CLIMATE CHANGE AND TROPHIC CASCADES: NATURAL SELECTION

Edmund M. Hart
Department of Zoology
University of British Columbia

Climate change

Figure 4: Projected climate "migrations" for several states and regions in the Northeast, based on average summer heat index, under the lower- and higher-emissions scenarios. Based on the average of the GFDL, HadCM3 and PCM model projections.

Question

Are trait changes in response to climate change genetically based or phenotypically plastic and what are potential selective agents?

Daphnia pulex

Common garden

•14:10 Light:Dark cycle

•18°:24° Day:Night temp cycle

•Fed Nannochloropsis

•Photographed every other day from Jan 1st 2011 to Feb 14 2011

Trait measurement

Trait	Туре	Method	Frequency
Spine length	Morphological	Measured from photo	Every other day
Body length	Morphological	Measured from photo	Every other day
Total length	Morphological	Measured from photo	Every other day
Head width	Morphological	Measured from photo	Every other day
Clutch size	Life-history	Counted live born young	Every occurrence
Clutch number	Life-history	Counted live	Every occurrence
Growth rate	Life-history	Calculated from photographs	Once per individual
Intrinsic population growth rate (r)	Life-history	Calculated via life table analysis of individuals	Once per pond

Trait measurement

Adult Daphnia pulex

Neonate Daphnia pulex

Analysis of traits

Analysis of traits

Low drying rate

High drying rate

High drying rate

Low drying rate

Covariate residual ANOVA

Tail spine residuals ANOVA

	d.f.	F-val	p
Drying	1	2.75	0.13
Rainfall	I	0.79	0.39
Residual	9	-	-

Intrinsic growth rate residuals ANOVA

	d.f.	F-val	р
Drying	1	0.18	0.67
Rainfall	I	0.23	0.65
Residual	9	-	-

Analysis of covariates

Fig. 3a-c. Mean length of tail spine in individuals of a clone A and b clone B. Same experiments as in Fig. 2. Vertical error bars represent standard errors. c Clone A in the experiment with extract of both predators. Parentheses enclose number of individuals per instar

Fig. 5. Evolved changes (±2 SE) in clutch size for clutches 1–4 during seven weeks of clonal reproduction in control populations (solid bars) and in populations with *Chaoborus* predation (dotted bars). Refer to Table 1 for statistical summary.

Leuning 1992

Spitze 1991

Conclusions

- 1st instar tail spine length and r show a genetically based change in trait means.
- More variable habitats have lower predator abundance
- Trait response is due to climate change, but mediated through that reduction in predator pressure.
- Lab results from earlier selection experiments can be useful in making predictions

Acknowledgements!

Funding from Vermont EPSCoR

The National Science Foundation

NSF DEB-0909359 (Doctoral dissertation improvement grant)

My collaborator and advisor Nick Gotelli

- Don Tobi and David Brynn from Jericho Forest
- Alison Brody for the use of her growth chambers