1	For submission to Nature as a letter
2	3 February 2014
3	Cosmogenic ¹⁰ Be records 10 million years of Greenland Ice Sheet history
4	
5	Paul Bierman, Department of Geology and Rubenstein School of the Environment and
6	Natural Resources, University of Vermont, Burlington, VT 05405, pbierman@uvm.edu,
7	802 656 4411
8	Jeremy D. Shakun, Department of Earth and Environmental Sciences, Boston College,
9	Chestnut Hill, MA 02467, jeremy.shakun@bc.edu, 617 552 1625
10	
11	Long records of ice sheet behavior are critical for understanding cryospheric
12	response to climate change. Clastic marine sediments preserve material eroded from
13	the continents, allowing the development of time-series that quantify the growth of
14	ice sheets and the character of now-eroded landscapes. Sediment from non-glaciated
15	landmasses typically contains high concentrations of the cosmogenic nuclide ¹⁰ Be,
16	the result of near-surface exposure to cosmic rays. In contrast, ice sheet cover
17	prevents cosmogenic nuclide production and erodes material containing nuclides
18	produced before glaciation, decreasing the concentration of ¹⁰ Be in sediment carried
19	by ice. The Cenozoic growth and erosion history of the Greenland Ice Sheet is
20	poorly constrained. Here we use a record of <i>in-situ</i> -produced ¹⁰ Be in detrital
21	sediment from a marine core off the southeast coast of Greenland to decipher the

22	long-term history of the Greenland Ice Sheet. The ten-fold drop in the 10 Be
23	concentration of Greenland-derived quartz between 10 and 3 million years ago
24	reflects aerially-limited Miocene and Pliocene glaciers and progressive erosion of
25	material containing 10 Be produced before glaciation. A spike in 10 Be concentration ~
26	2.5 million years ago may indicate continent-wide expansion of the ice sheet,
27	coincident with the onset of Northern Hemisphere glaciation inferred from marine
28	oxygen isotope and ice-rafted debris records. A four-fold decrease in ¹⁰ Be
29	concentration across the mid-Pleistocene transition reflects either the final removal
30	of pre-glacial regolith or intensification of glaciation. By about 800,000 years ago,
31	¹⁰ Be concentration in core sediment is indistinguishable from that of sediment
32	exported by the ice sheet today, suggesting that the ice sheet has been generally
33	large and stable since then. This approach could be useful to reconstructing the
34	history of other ice sheets.

36 The long-term history of large ice sheets has been interpreted by analysis of marine sediment cores, which preserve in their physical, chemical, and isotopic stratigraphy a 37 record of Earth history and both surface and marine processes^{1,2}. However, relatively few 38 proxies provide a direct, quantitative, and large-scale indicator of the variability of 39 individual ice sheets³. Such information is critical to establishing the sensitivity of ice 40 41 sheets to climate change, which is the largest source of uncertainty in future projections 42 of sea level rise. For example, estimates of the global warming threshold that would eventually eliminate the Greenland Ice Sheet range from 1 to $5^{\circ}C[4]$. 43

Continental glaciation of Greenland is typically thought to have begun near the onset of Northern Hemisphere glacial cycles at ~ 2.7 Ma inferred from marine oxygen isotope and ice-rafted debris (IRD) records⁵⁻⁷. Some marine and modeling data, on the other hand, suggest that initial ice mass growth in Greenland, albeit of uncertain size, commenced from 5 to 25 million years earlier⁸⁻¹⁰. It is also unclear how Greenland glaciation evolved once the ice sheet was established, for instance, across the mid-Pleistocene transition¹¹.

Beryllium-10 is produced in near-surface rock and soil primarily by the 51 52 bombardment of cosmic-ray neutrons. At depths below several meters of rock, isotope production rates are much lower and production is dominated by the interaction of 53 muons¹². Continental sediment usually contains >100,000 atoms g^{-1} of *in-situ* produced 54 ¹⁰Be, the result of subaerial exposure to cosmic rays¹³. On a steadily eroding, ice-free 55 landscape, the concentration of ¹⁰Be in sediment can be interpreted as an erosion rate 56 assuming the elevation and latitude of the sediment source is known¹⁴. Once Earth's 57 surface is covered by glacial ice, ¹⁰Be production ceases and glacial erosion removes the 58 59 most highly-dosed, near-surface material first before excavating material at depth containing progressively less ¹⁰Be. 60

After the start of glaciation, the concentration of ¹⁰Be in marine sediment sourced from Greenland is controlled by the ¹⁰Be concentration of material eroded by the ice sheet from its bed and transported to the coast (Figure 1). The ¹⁰Be concentration on the bed is controlled both by the pre-glacial spatial and depth distribution of isotope production and by the landscape erosion rate, and, after glaciation begins, by the rate of sub-ice erosion, the time since the bed was covered by ice and nuclide production ceased, and the duration

and extent of sub-aerial landscape exposure during interglacial periods, when ice-sheetarea is reduced, perhaps dramatically.

