2011 GSA Annual Meeting in Minneapolis (9@12 October 2011) Paper No. 102-14

Presentation Time: 9:00 AM-6:00 PM

DETERMINING LONG TERM EROSION RATES IN PANAMA- AN APPLICATION OF $^{10}\mathrm{BE}$

SOSA-GONZALEZ, Veronica, School of Natural Resources, University of Vermont, Aiken Center, 81 Carrigan Drive, Burlington, VT 05405, vsosago1@uvm.edu, BIERMAN, Paul R., Geology Department and School of Natural Resources, University of Vermont, Burlington, VT 05405, NICHOLS, Kyle K., Department of Geosciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, and ROOD, Dylan H., Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, MS L-397, 7000 East Ave, Livermore, CA 94550-9234

In order to characterize long-term erosion rates in Panama, we sampled river sediment from streams draining 16 watersheds, all of which contained at least some quartz-bearing rocks. Watershed area ranges between 22 km² and 2560 km². Mean watershed elevation ranges from 151 m to 2267 m and mean basin slope was between 5 and 18 degrees. The watersheds stretch from east to west across the country and most include at least some of the mountainous spine of the isthmus.

We measured the concentration of in situ produced 10 Be in quartz purified from the sand fraction of all samples (250-850 ug); measured concentrations of 10 Be range between 7.61x10³ and 1.37x10⁵ atoms/g. Erosion rates derived from these concentrations range from ~ 20 m/My to almost 600 m/My, average about 200 m/Myr, and have a median of 100m/Myr. There seems to be no spatial pattern in the distribution of erosion rates along the spine of Panama nor is there any statistically significant relationship between erosion rates and average basin slope, mean basin elevation, or watershed area.

To investigate the influence of landslides on the 10 Be concentration of stream sediments, we sampled sediment from an active landslide as well as from the river several hundred meters up and downstream of the slide. We split the samples into 7 different grain sizes and measured each grain size separately. The 10 Be concentration upstream averaged 2.15x10⁴ atoms/g; downstream it averaged 1.67x10⁴ atoms/g; the landslide sediment contained 1.17x10⁴ atoms/g. Assuming a two-component mixture, it appears that sediment from the landslide makes up about half (49%) of the sediment sampled downstream. We observed an inverse relationship between grain size and 10 Be concentration in all three of the samples for which we analyzed multiple grain sizes.

2011 GSA Annual Meeting in Minneapolis (9@12 October 2011) General Information for this Meeting

Session No. 102--Booth# 176 <u>Quaternary Geology (Posters): Recent Developments and Applications in Quaternary Geochronology</u> Minneapolis Convention Center: Hall C 9:00 AM-6:00 PM, Monday, 10 October 2011

Geological Society of America Abstracts with Programs, Vol. 43, No. 5, p. 274

© Copyright 2011 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.