Radios – The Wireless Interface

Part 1

Objectives

- Understand the performance requirements of each component in the RF block diagram. Links to communications systems analysis
- Understand the design and technology challenges for each component in the RF block diagram
- Describe implications on the radio hardware design due to various types of scaling, e.g. size, frequency, cost, power, data rate. Links to wireless network design

Outline

- Overview and RF Block Diagram
- Filters
- Amplifiers
- Up/Down Conversion
- Oscillators and Synthesizers
- Modulation Basics
- Antennas
- Chip-Level Radios
- Integration and Packaging

Overview & RF Block Diagram

Overview and RF Block Diagram

- Functional View of the Radio
- The Role of Analog RF Hardware in Today's Radios: RF Sub-system Block Diagrams & Requirements
- Some Design and Technology Issues
- Future Front-End Technology

Functional View of the Radio

- Analog RF hardware the link between the information (data) and the channel
- Multiple perspectives
 - − High Level → how information is processed
 - Mid Level components needed for each processing step
 - Low Level → design of each component

RF Analog Block Diagram Information Processing

RF Analog Block Diagram - Receiver

RF Analog Block Diagram - Receiver

RF Analog Block Diagram

Some Design & Technology Issues

Form: Board Level vs. Chip Level

• Architecture:

- Down-conversion: Single vs. Dual vs. Zero
- Dual-band, multi-band
- Multi-channel, redundancy

Future Front-End Technology

Overview – Conclusions

- RF analog hardware is the pathway between the data and the propagation channel
- Functional and then component-level block diagrams are the starting points for radio design
- The radio architecture defines how functional requirements flow down to the component / device level