In order to understand the glacial erosion history of Greenland, we measured in 69 situ-produced ¹⁰Be in 30 quartz sand samples from the top 554 m of Ocean Drilling 70 Program site 918 (63.1°N, 38.6°W, 1800 m depth), located in the Irminger basin, 110 km 71 southeast of Greenland (Figure 2). This site is adjacent to the more dynamic southern 72 portion of the Greenland Ice Sheet, as suggested by modeling of the ice sheet (Figure 73 2)^{15,16} and thus is well situated to record past ice sheet variability. Site 918 was previously 74 75 used to define the onset of Greenland glaciation at roughly 7 Ma based on the earliest occurrence of IRD in the core¹⁰; this IRD is included in our oldest sample. The 76 stratigraphy and core location suggest much of the sediment at the coring site was 77 deposited directly from suspension or by rain-out of IRD¹⁰; some of the sediment was 78 deposited by mass flows but several lines of argument suggest that the quartz we 79 80 measured is dominantly of Greenlandic origin, including the proximity of the core to 81 Greenland; currents in the area drift ice from northeast Greenland (Figure 2); site 918 is 82 well north of the heart of the Laurentide IRD belt as reflected in Heinrich layers¹⁷; downcore IRD is similar to modern Greenland IRD¹⁰; site 919 located only 70 km further 83 offshore than 918 contains >90% less sand¹⁰; and sediment from nearby Iceland contains 84 85 no quartz.

To estimate ¹⁰Be concentration at the time of sediment deposition, we decaycorrected¹⁸ (10 Be t_{1/2} = 1.387 Myr) measured ¹⁰Be concentrations using the core age model (Figures 3, 4). The chronology is anchored to the paleomagnetic timescale over the Pleistocene, but less well constrained by strontium isotope and biostratigraphy in the

90	Pliocene and Miocene (Figure 3a). Age model uncertainties can alter the absolute value
91	of decay-corrected ¹⁰ Be concentrations and change the timing of some isotopic shifts, but
92	have minimal impact on the overall structure of the record (Figure 4b).
93	Measured ¹⁰ Be concentrations are low, 2100 to 40,000 atoms g ⁻¹ (Figure 3b,
94	Supplementary Information, Table 1). Decay-corrected concentrations are highest in the
95	oldest sediment (~10 Ma according to the age model, 470,000 \pm 38,000 atoms g ⁻¹) and
96	generally decrease over time (Figure 4b). Inverting the ¹⁰ Be data from the oldest
97	sediment sample and assuming that the sediment delivered to the deep ocean as IRD was
98	stripped by glaciers at an elevation near sea-level suggests a landscape-averaged pre-
99	glacial Greenland denudation rate of about 7±1 m/My, lower than basin-scale erosion
100	rates for polar climates but higher than polar rates of outcrop erosion ¹³ .
101	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude
101 102	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7
101 102 103	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary
101 102 103 104	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with
101 102 103 104 105	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with calving margins (Figure 1b). A general increase in the intensity and/or aerial cover of
101 102 103 104 105 106	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with calving margins (Figure 1b). A general increase in the intensity and/or aerial cover of glaciation is supported by rising concentrations of coarse sediment over the length of the
101 102 103 104 105 106 107	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with calving margins (Figure 1b). A general increase in the intensity and/or aerial cover of glaciation is supported by rising concentrations of coarse sediment over the length of the core (Figure 4a) ¹⁰ .
101 102 103 104 105 106 107	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with calving margins (Figure 1b). A general increase in the intensity and/or aerial cover of glaciation is supported by rising concentrations of coarse sediment over the length of the core (Figure 4a) ¹⁰ .
101 102 103 104 105 106 107 108 109	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with calving margins (Figure 1b). A general increase in the intensity and/or aerial cover of glaciation is supported by rising concentrations of coarse sediment over the length of the core (Figure 4a) ¹⁰ . At the dawn of the Pleistocene, the ¹⁰ Be concentration abruptly increased (Figure 4b). One sample, including sediment deposited at 2.5 Ma, had nearly 150,000 atoms/g of
101 102 103 104 105 106 107 108 109 110	By the late Pliocene, ¹⁰ Be concentrations are more than an order of magnitude lower than at the beginning of the record, reaching a minimum of 12,000 atoms g ⁻¹ at 2.7 Ma. We interpret this decrease as progressive glacial erosion of once-stable Tertiary regolith over limited areas of Greenland, perhaps by valley glaciers or ice caps with calving margins (Figure 1b). A general increase in the intensity and/or aerial cover of glaciation is supported by rising concentrations of coarse sediment over the length of the core (Figure 4a) ¹⁰ . At the dawn of the Pleistocene, the ¹⁰ Be concentration abruptly increased (Figure 4b). One sample, including sediment deposited at 2.5 Ma, had nearly 150,000 atoms/g of ¹⁰ Be when it was deposited, a concentration more similar to Miocene-age sediment than

