 1.  In our example, ψ1 = 0.3 and ψ2 = 0.5, so the proportion of 

sites that are occupied by either state 1 or state 2 is 0.3 + 0.5 = 0.8.  You 

might want to add the constraint to Solver that the sum of ψ1 + ψ2 <= 1 

within the Solver dialogue box if you want to play it safe.   

 

Now let’s look at the remaining output given in cells D35:N36. 

34
35
36

D E F G H I J K L M N

LogeL  -2LogeL K AIC AICc  -2LogeL Sat Deviance Model DF C-hat Chi-Square P value
-711.84 1423.681 11 1445.68 1446.79 1423.6808 0.0000 16 9.44222E-09 0.0000 1.0000

OUTPUTS

 

The LogeL is given in cell D36.  Cell E36 is -2 times cell D26, and is the -

2LogeL.  K is the number of parameters in any given model, and the 

underlying equation is =SUM(G5:G8,G10:G16).  AIC is computed as the -

2LogeL + 2*K (cell G36).  AICc is the second order correction of AIC and 

uses the number of study sites in the calculation.  Deviance (cell J36) is 

computed as the difference between the saturated model’s -2LogeL and the 

current model’s -2LogeL; the lower the number the better.  Remember that 

by definition the saturated model is a model in which the data “fit” the 
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model perfectly.  The saturated model’s -2LogeL is computed in the usual way 

(as in previous exercises) in cells L4:M30.  The model we just ran had a 

deviance of 0 because we analyzed data that were generated by expectation, 

and Solver found the true estimates.  The Model Degrees of Freedom is the 

number of unique histories minus K.   In a model without covariates, as long 

as the Model Degrees of Freedom is positive, you haven’t overparameterized 

your model.  C-hat is computed in cells L36 as Deviance divided by DF.  C-

hats larger than 1 might indicate some kind of lack of fit.  The Chi-Square 

statistic and associated p-value are given in cells M36:N36.  The Chi-square 

computations are provided in the orange cells N4:O30.  The spreadsheet 

shows the Chi-Square test statistic is 0 (because the observed exactly 

equals the expected values, which won’t happen in “real” situations), and the 

associated p value is 1.   

 

That’s really all there is to the multi-state model.  We covered the simplest 

model in which there are two possible states, but you can extend this model 

to include more states.  And, of course, covariates can be included into the 

multi-state model, which makes this model a very important model option for 

investigators who can assign occupancy into two or more states. 

 

SIMULATING MULTI-STATE DATA 

Before we finish, we want to demonstrate how the data were simulated for 

this exercise. We already mentioned that the data were simulated where ψ1 

= 0.3, p1,1, p2,1, p3,1 = 0.5 for state 1, and ψ2 = 0.5, p1,2 p2,2, p3,2 = 0.7, and δ1, δ2, 

δ3 = 0.8 for state 2.  You can simulate any estimates you’d like.  But adhere 

to the cautionary note that ψ1 + ψ2 must be less than 1.  Start by entering 
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the total number of sites in cell AB4, and then enter the state-specific 

parameters in cells Q4: AA4. 

1
2
3
4
5

Q R S T U V W X Y Z AA AB

N
ψ 1 p1,1 p2,1 p3,1 ψ2 p1,2 δ1 p2,2 δ2 p3,2 δ3

0.3 0.5 0.5 0.5 0.5 0.7 0.8 0.7 0.8 0.7 0.8 250
Note:  ψ1 + ψ2 must be <= 1. 

State 1 State 2
Simulate Data

 
 

As with the other spreadsheet exercises, we will simulate data in two ways: 

by expectation and with stochasticity.  The expected data are simulated in 

cells W10:Y36.   The expected frequency of each history is computed in cells 

Y10:Y36 as N (cell AB4) times the encounter history probability for each 

history.   
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8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

W X Y
Summarized Expected Data:
History Probability Frequency

111 0.038872 10
112 0.005 1
110 0.040 10
121 0.005 1
122 0.022 5
120 0.012 3
101 0.040 10
102 0.012 3
100 0.044 11
211 0.005 1
212 0.022 5
210 0.012 3
221 0.022 5
222 0.088 22
220 0.047 12
201 0.012 3
202 0.047 12
200 0.025 6
011 0.040 10
012 0.012 3
010 0.044 11
021 0.012 3
022 0.047 12
020 0.025 6
001 0.044 11
002 0.025 6
000 0.251 63

250  

 

As we’ve indicated in a previous exercise, analyzing data created by 

expectation is one good way to evaluate your model, and also is useful for 

assessing model bias.   

