TRACKING EROSION WITH SEDIMENT ASSOCIATED ISOTOPES IN YUNNAN, CHINA

Thesis Defense Presentation Thomas B. Neilson

Introduction

- Humans are one of the most effective geomorphic agents on the planet
 - Humans have been estimated to move more earth material annually than any other geomorphic or geologic process
- Erosion and sediment disturbance that results from human activity directly impacts fluvial systems as well as communities reliant on river resources

Introduction

- Long history of human influence on the landscape
 - First recorded in 11th century AD
 - Communism and subsequent opening and development severely impacted erosion
- Since the 1950's, China has maintained sediment yield monitoring stations throughout the country
- Data from these stations do not show a systematic increase in sediment yield as a result of land-use

Question

 Have humans increased erosion over the long-term average through land-use change?

Field Sites

Experimental Approach

Goals

Determine long-term (~1,000 – 50,000 yr) average erosion rate

Assess contemporary rates of erosion

Determine what factors drive erosion

- Tectonic and lithologic controls
- Slope, rainfall, channel steepness, etc.
- Agriculture vs. Forest

Tools

- In situ ¹⁰Be
- Meteoric ¹⁰Be

- ¹³⁷Cs
 - Sediment Yield

- Analysis of land-use data
- Field observations

In situ-produced ¹⁰Be

- t_{1/2} = 1.39 myr
- Produced within quartz grains from interaction between cosmic rays and oxygen
- Permanently entrained in mineral grain
- ~290 atoms/cm² y⁻¹ production rate
- Useful for estimating basin-wide rates of erosion when measured in fluvial sediment

n

Fallout Radionuclides (¹⁰Be_m, ²¹⁰Pb_{ex}, ¹³⁷Cs)

- Produced in the atmosphere
- Delivered to earth surface via precipitation and dust/dry-fall
- Can be mobilized in certain conditions (e.g. pedogenesis), but generally are assumed permanently sorbed to sediment
- Preferentially adsorb to finer sediment particles

Fallout Radionuclides (¹⁰Be_m, ²¹⁰Pb_{ex}, ¹³⁷Cs)

- ${}^{10}\text{Be}_{m} (t_{1/2} = 1.39 \text{ myr})$
 - Atmospheric spallation reaction
 - ~1.3 million atoms/cm² y⁻¹ delivery rate
 - Useful for assessing long-term erosion
- ${}^{210}\text{Pb}_{ex}$ (t_{1/2} = 22.2 yr)
 - Naturally occurring as part of ²³⁸U decay series
 - Fraction of total ²¹⁰Pb in soil derived from ²²²Rn gas that leaves soil
 - Delivered back to soil through fallout
 - Integrates up to past ~100 years of erosion
- ¹³⁷Cs (t_{1/2} = 30.2 yr)
 - Created from nuclear weapons testing in atmosphere
 - Delivered to soil through fallout
 - Only deposited globally from 1950's to 1970's
 - Useful for assess erosion over past 50-60 years

Going from ¹⁰Be concentration to erosion rate (or index)

- River sediment is average of upstream area
- The production (or delivery) rate of ¹⁰Be can be determined for the sampled watershed

Going from isotopic concentration to erosion rate (or index)

In situ ¹⁰Be (¹⁰Be_i):

 Isotopic concentration of the sediment is compared to the rate of production, and the difference is attributed to land surface lowering

Meteoric $^{10}Be (^{10}Be_m)$:

- The export rate of ¹⁰Be_m on sediment is compared to the delivery rate, and a ratio is made
- >1 indicates more is leaving than being delivered
- <1 indicates more is being delivered than leaving

Sampling

- Collect active channel sediment from 54 locations throughout three watersheds
- Select sample sites to represent:
 - Basins that are primarily forested or agricultural
 - Natural range of representative slopes in watershed
 - Range of basin sizes
 - Sediment mixing above and below major junctions

Extracting and measuring Be

Measuring ²¹⁰Pb_{ex} and ¹³⁷Cs

- Measurement done with germanium detector
- Counts radioactive decay at given energy levels, which are converted to concentration

Sediment Mixing Results

Sediment Mixing Results

Isotopic Results

?

