Topic : CRI 03

Towards high precision and low ratio ¹⁰Be measurements with the SUERC 5MV tandem : bigger isn't always better

Rood Dylan^{1,2} Xu Sheng,¹ Shanks Richard,¹ Dougans Andrew,¹ Gallacher Paul,¹ Keefe Kathy,¹ Miguéns-Rodríguez Maria,¹ Bierman Paul,³ Carlson Anders,⁴ Freeman Stewart.¹

[1]Scottish Universities Environmental Research Centre (United Kingdom)
[2]Earth Research Institute, University of California at Santa Barbara (United States)
[3]Geology Department, University of Vermont (United States)
[4]College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, (United States)

We quantify the uncertainties, total system efficiency, and interlaboratory reproducibility of ¹⁰Be measurements on the SUERC 5MV spectrometer. Secondary standards have average statistical uncertainties based on counting statistics of 0.6%, 1.0%, and 1.3% for standard materials with ratios of 3 x 10^{-12} (N=144), 1 x 10^{-12} (N=86), and 6 x 10^{-13} (N=81), respectively. The average measured ratios fall within the reported 1.1% uncertainty. The error-weighted standard deviation is 1.5%, 2.6%, and 2.6%, respectively. These data indicate an additional uncertainty of 1.4-2.4% above counting statistics. Furthermore, we measured 11 replicate quartz targets. These full-chemistry replicates have an average uncertainty of 1.2%, but a standard deviation of 3.6%. We also determined the minimum ionization and total system efficiency to be 0.3% and 0.1%, respectively. ¹⁰Be samples prepared by chemistry laboratories in the US and measured at SUERC had high and consistent beam currents, 105 + -5% (1 SD) of the primary standards, indicating the high quality of chemistry (high ~100% Be yield and pure BeO as verified by ICP-OES data on final Be fractions). The consistently low carrier blanks (6 x 10^{-16}) demonstrate the sensitivity of the SUERC system. Measured 1-sigma analytical uncertainties were 3% for low 10^{-13} , 5-12% for 10^{-14} , and 14-19% for low 10^{-15} ratio samples. An AMS laboratory intercomparison of 3 quartz samples ranging from $\sim 3 \ge 10^{-14}$ to $\sim 1 \ge 10^{-13}$ are reproducible within their reported uncertainties. In the same experiments, we measured exposure ages of about $1.4 \text{ ka} \pm 100\text{-}200$ years. These results demonstrate the effectiveness of the SUERC 5MV spectrometer, including potential for high precision and low ratio ¹⁰Be analyses.