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RACC’s IAM Research Approach 

• Three Working Groups Meet 6-8 times per year 
– Cascading IAM working group 
– Hybrid IAM working group 
– Data Management working group 
 

• Annual day-long retreats 
 
• Numerous side meetings between all specific sub-

groups 
 
• Truly an interdisciplinary and collaborative working 

experience 



The Overarching RACC Question 

How will the interactions 
of climate change and 
land use alter 
hydrological processes 
and nutrient transport 
from the landscape, 
internal processing and 
eutrophic state within 
the  lake, and what are 
the implications for 
adaptive management 
strategies? 



Three Distinct Approaches to IAMs 

• Cascading Models 
– E.g. MIT’s IGSM; GB-Quest (Carmichael et al 2005) 

 

• Bayesian Networks and System Dynamic Models (Hybrid 
Models) 
– E.g. World3 (Meadows et al 2003); IIASA’s GAINS model; IIASA’s EPIC model 

 

• Impact Assessment Models 
– Synthesis-Based 

• E.g., Millennium Ecosystem Assessment (MEA) 2005; Rottmans and Van Asselt approach to 
“Integrated Assessment” 

– Multi-Criteria Decision Analysis (MCDA) 
• E.g. Conservation and Development Planning (Zia et al. 2011 Ecology and Society); Energy 

and Environment Planning etc. 



Comparing Cascading and Hybrid IAMs of LCB 

Cascading IAM 
• High spatial resolution (30m x 

30m) 

• High temporal resolution (nested 
from hourly to daily and annual) 

• Limited scope (only Missisquoi 
and Winooski watershed)  

• Highly process-based 

• Difficult to adjust and re-calibrate 

• May take many days and perhaps 
weeks to run a scenario! 

• Platform: PEGASUS 

 

 

Hybrid IAM 
• Low spatial Resolution 

(watershed scale) 
• Low temporal resolution (nested 

from weekly to annual and 
decadal) 

• Broader scope (all VT-LCB 
watersheds) 

• Dynamic but less emphasis on 
process 

• Flexible adjustments and easier 
re-calibration 

• May take minutes to run a 
scenario! 

• Platform: AnyLogic Professional 
 



Current Architecture of RACC’s Cascading IAM 



Cascading IAM: Multi-Discipline 
Modeling 

• Select the best practices for modeling each 
component of a complex system 
– Land Use Management and Prediction 
– Atmospheric/Weather/Climate Prediction 
– Watershed Hydrological Flow Analysis 
– Lake Water Quality  

 
• Integrate by Building Connections between Dependent 

Models 
– Consistent land region of study 
– Isolate Parameters that Affect Other Models 
– Bridge Between Models with Necessary Data Manipulations 
– Create a Framework to House and Direct Data Between Models 

 
 



Cascading IAM Overview 
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Phase I: Automating Climate, Land 
Use and Hydrology Scenario Runs 



Pegasus Workflow for Climate 
Downscaling 



Progress on Integrating ILUTABM 
and Downscaled Climate Scenarios 

with RHESSyS 

• IAM working group chose three land-use ABM 
scenarios and two GCM scenarios to manually run 
six (3x2) demonstrative scenarios on RHESSyS 

 

• Detailed workflow for automation in PEGASUS will 
be developed in the IAM retreat on August 19, 
2014 (28 participants expected to attend) 



Brown et al. (2014) LULCC, National Climate Assessment 
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and least (by 4% and 6%, 

respectively) under lower-
growth scenarios. More 

forest than cropland is 

projected to be lost in the 
Northeast and Southeast, 

whereas more cropland 

than forest is projected 
to be lost in the Midwest 

and Great Plains.
14

 Some of 

these regional differences 
are due to the current mix 

of land uses, others to the 

differential rates of urban-
ization in these different 

regions.

Key Message 1: Effects on Communities and Ecosystems

C hoices about land-use and land-cover patterns have af f ected and w ill cont inue  

to af f ect  how  vulnerable or resilient  human communit ies and ecosystems are  

to the ef f ects of  climate change . 

Decisions about land-use and land-cover change by individual 

landowners and land managers are influenced by demographic 

and economic trends and social preferences, which unfold at 
global, national, regional, and local scales. Policymakers can 

directly affect land use and land cover. For example, Congress 

can declare an area as federally protected wilderness, or local 
officials can set aside portions of a town for industrial devel-

opment and create tax benefits for companies to build there. 