 

The stochastic data are created in a similar way, but we use random numbers 

to determine each site’s encounter history.  First, we number sites from 1 to 
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250 in row Q.  Then, we establish whether each site was unoccupied, 

occupied in state 1, or occupied in state 2.  In columns R and S, a random 

number is entered with the =RAND() function.  A key feature here is that 

the random numbers for ψ1 are set to equal those for ψ2.  In cell T41, we 

enter an equation that will return a 0, 1, or 2 to indicate the true state of 

the site. The formula is  =IF(R41<$Q$4,1,IF(S41<$Q$4+$U$4,2,0)), which 

is a nested IF function.  In the first IF function, if the random number is 

less than the value in cell Q4 (the proportion of sites in state 1), then a “1” is 

returned. Otherwise Excel moves to the second IF function; if the random 

number is less than the sum of Q4 + U4 (sites in state 1 or state 2), then a 2 

is returned; otherwise a 0 is returned and the site is empty. The sum trick 

works for state 2 because the two random numbers for ψ1 and ψ2 are equal, 

and because the second IF function will be invoked only if the site is not in 

state 1.  This formula is copied down for the remaining sites. 

 

39
40

41
42
43
44
45

Q R S T

Site ψ1 ψ2 State
1 0.879933778 0.879933778 0
2 0.589737925 0.589737925 2
3 0.177855579 0.177855579 1
4 0.994831009 0.994831009 0
5 0.815681201 0.815681201 0

Random Numbers

 
 

Next, we establish random numbers for sites truly occupied in state 1 in 

columns U:X.  
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39
40

41
42
43
44
45

U V W X

ψ 1 p1,1 p2,1 p3,1
0.18139682 0.1621778 0.742232 0.089501979

0.307345496 0.4651561 0.129779 0.529642555
0.336102258 0.1840292 0.573336 0.927838735
0.161919659 0.0753212 0.974657 0.241836756

0.932762679 0.4975329 0.911415 0.667932069

State 1

 
 

Similarly, we establish random numbers for sites truly occupied in state 2 in 

columns Y:AE.  Note that more random numbers are associated with state 2 

because we need to include the delta parameters: 

39
40

41
42
43
44
45

Y Z AA AB AC AD AE

ψ2 p1,2 δ1 p2,2 δ2 p3,2 δ3

0.57961 0.11587 0.17888 0.88925 0.95147 0.90977 0.71573
0.94496 0.00629 0.83228 0.4044 0.3152 0.55266 0.6467
0.49827 0.74667 0.71729 0.69595 0.79956 0.91726 0.38331
0.65238 0.74485 0.78679 0.61435 0.38046 0.12121 0.44161
0.18354 0.63761 0.32357 0.49627 0.64107 0.03555 0.22983

State 2

 

 

Finally, we enter equations to generate encounter histories for each state 

(0, 1, 2) separately.  

39
40

41
42
43
44
45

AF AG AH

0 1 2
000 101 200
000 110 122
000 100 020
000 101 022
000 100 222

Possible Histories

 

If a site is in state 0, its encounter history will be “000” by default (no false 

positives), so this is entered for all sites in column AF.  If a site is in state 1, 

the encounter history is generated with the formula 

=IF(V41<$R$4,1,0)&IF(W41<$S$4,1,0)&IF(X41<$T$4,1,0) for site 1.  This is 
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three IF functions whose results are concatenated with the & sign.  The 

first IF function returns a 1 if the random number associated with survey 1 

(cell V41) is less than the p1,1 given in cell R4.  The second IF function 

returns a 1 if the random number associated with survey 2 (cell W41) is less 

than the p2,1 given in cell S4.  The third IF function returns a 1 if the 

random number associated with survey 3 (cell X41) is less than the p3,1 given 

in cell T4.  This formula is copied down for all sites. 

