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There are waters in 14 sub-
watersheds in the Vermont 
portion of the Lake 
Champlain Basin that are 
listed as "impaired" 
primarily due to urban 
stormwater runoff.  
 

The VT ANR has targeted these as priority sites for treatment,  to 
reduce sediment and contaminant load to Lake Champlain. 

http://www.lcbp.org/ 
http://www.ci.burlington.vt.us/stormwater/ 



In order to control storm-water runoff, so-called Best Management 
Practices (BMPs), such as detention ponds and rain gardens, can be 
installed to reduce storm flash and remove pollutants, although 
often at a significant cost.   
 

Rain Gardens: 
Smaller, 

Infiltrating,  
More expensive, 

Prettier, 
Preferable for 

residential areas 

Detention Ponds: 
Larger, 
Impervious 
Cheaper per area treated, 
Minimum size restrictions, 
Less well-suited to residential areas 

http://www.uvm.edu/~ran/ranenglesby/ 

http://www.mychamplain.net/programs/fish-and-flowers-rain-gardens 



Problem:  
How to determine the appropriate number, types, placement, and 
sizing of BMPs in impaired watersheds? 
 
Multiple Objectives: 
1) Minimize sediment and contaminant load  
2) Minimize costs of BMPs 
3) Make the design robust to climate change 

 
Constraints: 
The proposed plans must be feasibly accommodated by the 
geography and land-use patterns 
 
We Propose a Complex Systems Approach: 
Multi-scale, multi-pass, multi-objective evolutionary algorithm 
Present watershed decision-makers with a family of potential 
solutions, evenly spaced along the non-dominated Pareto front, so 
they can best weigh alternatives and competing objectives. 



http://www.lcbp.org/ 

* 

Case Study: Bartlett Brook 
high-priority impaired 
watershed 

http://www2.q-city.com/shelbayreports/bartlett/part2bartlett.pdf 



Bartlett Brook is a gently-sloping 2.85 km2 
mixed-use watershed, which contains three 
housing developments, a commercial 
district along Route 7, two farms.  

We built a hydrologic model in HSPF, 
decomposing the watershed into 14 
subwatersheds.  
 
For each subwatershed, we pre-computed 
optimal (feasible) BMP configurations and 
associated costs, for treating anywhere from 
0% to 100% of the maximum treatable area in 
each subwatershed, based on geophysical 
(e.g., slope, open area) and other 
characteristics (e.g., preference for rain 
gardens in residential areas) of each 
subwatershed.  



The potential solutions to be evolved are thus simplified to real-
valued vectors with each element in the range [0,1].  Each element 
is associated with a distinct pre-computed cost curve associated 
BMP design. 
 

Once such a watershed-
level solution has been 
selected for 
implementation, 
watershed managers and 
developers can select the 
specific locations of 
detention ponds and rain 
gardens within each 
subwatershed, based on 
practical and political 
considerations.  

This multi-scale decomposition greatly 
reduces the search space to feasible 
solutions and speeds the evolution.  



Since evolutionary algorithms are population based, they are well-
suited to solving multi-objective functions, where there is no single 
‘best’ solution. 

Instead, we seek a set 
of solutions that are 
“Pareto Optimal” , i.e., 
non-dominated.  
 
e.g., A is better than B 
in objective 1, but B is 
better than A in 
objective 2 

Objective 1 (e.g., sediment load) 
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Ideally, we would like solutions uniformly spaced along the 
Pareto front, in order to best weigh alternatives. 

http://en.wikipedia.org/wiki/Pareto_efficiency 



Basically, DE adds the weighted difference between two population 
vectors to a third vector. This makes the scheme completely self-
organizing, automatically moving from “exploration” to “exploitation”. 

Solutions evolved with Differential Evolution (DE): Storn and Price, 1997 
(better for real-valued vectors than standard GA or ES) 

e.g, for 2 dimensions… 

Price and Storn, Dr. Dobb's Journal April 1997  

http://beyondtheblueeventhorizon.blogspot.com/
2011/04/differential-evolution-optimization.html 



15 

13 

12 
17 

 

 NSGA-II crowding 
distances; the 
shaded solutions will 
both be pruned. 
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The current state-of-the-art method for improving spread along the 
non-dominated front (used in NSGA-II) calculates “crowding 
distances” between 2 nearest neighbor solutions, and then 
discards those with lowest crowding distances. 