Climate factors typically play a secondary role in land deci-
sions, if they are considered at all. Nonetheless, land-change 

decisions may affect the vulnerabilities of individuals, house-

holds, communities, businesses, non-profit organizations, 
and ecosystems to the effects of climate change.

15
 A farmer’s 

choice of crop rotation in response to price signals affects his 

or her farm income’s susceptibility to drought, for example. 
Such choices, along with changes in climate can also affect the 

farm’s demand for water for irrigation. Similarly, a developer’s 

decision to build new homes in a floodplain may affect the new 
homeowners’ vulnerabilities to flooding events. A decision to 

include culverts underneath a coastal roadway may facilitate 

migration of a salt marsh inland as sea level rises.

The combination of residential location choices with wild-

fire occurrence dramatically illustrates how the interactions 

between land use and climate processes can affect climate 
change impacts and vulnerabilities. Low-density (suburban 

and exurban) housing patterns in the U.S. have expanded and 

are projected to continue to expand.
13

 One result is a rise in the 
amount of construction in forests and other wildlands

16
 that in 

turn has increased the exposure of houses, other structures, 

and people to damages from wildfires, which are increasing. 
The number of buildings lost in the 25 most destructive fires 

in California history increased significantly in the 1990s and 

2000s compared to the previous three decades.
17

 These losses 
are one example of how changing development patterns can 

interact with a changing climate to create dramatic new risks. 

In the western United States, increasing frequencies of large 
wildfires and longer wildfire durations are strongly associated 

with increased spring and summer temperatures and an earlier 

Figure 13.3. Projected percentages in each land-cover category for 2050 compared with 2010, 

assuming demographic and economic growth consistent with the high-growth emissions scenario 

(A2) (Data from USDA).

Projected Land Covers (2010-2050)

Uncertainties 
surrounding 
ecological, 
economic and 
policy drivers of 
LULCC are 
mostly ignored 
in these 
baseline 
projections! 
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Interactive Land Use Transition Agent-based 
Mode (ILUTABM) 

• Human agents (landowners) make land use 
decisions based on their expected utility and 
returns of productivity from their lands to 
maximize their livelihood (expected utility) 

 
• Landowner types: 

– Farms 
– Urban Business 
– Urban Residence 



Farmer: Expected Utility & Land 
use Decisions 



Urban Business: State & Land 
Use Decisions 



Urban Residence: State & Land 
Use Decisions 



Estimation of Land Use Suitability 

• Example 1: if a farmer is financially feeling good 
– Search land cells that are suitable for farming based on the land use 

of neighboring cells by using 
– Logistic function, which gives (e.g. to pasture or crop): 

 
 
 

– If   >  { 
 If   >   
  Turn into crop 
 Else if  >   
  Turn into pasture 
} 

 



Estimation of Land Use Suitability 

• Example 2: if a farmer is financially major-stressful 
– Abandon land cells at the edge of the farm lands based on the land use 

of neighboring cells by using 
– Logistic function, which gives (e.g. From ag to grass or shrub): 

 
  
– If   >  

  Turn into grass 
Else if  >  
  Turn into shrub 

– Logistic functions also apply to from barren to grass, from shrub to 
forest, from ag to urban  



From Agriculture to urban parcels 

• If the number of urban residences who do not occupy 
a parcel  > a threshold 

• Then, pasture & crop lands in Ag parcels that 

– Are closer to a Urban center or roads, and 

– The landowners are financially major-stressful 

– Are located in zones where urbanization are not restricted 

• Are converted into  

– Urban open spaces, urban low intensity, mid intensity, or 
high intensity  

– Depending on the urbanization level of the neighborhood 

 



ILUTABM: Calibration 

• Stepwise 

 

• Calibrated to NLCD 2011  

 

• Calibrated by minimizing land cell counts for 
– Grass, shrub,  

– Deciduous, mixed and evergreen forest, 

– Crop and pasture/hay 



ILUTABM Calibration Results 
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Preliminary Simulation 
Calibrated & Under Scenario IP 



