Sustaining Through Innovation

a personnel perspective

Funding and support are vital to enable new innovative companies to take ideas from concept to reality EPSCoR, as well as UVM & VTSBDC play a vital role and have assisted me in the development of three companies

Sustaining Through Innovation

EPSCoR ,UVM & VTSBDC provided valuable support & technical expertise

- XC Associates
 - EPSCoR
 - "High thermal conductivity carbon fibers"
 - » Commercialization & Job Creation

- Thermal Composites
 - EPSCoR
 - "High thermal conductivity heat spreaders using nanotubes embedded in carbon silicon carbide"
 - » Early stage development

- Renewable Energy Resources
 - Working with VTSBDC, VSJF &
 - expect to work with UVM in future
 - » EPSCoR grants
 - Riparian barriers
 - Solve special combustion issues

EPSCoR (2001)

- "High thermal conductivity carbon fibers"
 - Elementary modeling to demonstrate concept
- Applications
 - Lightweight high thermal conductivity heat sinks
- 5xSBIR's phase I & II
 - Missile Defense Agency, NASA, Navy
- Commercialization & Job Creation

EPSCoR (2010)

- "High thermal conductivity heat spreaders using nanotubes embedded in carbon silicon carbide"
 - Build a high thermal conductivity material
 - K > 1000 w/m/K
 - To be achieved by adding carbon nanotubes to silicon carbide matrix
- Application

Background

- Carbon nanotubes have very high thermal conductivities
 - 3000 w/m/K for multi wall (MWNT) and
 - 6600 w/m/K for single wall (SWNT)
 - » Stainless steel ≈ 25, Aluminum 180, Copper ≈ 350
- Prior work
 - Adding nanotubes to typical epoxy or polyimide matrixes has resulted in disappointing improvement to thermal conductivity
 - $K \approx 0.5-2.0 \text{ w/m/K}$
 - this is well below expectations
- Goal
 - Thermal conductivity ≈ 1000 w/m/K

Hypothesis

- Thermal energy in nanotubes is transmitted by phonons (vibrations)
 - In order to transmit thermal energy through a matrix loaded with nanotubes, the stiffness of matrix must be similar to the nanotube

Stiffness mismatch = No energy transmitted

Stiffness match = energy transmitted

Thermal Results

- Initial measurements indicate thermal conductivity in order of 150 w/m/K
 - Much lower than expected due to excessive porosity of matrix
 - Small sample.
- Ongoing
 - Re-measuring and confirm measurements
 - Modify matrix cure to reduce porosity
 - Build new samples based on very slow cure
- Conclusion
 - Based on the level of porosity observed we are greatly encouraged by the high thermal conductivity we measured and believe that with ongoing efforts we achieve the target thermal conductivity

Next Steps

- EPSCoR funding is relatively small only allows one approach to be explored
 - Initial work indicates that the approach described has the potential to develop a high thermal conductivity material
- SBIR phase I submitted to NSF funding
 - Proposal rated as "good" but not funded
 - "Need more basic mathematical analysis to substantiate hypothesis"
 - Valuable help from VTSBDC
- Future
 - Looking for additional funding
 - Some additional work is being carried out Surrey University, UK
 - Blue Sky Nano
 - Early stage negotiations with US & UK companies to continue work

Renewable Energy Resources

- To provide crop biomass for heating applications
- Work with customers to provide long term fuel plans
 - In-house expertise
 - Strategic alliances
 - Growers/harvesters
 - Boiler manufacturers
- Business Plan
 - Market development
 - Operate mobile briquetting
 - Service several towns
 - Travel to local area
 - Operate many mobile machines
 - Mature market
 - Once demand exceeds 8,000 tons/yr within 30 mile radius
 - Set up fixed base processing plant
 - Set up many fixed based plants

Business Development

- Raising capital
 - Investors
 - Grants
 - VSJF
 - EPSCoR, SBIR, USDA, etc.
- Developing relationships
 - VTSBDC, UVM,.....
- Received first orders
 - Benton school,
 - Hospital, College Campus, Electrical Generation
- Future
 - Looks good
 - Growth
 - Jobs

Concluding Remarks

Vermont is fortunate to have organizations that help entrepreneurs and innovators bring ideas from concept to reality

My thanks to

EPSCoR, UVM, VTSBDC, VSJF

- Something to think about
 - Innovation is great!
 - Company growth and retention in Vermont is important
 - Particularly in Southern Vermont