Unfortunately, for pairs of close points (shaded), both will be removed 
when ideally, to achieve the most uniform coverage along the front, 
only one of the pair should be removed. 

 
objectives

crowdingDistance shortest longest
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This function is maximized when shortest = longest in all objectives, 
so pruning lowest values, then recalculating, maximizes the 
uniformity of spacing of remaining solutions.   

New proposed Uniform Spacing (US) crowding metric  

 

 2

objectives

objectives

UScrowdingDistance shortest shortest longest

shortest shortest longest





  

  







NSGA-II crowding US crowding 

Benchmark Objectives Mean 

Standard 

Deviation 

Mean 

Standard 

Deviation 

P-value 

(US < 

NSGA-II) 

ZDT1 2 6.646e-03 5.643e-04 2.521e-03 1.985e-04 4.388e-09 

ZDT2 2 6.697e-03 9.196e-04 2.498e-03 2.175e-04 2.439e-08 

ZDT3 2 7.994e-03 9.570e-04 3.818e-03 3.215e-04 7.213e-08 

ZDT4 2 5.963e-03 6.476e-04 2.034e-03 2.300e-04 8.733e-09 

ZDT6 2 4.776e-03 3.904e-04 1.868e-03 1.442e-04 2.792e-09 

DTLZ1 3 9.153e-03 5.702e-04 9.081e-03 2.367e-04 3.430e-01 

DTLZ2 3 2.182e-02 9.186e-04 2.203e-02 6.450e-04 2.434e-01 

DTLZ4 3 2.234e-02 8.450e-04 2.118e-02 4.967e-04 2.833e-03 

To assess uniformity of spread in multiple dimensions, we take the 
standard deviation of all Euclidean distances in the minimum spanning 
tree (MST) between solutions. 

Results on 7 multi-objective benchmark problems confirmed that US 
crowding method yields better spacing than the NSGA-II crowding 
method. 



Through a rigorous study of 28 potential hydrologic metrics, we 
discovered that log(standard deviation of flow) was highly correlated 
with log(sediment load); this was validated on 9 watersheds. 

Simulating sediment transport is computationally costly, so we searched 
for a rapidly computable hydrologic surrogate to use as a surrogate 
objective to minimize for the bulk of the evolution. 



After using the computationally efficient sediment surrogate 
objective function (standard deviation of flow) to evolve the 
initial Pareto front, we then switch to the actual sediment load 
objective to fine tune the front. 
 
Precipitation events are expected to become more intense in the 
NE due to global climate change (NECIA, 2006. ) 
 
To assess the robustness of solutions along the Pareto front to 
anticipated changes, we assessed change in sediment load 
between: 

•2008 measured rainfall pattern 
•synthetic precipitation pattern generated with the same 
annual rainfall total but with more intense rain events 
distributed over 1-day storms every 7 days 

Non-dominated solutions were pruned 
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We assessed 3 possible multi-pass orders for when to introduce 
these refinements into the evolution: 
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Order 3 was the winner: best solutions, best spread, fastest; 
(using the more intense precipitation pattern first makes sense) 

Order 3 (black plusses) was able to achieve the same quality of solutions 
as when using the more computationally costly sediment load objective 
for the entire evolution throughout the evolution (solid green line) 



Sediment load under current 
precipitation (lower x-axis) 

Increase in sediment load due to 
more intense storms (upper x-axis) 

High-cost solutions not only reduce sediment the most, but are 
also likely to be more robust to climate change; this should be 
taken into account when selecting which solution to implement. 

Under the more intense precipitation patter, sediment load increases 
by a factor of around 1.47 for the highest cost solutions, but this 
increases to a factor of about 1.57 for the lowest-cost solutions. 



•Multi-scale decomposition  
Constrains evolutionary search space to feasible solutions 

•Multi-objective differential evolution 

•Uniform spacing crowding method 

•Multi-pass minimizes: 
1st: cost and sediment surrogate 
2nd: cost and sediment 
3rd: cost and sediment increase due to climate change 

•Applied to Bartlett Brook Watershed 

 

 Resulting family of potential management plans provides decision-
makers with the information needed to appropriately assess the 
trade-offs between competing objectives when selecting which 
solution to implement. 

Summary of proposed method for  
Multi-objective Optimization of Watershed Management Plans  