Preliminary Simulation 
Calibrated & under Scenario IP 

Highgate & Franklin 

Canada, North of the Missisquoi Bay 



Preliminary Simulation 
Pro Forest Growth & Under IP 



Preliminary Simulation 
Pro Crop Growth & Under LAP 



ILUTABM Scenarios 
• Cali-gr-sh-fo-ag-IP 

– Parameters are calibrated to minimize discrepancy between 
observed and simulated land use in 2011 for 
• Grass, shrub 
• Deciduous, mixed and evergreen forest 
• Crop and Pasture/hay  

–  socio-economic conditions: Increase Poverty (IP) 

• Pro-Crop-LAP 
– Parameters are set to trigger crop land expansion 
– Socio-economic conditions: Largely Alleviate Poverty (LAP) 

• Pro-Forest-IP 
– Parameters are set to trigger forest growth 
– Socio-economic conditions: Increase Poverty (IP) 



Observed Land Use 2001 Simulated Land Use 2011 Simulated Land Use 2041 
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ILUTABM Scenarios:  
Parameters Setting 

Scenarios 

Parameters Cali-gr-sh-fo-ag-IP Pro-Crop-LAP Pro-Forest-IP 

lag_barren2grass 3 3 3 

lag_grass2shrub 2 2 2 

lag_shrub2trees 3 3 3 

coef_2Grass 0.5 0.5 4.5 

coef_2Forest 1.1 0.1 6 

coef_2Shrub 5 5 5 

coef_2Desiduous 4 4 5.5 

coef_2Mixed 2.5 2.5 5.5 

coef_2Conifer 3 3 5.5 

coef_2Ag 3 4.5 1.2 

coef_2Crop 3.5 5 0.9 

coef_2Pasture 3.5 5 0.8 

min_prob_2Grass 0.7 0.7 0 

min_prob_2Forest 0.37 0.37 0 

min_prob_2Shrub 0.6 0.6 0 

min_prob_2Deciduous 0 0 0 

min_prob_2Mixed 0.8 0.8 0 

min_prob_2Conifer 0.8 0.8 0 

min_prob_2Ag 0.5 0 0.3 

min_prob_2Crop 0.6 0 0.3 

min_prob_2Pasture 0.6 0 0.5 



Comparing 2000 LULC with 2041 
Scenarios 

cali-gr-sh-fo-ag pro-crop-LAP pro-forest-IP 

Type Origin 2000 (%) IP 2041 (%) LAP 2041 (%) IP 2041 (%) 

Shrub 1.22 0.58 0.5 0.56 

Grass 0.57 0.45 0.22 1.15 

No Vegetation 26.26 27.63 55.8 15.92 

Mixed Forest 24.97 24.57 13.67 24.61 

Coniferous 
Forest 

8.4 7.88 3.8 7.91 

Deciduous 
Forest 

38.58 38.89 26 49.84 

Watershed drainage area is 2,200 km2 



Cascading Landuse to Flow 

AGENT 
BASED 
MODEL 

NLCD 
Landuse 
Raster 

Modified  
Landuse 

Forest 
Elaboration 

Module 

GRASS World 
File 

RHESSYS 

Flow 

Land Use Modeling 

Watershed Modeling 



Missisquoi River Watershed @Swanton 

• Drainage area 2,200 km2 

• Watershed outlet has 
streamflow records since 
1990 (USGS gauge # 
04294000) 

• Average annual runoff 
745 mm 

• Distributed Hydrological 
Model (RHESSys)  



Streamflow hydrograph 
Missisquoi River at Swanton 

• cali_gr_sh_fo_ag_IP & BNU_ESM rcp85 = scenario 1 

• cali_gr_sh_fo_ag_IP & CESM1_BGC rcp85 = scenario 2 

• pro-crop-LAP & BNU_ESM rcp85 = scenario 3 

 

• pro-crop-LAPP & CESM1_BGC rcp85  = scenario 4 

• pro-forest-IP & BNU_ESM rcp85  = scenario 5 

• pro-forest-IP & CESM1_BGC rcp85  = scenario 6 
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Un-calibrated Streamflow Nitrate hydrograph 
Missisquoi River at Swanton 

• cali_gr_sh_fo_ag_IP & BNU_ESM rcp85 = scenario 1 

• cali_gr_sh_fo_ag_IP & CESM1_BGC rcp85 = scenario 2 

• pro-crop-LAP & BNU_ESM rcp85 = scenario 3 

 