 

For sites in state 2, the equation is trickier, but only a little.  The equation is 

cell AH41 is 

=IF(AND(Z41<$V$4,AA41<$W$4),2,IF(AND(Z41<$V$4,AA41>$W$4),1,0))&

IF(AND(AB41<$X$4,AC41<$Y$4),2,IF(AND(AB41<$X$4,AC41>$Y$4),1,0))&

IF(AND(AD41<$Z$4,AE41<$AA$4),2,IF(AND(AD41<$Z$4,AE41>$AA$4),1,

0)).   

 

Yikes!  But look carefully and you’ll see that once again we generate an 

outcome for each survey, and then join the outcomes with an & sign.  

Remember that sites in state 2 can be unobserved (0), incorrectly observed 

in state 1 (1), or correctly observed in state 2 (2).  For the first survey, the 

outcome is determined by the formula 

=IF(AND(Z41<$V$4,AA41<$W$4),2,IF(AND(Z41<$V$4,AA41>$W$4),1,0)), 

which is two nested IF functions with embedded AND functions.  To begin, 

IF the random number associated with survey 1 (Z41) is less than p1,2 AND 

the random delta 1 is less than δ1 in cell W4, a 2 is returned.  If either of 

these conditions is not true, Excel moves to the next IF function.  IF the 

random number associated with survey 1 (Z41) is less than p1,2 AND the 
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random delta 1 is greater than δ1 in cell W4, a mistake was made and a 1 is 

returned.  If either of these conditions is not true, Excel returns a 0 to 

indicate that the species was not detected on the survey.  Hopefully this 

makes sense.  The outcomes for survey 2 and survey 3 are done in a similar 

fashion.  The formula is copied down for the other sites.   

 

In cell AI41, the equation =HLOOKUP(T41,$AF$40:$AH$290,Q41+1) looks 

up the site’s true state, and returns the appropriate encounter history.  The 

summarized stochastic data are given in cells S10:T36. 
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

S T
History Frequency

111 2
112 4
110 0
121 3
122 9
120 9
101 1
102 8
100 3
211 4
212 14
210 3
221 10
222 49
220 21
201 6
202 24
200 14
011 1
012 6
010 0
021 3
022 22
020 13
001 3
002 9
000 9   
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PRESENCE INPUT FILES 

The multi-state model is not currently available in PRESENCE, 

but it will be in the near future.  The histories and 

corresponding frequencies given in cells E4:E30 cannot be 

input directly into PRESENCE (most users of PRESENCE 

include covariates in the analysis, so the input files are set up 

on a site-by-site basis).  So, we’ve entered some formulae in 

columns AJ:AN to convert the summarized data to site-

specific data.   But before we cover the equations, first look 

at cells B3:B30, which are shaded grey on the spreadsheet.  

These cells are a running tally of the total number of sites in 

the study.  Beginning with the first history (111), the cell B4’s 

formula counts the number of sites that are 111.  The next 

cell (cell B5) counts the number of 111 sites + the 112 sites.  

The next cell (cell B6) counts the number of 111, 112, and 110 

sites, and so on.  We will use this running tally to create 

PRESENCE input files. 

Now let’s turn our attention to columns AJ:AN.  In column 

AJ, the sites are listed from 1 to 250 down the column.  In 

column AK, we assign a history to each site, using the tally in cells B3:B30.  

Click on cell AK3. The equation there is =LOOKUP(AJ3-

1,$B$3:$B$30,$D$4:$D$30).  The function looks up the value in AJ3 (the 

site number) minus 1 in the tally column ($B$3:$B$30), and then returns the 

corresponding history listed in cells $D$4:$D$30.  Because the lookup 

vector (the tally) is sorted in ascending order, this equation “works” for our 

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

B
Tally

0
9.718
11.09
21.2

22.572
28.06

31
41.11

44.05
55

56.372
61.86
64.8

70.288
92.24

104
106.94

118.7
125

135.11
138.05

149
151.94
163.7

170
180.95
187.25

250
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purposes because the LOOKUP function doesn’t need to find an exact match.  

We’ve used this trick in previous exercises too. 


