Antennas – Part B

Design & Technology Issues

- Size
 - Typical "small" antenna is at least $\sim \lambda/4$ (this is 8 cm @ 915 MHz)
 - As antennas become smaller their efficiency goes down
- Bandwidth
 - Impedance Bandwidth frequency range over which the input impedance is close to 50 Ω
 - Pattern Bandwidth frequency range over which radiation pattern is acceptable (usually not as difficult to achieve as impedance bandwidth)
- Packaging conformal antennas are desirable but difficult to design

Size / Bandwidth / Efficiency

- Bandwidth is proportional to 1/Q, where Q is the quality factor (energy stored over energy dissipated) → if Q goes up then bandwidth goes down
- A theoretical limit for the <u>lowest</u> Q-factor for an antenna is:

$$Q_{lb} = \eta_r \left(\left(\frac{1}{ka} \right)^3 + \left(\frac{1}{ka} \right) \right)$$

$$\eta_r$$
 = efficiency

$$k = 2\pi/\lambda$$

a = radius of volumeenclosing antenna

→ The more efficiently an antenna fills the volume of space surrounding the antenna the higher its radiation efficiency will be! Small, flat, 2-D antennas are not very efficient.

Wire Antennas

- Common:
 - Short Dipole
 - $Z_{in} \sim 80\pi^2 (I/\lambda)^2$ @ resonance
 - $D_0 \sim 1.8 \text{ dB}$
 - Half-wavelength Dipole
 - Z_{in} ~ 73 Ohms @ resonance
 - D_o ~ 2.2 dB
 - Quarter-wavelength Monopole
 - Z_{in} ~ 36.5 Ohms @ resonance
 - D_o ~ 2.2 dB

Planar 2-D Antennas

• Common:

- Microstrip (patch)
 - Z_{in} ~ varies
 - Bandwidth ~ narrow
 - $D_o \sim 6 dB$
- Slot
 - Z_{in} ~ 500 Ohms @ resonance
 - Bandwidth ~ medium
 - D_o ~ 2.2 dB
- Spiral
 - Z_{in} ~ 100 Ohms
 - Bandwidth ~ large
 - D_o ~ 3 dB

Array Antennas

- "gain" for an antenna is similar to "magnification" for a microscope – the larger the lens (aperture) the higher the magnification (gain)
- In array antennas many individual antenna elements are separated in space to form a large aperture
- The signal to each elements is controlled (magnitude and phase) allowing the direction of radiation to be varied

Wikipedia.com

Impact on Sensor Network Design

- Antennas with high gain will increase communications range
- Higher gain antennas require more careful alignment with distant receiver/transmitter
- → High gain antennas typically used only for fixed installations
- → Sensor nodes typically use low gain antennas in order to receive/transmit effectively in all (or most) directions

Antennas – Conclusions

- Antennas lie at the boundary between electromagnetic and circuit design
- They control the direction, concentration and polarization of the electromagnetic wave transmitted between two wireless devices
- They are often the size-limiting aspect of "small devices" and performance generally degrades as they are made smaller