• pro-crop-LAPP & CESM1_BGC rcp85  = scenario 4 

• pro-forest-IP & BNU_ESM rcp85  = scenario 5 

• pro-forest-IP & CESM1_BGC rcp85  = scenario 6 
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Phase 2 (2014-15): Integration of 
DHVSM/RHESSYS with Lake Model 

(A2EM) 



A2EM Architecture 

Background: A2EM (Advanced Aquatic Ecosystem Model) 

Bathymetry 
River Inputs, 

Main lake 
level  

Initial water 
levels, temp   

Wind (speed, 
direction) 

Temp 
RH 
Pressure 
Solar Radiation 
Cloud Cover 

Initial nutrients, 
phytoplankton, 
zooplankton  

Phyto growth and 
nutrient uptake 
parameters  

Initial mussel 
densities 

Initial sediment nutrient 
concentrations, bulk 
density, sediment 
diagenesis parameters 



Integrating A2EM with RHESSYS 

• Anticipated steps to Integrate A2EM into the IAM 
framework 

 
– Develop preprocessor to translate RHESSYS/DHSVM 

output into input file formats for EFDC and RCA (text-
delimited files) 

 
– Develop script to automate EFDC RCA  EFDC… 

batch runs (integrating watershed model) 
• Current framework uses an Access database and a semi-

proprietary interface, but that mostly facilitates the 
development of input files; that could be done manually 
 

– Come up with a method of estimating meteorological 
variables not being downscaled (solar radiation, cloud 
cover, wind, RH, pressure) 



RACC Hybrid IAM Architecture 



Hybrid Modeling Approach 

• Focus on developing a “hybrid” integrated 
assessment model that integrates P and N fluxes 
from watersheds as well as climate change 
scenarios in predicting Harmful Algal Blooms (HABs) 
in the lake Segments. 

 
• A Bayesian Network Model is being developed to 

integrate dynamic P and N fluxes at biweekly time-
scale in predicting the likelihood of algal blooms in 
the lake segments where LCB monitoring sites are 
located (starting with Missisquoi, South Lake, 
Winooski and so forth) 



LCB 
Monitoring 
System 



Why Bayesian Networks? Assessment 
and Management of Uncertainty 

• Understanding the impacts of anthropogenic climate 
change on water quality, such as formation and 
persistence of harmful algal blooms (HABs), requires 
quantification of uncertainty that is introduced in 
assuming future trajectories of N and P fluxes as well as 
water and atmospheric temperature gradients. 

 

• Forecasting the location and timing of critical transitions in 
fresh water lake systems 

– Empirical Focus on Missisquoi Bay  

– LCBP and USGS monitoring data from 1992-2010 is aggregated at 
bi-weekly timescale to train the models 



Dynamic Forecasting of Critical Transitions 
[Dakos et al. (2012) PLoS One (7)7: e41010] 

whereas decreases in recovery rates have been demonstrated in

chemical reactions [11], lasers [12], or in the plankton [13].

However, the statistical detection of leading indicators in both past

events and in real time remains challenging for at least two

reasons. First, there is a lack of appropriate data. High frequency

sampling and designed experimentation have been proposed as

potential solutions that can improve the detection of leading

indicators [6,10]. In many important cases, however, high

frequency sampling or experiments are impossible. Furthermore,

in many systems, sampling schemesaredesigned explicitly to avoid

temporal autocorrelation, which is, in fact, needed for theaccurate

application and assessment of leading indicators (see worked

examples below).

Second, there is no clear framework for the application and

detection of leading indicators. Different approaches have

emerged in different fields [14] and have been applied to different

types of transitions [15]. For instance, most leading indicators are

based on detecting changes in the stability properties of a system

around its equilibrium under a weak stochastic regime [6],

whereas alternative approaches have been developed for systems

experiencing highly noisy regimes [16]. As the literature is rapidly

expanding, there is an urgent need for a coherent methodological

framework and a comparison between approaches.