to any Quaternary age material. This ¹⁰Be-rich quartz may have been eroded from

112	previously unglaciated areas of Greenland and thus reflects the first continent-wide
113	glaciation, an interpretation consistent with the abundance of IRD found at site 918 at this
114	time ¹⁰ . Alternatively, this pulse of ¹⁰ Be enriched sediment could record a major and long-
115	lasting deglaciation event. One such early interglacial, ~2.4 Ma, could be represented by
116	the Kap København Formation in northern Greenland which contains flora and fauna
117	indicative of relatively warm climates. However, this formation is thought to have been
118	deposited in $<20,000$ years ¹⁹ , not sufficiently long to explain the magnitude of the ¹⁰ Be
119	spike. Between 2.5 Ma and 0.8 Ma, the decay-corrected concentration of ¹⁰ Be generally
120	declines (Figure 4b) ²⁰ . The Pleistocene decline in ¹⁰ Be concentration is consistent with
121	progressive stripping of the preglacial landscape by sub-ice erosion during the
122	Quaternary. As sediment and rock are removed from the landscape under the ice by
123	erosion, material that was deeply shielded in pre-glacial times and thus less dosed by
124	cosmic radiation is incorporated into basal ice and carried offshore before being
125	deposited as IRD (Figure 1c).

An abrupt, four-fold drop in ¹⁰Be concentration occurs across the mid-Pleistocene 126 127 transition at 0.8 Ma (Figure 4b). There are several possible interpretations for this feature. 128 First, if pre-glacial regolith still existed and was well-mixed beneath the ice sheet as till during the early Pleistocene, it would have had a fairly constant ¹⁰Be concentration with 129 depth. In this case, the decrease in ¹⁰Be concentration at 0.8 Ma may reflect near 130 complete export of regolith and a switch to erosion of bedrock, which would have 131 contained less ¹⁰Be than the regolith. The timing of this substrate change, if it also 132 133 occurred in North America, would be consistent with the regolith hypothesis for the mid-Pleistocene transition from 41 to 100-kyr glacial cycles, which posits that thinner, more 134

responsive ice sheets sliding on regolith transitioned to larger, more sluggish ice sheets 135 resting on bedrock²¹. Or, an increase in the erosivity of the Greenland Ice Sheet during 136 the mid-Pleistocene transition could have reduced ¹⁰Be concentrations as deeper-sourced 137 material was rapidly exported. Lastly, the Greenland Ice Sheet may have deglaciated 138 more frequently during the early Pleistocene than the late Pleistocene, helping to sustain 139 higher ¹⁰Be levels through repeated episodes of interglacial exposure. If correct, this latter 140 interpretation suggests that the ice sheet may be susceptible to substantial retreat at CO₂ 141 and temperature levels only slightly higher than the Holocene^{3,22,23}. 142

¹⁰Be values over the past 0.8 My are similar to those in sediments issuing from the western, southern, and eastern Greenland Ice Sheet margin today²⁰ (Figure 4b), except for one brief spike in the mid-Brunhes, consistent with the existence of a large, modern-like Greenland ice sheet for most of the last million years. Given ¹⁰Be surface production rates of atoms to tens of atoms per gram per year, loss of the ice sheet for more than a few thousand years should be detectable in the later Pleistocene marine record.