Basin 35: Physical properties

Basin 35: Isotopic Results

Basin 35: Long-term erosion

 Base level fall is primary control on long- and short-term erosion

- Base level fall is primary control on long- and short-term erosion
- Slope steepness determines long-term erosion rate

- Base level fall is primary control on long- and short-term erosion
- Slope steepness determines long-term erosion rate
- Erosion rates increase after channels steepen and hillslopes respond

- Base level fall is primary control on long- and short-term erosion
- Slope steepness determines long-term erosion rate
- Erosion rates increase after channels steepen and hillslopes respond
- Contemporary erosion appears to be controlled by un-measured variable(s)

Basin 49: Physical properties

Basin 49: Long-term erosion

¹⁰Be_i derived erosion rate (mm/kyr)

> ¹⁰Be_m derived erosion index

Basin 11: Physical properties

Basin 11: Isotopic Results

Basin 11: Long-term erosion

- No ¹³⁷Cs
- High ²¹⁰Pb_{ex}, except at outlet where channel has been altered
- Contemporary sediment yield 50% lower than longterm average

Sediment transport path: working hypothesis

Explain erosion using a conceptual model that follows sediment grains from source to export from the basin.

Sediment transport path: working hypothesis

- 1. Begins on hillslope with low ¹³⁷Cs and ²¹⁰Pb_{ex} concentration
- 2. Enters agricultural terrace through irrigation diversion or direct transport
- Sits near surface as it works through terrace network, from tread to riser to next terrace, accumulating ²¹⁰Pb_{ex} the entire time
- Finally enters main river channel and is exported from basin with higher ²¹⁰Pb_{ex} concentration than it began with

Sediment transport path: working hypothesis

- Accounts for:
 - Absence of ¹³⁷Cs in sediment
 - High activity of ²¹⁰Pb_{ex}
 - Low contemporary sediment yield

Primary Findings

- Basin 35: In transient landscape, knickpoint migration in response to base-level fall controls erosion
- Basin 49: In landscape that is adjusted to base-level, morphology controls long-term erosion while agriculture dominates contemporary erosion
- Basin 11: Diversion of water and sediment to terraces complicates interpretations of erosion

Conclusions: What do we learn about the effects Chinese land-use policy?

Change in pace of erosion coincides with extensive deforestation in 1950's – 1980's and topdown forest conservation policy from the 90's to present

Conclusions: Does this method work?

- Measuring four isotopes on the same samples means better temporal resolution of erosion
 - Can address drivers of contemporary and long-term erosion in one study
- Not all of the isotopes provide useful information in all settings
- Here, in situ ¹⁰Be and ²¹⁰Pb_{ex} are most useful, followed by ¹³⁷Cs
 - ¹⁰Be_m is difficult to interpret and does not greatly improve our understanding of erosion

Acknowledgements

- Special thanks to:
- Paul Bierman
- Amanda Schmidt
- Donna Rizzo
- Andrea Lini
- Veronica Sosa-Gonzalez
- Dylan Rood
- The UVM Geology Department
- National Science Foundation
- And many more...

Questions?

In Situ ¹⁰Be

Meteoric ¹⁰Be

?

Field area

- Three river basins in the Mekong watershed, Yunnan Provence, China
- Basins range from 200-2000 km²
- Moderate to high relief (Up to ~1800 m)
- Intensive land use, primarily agriculture and forestry

Methods

- Four sediment associated isotopic systems
 - Cosmogenic
 - Meteoric ¹⁰Be
 - In situ ¹⁰Be
 - Short-lived
 - Unsupported ²¹⁰Pb
 - ¹³⁷Cs
- ¹⁴C to date terraces and "paleo" *in situ* ¹⁰Be erosion rates
- Daily sediment yield data from Chinese Government hydrology stations (18-23 years)
- Remotely sensed land-use classification

Results

¹⁰Be Results

Results

Isotopes used for contemporary erosion

Unsupported ²¹⁰Pb

- t_{1/2} = 22.2 yr
- Naturally occurring as part of ²³⁸U decay series
- Fraction of total ²¹⁰Pb in soil derived from ²²²Rn gas that leaves soil
- Delivered back to soil through fallout

¹³⁷Cs

•
$$t_{1/2} = 30.2 \text{ yr}$$

- Created from nuclear weapons testing and accidents
- Delivered to soil through fallout
- Only deposited globally from 1950's to 1970's

- Modest statistically significant relationships between long-term measures of erosion and MAP and relief
- Unclear what, if any, processes might be driving these relationships – likely result of extensive agriculture

