6/15/2018 Abstract: UNDERSTANDING MODERN LANDSCAPE BEHAVIOR USING METEORIC AND <I>IN SITU</I> ¹⁰BE AND <...

Start

View Uploaded Presentations 11

11 Meeting Information

Paper No. 8 Presentation Time: 10:45 AM

UNDERSTANDING MODERN LANDSCAPE BEHAVIOR USING METEORIC AND IN SITU ¹⁰BE AND ¹³⁷CS IN LARGE RIVER BASINS, SW CHINA

NEILSON, Thomas B., Department of Geology, University of Vermont, 180 Colchester Ave, Department of Geology, UVM, Burlington, VT 05401, SCHMIDT, Amanda H., Geology, Oberlin College, 52 West Lorain Street, Oberlin, OH 44074-1044, SOSA-GONZALEZ, Veronica, The Rubenstein School, University of Vermont, Aiken Center, 81 Carrigan Drive, Burlington, VT 05405, ROTHENBERG, Miriam, Anthropology, Oberlin College, King Building 305, 10 N. Professor St, Oberlin, OH 44074-1019, BIERMAN, Paul, Department of Geology and Rubenstein School of Environment and Natural Resources, University of Vermont, Delehanty Hall, 180 Colchester Ave, Burlington, VT 05405 and ROOD, Dylan H., AMS Laboratory, Scottish Universities Environmental Research Centre (SUERC), East Kilbride, G75 0QF, United Kingdom, tneilson@uvm.edu

We measured ¹³⁷Cs and meteoric ¹⁰Be in 35 samples previously measured for *in situ* ¹⁰Be (Henck et al., 2011) in the Salween, Mekong, and Yangtze river systems in SW China to better understand long-term landscape behavior and effects of humaninduced landscape change. Samples were collected from basins spanning ~10 to 10⁵ km². Meteoric ¹⁰Be concentration varied by an order of magnitude, from 3.4 to 76 x 10⁶ atoms/g. There was no systematic spatial patterning in meteoric ¹⁰Be values. ¹³⁷Cs activity was only measureable in five samples.

No significant relationships were found between meteoric ¹⁰Be concentrations and mean local relief, mean annual rainfall, or basin area. Areas with high erosion rates (>0.4 mm/yr) had low meteoric ¹⁰Be values (R²= 0.34, p= 0.0002). While meteoric ¹⁰Be and basin size did not strongly correlate, basins <10⁴ km² had highly variable meteoric ¹⁰Be values, while basins >10⁴ km² had significantly less variability (p= 0.11). Analysis of meteoric ¹⁰Be, mean annual rainfall, and mean local relief grouped by stream order suggests high variability in small basins may mask relationships found in large basins.

Erosion indices (EI) were calculated for each sample using in situ ¹⁰Be erosion rates to calculate long-term sediment flux and ranged from 0.11 to 1.48 (median = 0.55). The EI represents the ratio of total meteoric 10 Be leaving the basin on sediment grains over the total estimated atmospheric delivery of 10 Be. The highest EI's were in the northern portion of the Yangtze drainage, and corresponded to moderate erosion rates of 0.06 – 0.13 mm/yr. Variability in EI was significantly higher in basins <10⁴ km² (p= 0.14).

EI's calculated from long-term sediment yield allow modern events, such as land-use change, to be isolated from long-term geomorphic trends. A median El of 0.55, with 91% of measurements below 1, suggests that less meteoric ¹⁰Be is exported than is incident upon the landscape. The absence of measureable ¹³⁷Cs in the majority of samples indicates that significant erosion has occurred since 1954. EI and ¹³⁷Cs activity suggest that there is a "disconnect" between long-term sediment yield estimates and modern erosion rates, potentially caused by human impact changing the style and/or distribution of erosion.

Session No. 246

T159. Quaternary Geology and Geomorphology: Past, Present, and Future (Posters) Tuesday, 29 October 2013: 9:00 AM-6:30 PM

Hall D (Colorado Convention Center)

Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.578

© Copyright 2013 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

Back to: T159. Quaternary Geology and Geomorphology: Past, Present, and Future (Posters)

<< Previous Abstract | Next Abstract >>

© 2013

The Geological Society of America

6/15/2018 Abstract: UNDERSTANDING MODERN LANDSCAPE BEHAVIOR USING METEORIC AND <I>IN SITU</I> ¹⁰BE AND <...