In situ produced ¹⁰Be, derived from continental glacial erosion and preserved in marine sediment, records the development of initial glaciation on Greenland from ~10 to 3 Ma, the first growth of a full Greenland ice sheet at ~2.5 Ma, and a significant change in ice-sheet behavior at 0.8 Ma. The magnitude of the ¹⁰Be signal as well its general consistency with other ice sheet and climate records suggests that our approach could provide a useful new tool for reconstructing other long-term ice-sheet histories.

155 *Methods Summary*

156	Core samples were obtained from the Bremen Core Repository. We
157	disaggregated and wet-sieved sediments isolating the 0.125 to 0.75 mm grain size
158	fraction and used weak acid ultrasonic leaching (0.5 to 0.25% HF and HNO ₃) to slowly
159	dissolve all minerals other than quartz ²⁴ . We amalgamated quartz from subsamples taken
160	over an interval of core until we had sufficient quartz mass (7.8 to 25.3 g) from which to
161	extract and measure ¹⁰ Be reliably. Thus, samples represent the average ¹⁰ Be content of
162	quartz present in core sections ranging in length from 0.6 to 91 m (median = 7 m). Age
163	spans for samples range from 0.002 to 3.1 My. Samples were dissolved using HF in the
164	presence of ⁹ Be carrier produced from beryl and processed in batches of 12 including 1 or
165	2 full process blanks. Isotopic measurements were made at Livermore National
166	Laboratory and referenced to standard 07KNSTD3110 [25] assuming a ¹⁰ Be/ ⁹ Be ratio of
167	2850×10^{-15} (Supplementary Information, Table 1). The average blank ratio (4.6±1.0×10 ⁻¹⁶ ,
168	n= 6) was subtracted from measured ratios (Supplementary Information, Table 2). Using
169	the half-life ¹⁸ of ¹⁰ Be and the age model for site 918 (Supplementary Information, Table
170	3), we corrected the measured 10 Be concentrations for radio-decay since burial on the sea
171	floor using the average age of the sediment in the sampled core interval. Replicate
172	preparation of sample 918-17 (918-17X) indicates reproducibility within measurement
173	uncertainty (Supplementary Information, Table 1).

174 *References Cited*

Bond, G. *et al.* Evidence for massive discharge of icebergs into the North Atlantic
ocean during the last glacial period. *Nature* 360, 245-249 (1992).

Shackleton, N. J. *et al.* Oxygen isotope calibration of the onset of ice-rafting and
history of glaciation in the North Atlantic region. *Nature* **307**, 620-623 (1984).

179	3	Alley, R. B. et al. History of the Greenland Ice Sheet: paleoclimatic insights.
180		Quaternary Science Reviews 29, 1728-1756 (2010).
181	4	Gregory, J. M. & Huybrechts, P. Ice-sheet contributions to future sea-level
182		change. Philosophical Transactions of the Royal Society A: Mathematical,
183		Physical and Engineering Sciences 364, 1709-1732 (2006).
184	5	Maslin, M. A., Li, X. S., Loutre, M. F. & Berger, A. The contribution of orbital
185		forcing to the progressive intensification of Northern Hemisphere glaciation.
186		Quaternary Science Reviews 17, 411-426 (1998).
187	6	Mudelsee, M. & Raymo, M. E. Slow dynamics of the Northern Hemisphere
188		glaciation. <i>Paleoceanography</i> 20 , PA4022, doi:10.1029/2005pa001153 (2005).
189	7	Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and
190		history of glaciation in the North Atlantic region. Nature 307, 620-623 (1984).
191	8	DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455,
192		652-656 (2008).
193	9	Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. & Roberts, A. P.
194		Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176-
195		179 (2007).
196	10	Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264,
197		952–955 (1994).
198	11	Thiede, J. et al. Millions of years of Greenland Ice Sheet history recorded in
199		ocean sediments. Polarforschung 80, 141-159 (2011).
200	12	Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons.
201		Geochimica et Cosmochimica Acta 66, A558 (2002).

