Practice Problems - Chapter 33 Alternating Current Circuits

Multiple Choice

4. A high-voltage powerline operates at 500000 V -rms and carries an rms current of 500 A . If the resistance of the cable is $0.050 \Omega / \mathrm{km}$, what is the resistive power loss in 200 km of the powerline?
a. $\quad 250 \mathrm{~kW}$
b. $\quad 500 \mathrm{~kW}$
c. 1 Megawatt
d. 2.5 Megawatts
e. 250 Megawatts
5. A $10-\mu \mathrm{F}$ capacitor is plugged into a $110 \mathrm{~V}-\mathrm{rms} 60-\mathrm{Hz}$ voltage source, with an ammeter in series. What is the rms value of the current through the capacitor?
a. $\quad 0.202 \mathrm{~A}(\mathrm{rms})$
b. $\quad 0.415 \mathrm{~A}(\mathrm{rms})$
c. $\quad 0.626 \mathrm{~A}(\mathrm{rms})$
d. $\quad 0.838 \mathrm{~A}(\mathrm{rms})$
e. $\quad 0.066 \mathrm{~A}(\mathrm{rms})$
6. A $0.5-\mathrm{H}$ inductor is connected into a $110 \mathrm{~V}-\mathrm{rms} 60-\mathrm{Hz}$ voltage source, with an ammeter in series. What is the rms value of the current through the inductor?
a. $\quad 0.189 \mathrm{~A}(\mathrm{rms})$
b. $\quad 0.292 \mathrm{~A}(\mathrm{rms})$
c. $\quad 0.584 \mathrm{~A}(\mathrm{rms})$
d. $\quad 1.19 \mathrm{~A}$ (rms)
e. $\quad 0.093 \mathrm{~A}(\mathrm{rms})$
7. The inductance of a tuning circuit of an AM radio is 4 mH . Find the capacitance of the circuit required for reception at 1200 kHz .
a. $\quad 2.1 \mathrm{pF}$
b. $\quad 4.4 \mathrm{pF}$
c. $\quad 21.2 \mathrm{pF}$
d. $\quad 43.4 \mathrm{pF}$
e. $\quad 27.6 \mathrm{pF}$
8. If an $R=1-\mathrm{k} \Omega$ resistor, a $C=1-\mu \mathrm{F}$ capacitor, and an $L=0.2-\mathrm{H}$ inductor are connected in series with a $V=150 \sin (377 t)$ volts source, what is the maximum current delivered by the source?
a. $\quad 0.007 \mathrm{~A}$
b. $\quad 27 \mathrm{~mA}$
c. $\quad 54 \mathrm{~mA}$
d. $\quad 0.308 \mathrm{~A}$
e. $\quad 0.34 \mathrm{~A}$
9. An $R L C$ series circuit has $R=100$ ohms, $C=25 \mu \mathrm{~F}$, and $L=0.16 \mathrm{H}$. For what angular frequency of an ac voltage is the current flow maximum?
a. $\quad 251 \mathrm{rad} / \mathrm{s}$
b. $\quad 500 \mathrm{rad} / \mathrm{s}$
c. $\quad 757 \mathrm{rad} / \mathrm{s}$
d. $\quad 884 \mathrm{rad} / \mathrm{s}$
e. $\quad 79.6 \mathrm{rad} / \mathrm{s}$
10. Determine the impedance for the circuit.

a. 600Ω
b. 1200Ω
c. 1800Ω
d. 2300Ω
e. 1100Ω
11. Determine the rms current for the circuit.

a. $\quad 55 \mathrm{~mA}$
b. $\quad 77 \mathrm{~mA}$
c. $\quad 99 \mathrm{~mA}$
d. $\quad 0.190 \mathrm{~A}$
e. $\quad 61 \mathrm{~mA}$
12. What is the average power dissipation in an $R L C$ series circuit with $R=10 \Omega$, $L=0.1 \mathrm{H}, C=10 \mu \mathrm{~F}$ when driven at resonance by a 100 V -rms source?
a. $\quad 100 \mathrm{~W}$
b. $\quad 500 \mathrm{~W}$
c. $\quad 1000 \mathrm{~W}$
d. 2 kW
e. $\quad 700 \mathrm{~W}$
13. A transformer is to be designed to increase the 30 kV -rms output of a generator to the transmission-line voltage of 345 kV -rms. If the primary winding has 80 turns, how many turns must the secondary have?
a. 6
b. 70
c. $\quad 920$
d. 9200
e. 12
14. The primary winding of an electric train transformer has 400 turns and the secondary has 50 . If the input voltage is $120 \mathrm{~V}(\mathrm{rms})$ what is the output voltage?
a. $\quad 15 \mathrm{~V}$ (rms)
b. $\quad 30 \mathrm{~V}$ (rms)
c. $\quad 60 \mathrm{~V}$ (rms)
d. $\quad 2.4 \mathrm{~V}$ (rms)
e. $\quad 960 \mathrm{~V}$ (rms)
15. Calculate $V_{\text {out }} / V_{\text {in }}$ for the circuit if $R=2 \mathrm{k} \Omega, \mathrm{C}=0.02 \mu \mathrm{~F}$ and $V=140 \mathrm{~V}$ $\sin (50000 t)$