Here we present a methodological guide for using leading

indicators for detecting critical transitions in time series. For this,

we apply available leading indicators to two example datasets

generated from a simple ecological model that is known to

undergo a critical transition to an alternative state. While most of

these methods have been applied to real-world data in papers that

we cite, such applications inevitably depend on specific details (e.g.

missing values, data transformation, coping with too-long

sampling intervals or too-short time series) that make it difficult

to compare the methods themselves. The exact location and

nature of the critical transition is also ambiguous for real-world

data. Therefore we gather issues of data preprocessing in a

separate section (see ‘‘Step 1. Preprocessing’’ below), and illustrate

the methods using simulated data with known, clearly defined

critical transitions. The structure of the paper is as follows. First,

we describe two categories of leading indicators: metric-based and

model-based indicators. Second, we present the ecological model we

use to generate the time series we use to detect critical transitions.

Third, we show how each indicator isapplied to the two simulated

time series. We provide computer code alongside the worked-out

examples. Last, we review the sensitivity and limitations of each

indicator and discuss their interpretation. We trust that the

framework and the tools we provide will encourage testing the

ability of these indicators to detect upcoming transitions in real

systems.

Methods

We group leading indicators of critical transitions into two

broad categories: metric-based and model-based indicators (Table 1).

Both types of indicators reflect changes in the properties of the

observed time series of a system that is generated by a general

process:

dx~ f (x,h)dtz g(x,h)dW ð1Þ

where x is the state of the system, f(x,h) describes the deterministic

part of the system, and g(x,h)dW determines how stochasticity

interacts with the state variable; dW is a white noise process. A

slow change in the underlying conditions (drivers), h, moves the

system close to a threshold where a transition may occur. Metric-

based indicators quantify changes in the statistical properties of the

time series generated by equation 1 without attempting to fit the

data with a specific model structure. Model-based methods quantify

changes in the time series by attempting to fit the data to a model

Table 1. Early warning signals for critical transitions.

Phenomenon

Method/Indicato r Rising memory Rising variabil ity Flickering Ref.

metrics Autocorrelation at-lag-1 x [23]

Autoregressive coefficient of AR(1) model x [19]

Return rate (inverse of AR(1) coefficient) x [23]

Detrended fluctuation analysis indicator x [7]

Spectral density x [20]

Spectral ratio (of low to high frequencies) x [25]

Spectral exponent x [this paper]

Standard deviat ion x x [28]

Coefficient of variation x x [28]

Skewness x x [29]

Kurtosis x x [25]

Conditional heteroskedasticit y x x [32]

BDS test x x [10]

models Time-varying AR(p) models x x [38]

Nonparametric drift-diffusion-jump models x x x [16]

Threshold AR(p) models x [38]

Potential analysis (potential wells estimator) x [43]

Leading indicator or method, the primary underlying dynamical phenomenon associated with it, and the original reference in which it was developed.

doi:10.1371/journal.pone.0041010.t001

Early Warning Detection Methods
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ARIMA Model 



Observed versus predicted TP (ARIMA Model 1) 



Observed versus predicted TN (ARIMA Model 2) 



Observed versus predicted TN/TP  



Observed versus predicted ChlA (ARIMA Model 3) 





Next Steps: Hybrid IAM Development 

• LCBP (1992-2010) Long-term monitoring and USGS datasets as 
training datasets, and 2011-14 as calibration datasets for 
Bayesian network model development 

 

• In addition, downscaled GCM/statistical scenarios for 
temperature, precipitation and solar radiation 

 

• ARIMA  Models (1, 2 and 3) presented above are being used to 
connect P and N fluxes with climatic scenarios, predict TN/TP 
ratios, and in turn predict HABs [Focus on critical transitions 
and alternate stable states] 

 

• Calibrated model will be used to predict TN/TP ratios and ChlA 
(2011-2050) under different climate change, hydrological land-
use land cover change and policy & governance scenarios 



What will IAMs do? Assess the 
Effectiveness of Policy Solutions 

• A crowdsourcing Delphi survey of 100+ experts and 
civil society stakeholders led to the identification of 
more than 60+ unique policy and technical 
solutions 

 

• Stakeholder driven policy solution scenarios can be 
run on the IAMs to assess the P, N and HAB 
reduction effectiveness, given different climate 
change scenarios and land-use scenarios 



Adaptive Co-Management of Critical 
Transitions 

• “Foresight” in the face of uncertainties 
– When will critical transitions take place? 

 

• Value Pluralism 
– What to do in the face of conflicting values? 

 

• Experimental Interventions 
– What type of social and policy learning is taking place 

from real-world experimental policy and management 
interventions? 

 



THANK YOU 

• For more information: Asim.Zia@uvm.edu 
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