a. $\quad 0.02$
b. 0.45
c. $\quad 0.80$
d. 0.98
e. 2.23
16. The impedance of the parallel $R L C$ circuit shown is given by

a. $\frac{1}{R}+\frac{1}{\omega L}+\omega C$
b. $\left[\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}\right]^{-1 / 2}$
c. $\frac{1}{R}+\left(\frac{1}{\omega L}-\frac{1}{\omega C}\right)$
d. $\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$
e. $\sqrt{\frac{1}{R^{2}}+\left[\omega C-\frac{1}{\omega L}\right]}$
17. Whenever the alternating current frequency in a series RLC circuit is halved,
a. the inductive reactance is doubled and the capacitive reactance is halved.
b. the inductive reactance is doubled and the capacitive reactance is doubled.
c. the inductive reactance is halved and the capacitive reactance is halved.
d. the inductive reactance is halved and the capacitive reactance is doubled.
e. the reactance of the circuit remains the same.
18. The average power input to a series alternating current circuit is minimum when
a. there are only a resistor and capacitor in the circuit.
b. there are only a resistor and inductor in the circuit.
c. there is only a resistor in the circuit.
d. $\quad X_{L}=X_{C}$ and the circuit contains a resistor, an inductor and a capacitor.
e. there is only a capacitor in the circuit.
19. All three circuits shown below have $R=100 \Omega, L=0.1 \mathrm{H}$ and emf $\mathcal{E}=(5.0 \mathrm{~V}) \sin (377 t)$. Which statement regarding the angular resonance frequencies $\omega_{\mathrm{A}}, \omega_{\mathrm{B}}$ and ω_{C} is correct?

a. $\quad \omega_{C}>\omega_{A}=\omega_{B}$
b. $\quad \omega_{C}<\omega_{A}=\omega_{B}$
c. $\quad \omega_{A}=\omega_{B}=\omega_{C}$
d. $\quad \omega_{B}<\omega_{A}=\omega_{C}$
e. $\omega_{B}>\omega_{A}=\omega_{C}$
20. A $10-\mu \mathrm{F}$ capacitor in an $L C$ circuit made entirely of superconducting materials ($R=0 \Omega$) is charged to $100 \mu \mathrm{C}$. Then a superconducting switch is closed. At $t=0 \mathrm{~s}$, plate 1 is positively charged and plate 2 is negatively charged. At a later time, $V_{\mathrm{ab}}=+10 \mathrm{~V}$. At that time, V_{dc} is

a. 0 V .
b. $\quad 3.54 \mathrm{~V}$.
c. $\quad 5.0 \mathrm{~V}$.
d. $\quad 7.07 \mathrm{~V}$.
e. 10 V .

Open-Ended Problems

57. Suppose the circuit parameters in a series $R L C$ circuit are: $L=1.0 \mu \mathrm{H}, \mathrm{C}=10.0 \mathrm{nF}$, $R=100 \Omega$, and the source voltage is 220 V . Determine the resonant frequency of the circuit and the amplitude of the current at resonance.
58. A $10-\Omega$ resistor, $10-\mathrm{mH}$ inductor, and $10-\mu \mathrm{F}$ capacitor are connected in series with a $10-\mathrm{kHz}$ voltage source. The rms current through the circuit is 0.20 A . Find the rms voltage drop across each of the 3 elements.
59. An ac power generator produces $50 \mathrm{~A}(\mathrm{rms})$ at 3600 V . The voltage is stepped up to 100000 V by an ideal transformer and the energy is transmitted through a long distance power line which has a resistance of 100 ohms . What percentage of the power delivered by the generator is dissipated as heat in the long-distance power line?

Chapter 33

Alternating Current Circuits

1. c
2. a
3. d
4. d
5. d
6. a
7. a
8. b
9. a
10. d
11. d
12. b
13. c
14. d
15. b
16. b
17. c
18. c
19. d
20. b
21. a
22. c
23. a
24. a
25. a
26. b
27. c
28. b
29. b
30. c
31. a
32. c
33. a
34. b
35. d
36. d
37. b
38. b
39. b
40. a
41. e
42. c
43. d
44. a
45. d
46. d
47. e
48. c
49. c
50. a
51. d
52. c
53. b
54. d
55. d
56. e
57. $\quad 1.59 \mathrm{MHz}, 2.2 \mathrm{~A}$
58. $2.0 \mathrm{~V}, 125.6 \mathrm{~V}, 0.318 \mathrm{~V}$
59. 0.18%