- Portenga, E. & Bierman, P. R. Understanding Earth's eroding surface with ¹⁰Be. *GSA Today* 21, 4-10 (2011).
- Lal, D. Cosmic ray labeling of erosion surfaces; in situ nuclide production rates
 and erosion models. *Earth and Planetary Science Letters* 104, 424-439 (1991).
- Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level
 changes. *Science* 310, 456-460 (2005).
- 208 16 Lunt, D. J., Foster, G. L., Haywood, A. M. & Stone, E. J. Late Pliocene
- Greenland glaciation controlled by a decline in atmospheric CO₂ levels.*Nature*
- **454**, 1102-1105 (2008).
- 211 17 Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the
- 212 North Atlantic and their global climate imprint. *Reviews of Geophysics* 42,

213 RG1005, doi:10.1029/2003rg000128 (2004).

- 214 18 Korschinek, G. *et al.* A new value for the half-life of ¹⁰Be by Heavy-Ion Elastic
- 215 Recoil Detection and liquid scintillation counting. *Nuclear Instruments and*
- 216 *Methods in Physics Research B* **268**, 187-191 (2010).
- 217 19 Funder, S. et al. Late Pliocene Greenland The Kap Kobenhavn Formation in
- north Greenland. *Bulletin of the Geological Society of Denmark*, 117-134 (2001).
- 219 20 Nelson, A. Using in situ cosmogenic ¹⁰Be as a sediment source tracer in
- 220 *Greenland's paraglacial environment* MS thesis, University of Vermont, (2013).
- 221 21 Clark, P. U. & Pollard, D. Origin of the Middle Pleistocene transition by ice sheet
- erosion of regolith. *Paleoceanography* **13**, 1–9 (1998).

223	22	Hansen, J. E. & Sato, M. in Climate Change: Inferences from Paleoclimate and
224		Regional Aspects (eds A. Berger, Fedor Mesinger, & Djordje Sijacki) 21-48
225		(Springer, 2012).
226	23	Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M.
227		High-amplitude variations in North Atlantic sea surface temperature during the
228		early Pliocene warm period. Paleoceanography 24, PA2218,
229		doi:10.1029/2008pa001669 (2009).
230	24	Kohl, C. P. & Nishiizumi, K. Chemical isolation of quartz for measurement of <i>in</i> -
231		situ -produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56,
232		3583-3587 (1992).
233	25	Nishiizumi, K. et al. Absolute calibration of ¹⁰ Be AMS standards. Nuclear Inst.
234		and Methods in Physics Research, B 258, 403-413 (2007).
235	26	Jansen, E. et al. in Climate Change 2007: The Physical Science Basis.
236		Contribution of Working Group I to the Fourth Assessment Report of the
237		Intergovernmental Panel on Climate Change (eds S. Solomon et al.) 434-497
238		(Cambridge University Press, 2007).
239	27	Israelson, C. & Spezzaferri, S. in Proceedings of the Ocean Drilling Program,
240		Scientific Results 152 (eds A.D. Saunders, H.C. Larsen, & S.W. Wise, Jr.) 233-
241		241 (1998).
242	28	Fukuma, K. in Proceedings of the Ocean Drilling Program, Scientific Results 152
243		(eds A.D. Saunders, H.C. Larsen, & S.W. Wise, Jr.) 265-269 (1998).
244	29	Scholz, D. & Hoffmann, D. L. StalAge: An algorithm designed for construction
245		of speleothem age models. Quaternary Geochronology 6, 369-382 (2011)

246	30	Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and
247		aberrations in global climate 65 Ma to present. Science 292, 686-693 (2001).
248		
249	Supp	lementary Information is linked to the online version of the paper at
250	www	.nature.com/nature.
251		
252	Ackno	owledgements
253	Resea	arch supported by NSF ARC-1023191. A. Nelson prepared the samples. W.
254	Shakı	an and M. E. Shakun helped with sediment processing. S. Zimmerman and R. Finkel
255	provi	ded AMS expertise. W. Hale and the Bremen Core Repository facilitated core
256	samp	ling.
257	Autho	or contributions
258		PB and JDS designed the experiment. JDS oversaw core sampling. PB oversaw
259	labora	atory work and made isotopic analyses. PB and JDS interpreted the data and wrote
260	the pa	aper.
261	Figur	re Legends
262	Figur	re 1. Conceptual model of ¹⁰ Be concentration. (a) Ice-free conditions prior to
263	glacia	ation, high ¹⁰ Be-concentration material delivered to the ocean. (b) Mountain
264	glacia	ation and ice cap development during the late Miocene and Pliocene, eroding and
265	expor	ting progressively deeper, and thus 10 Be-poorer, material from these regions. (c)

Expansion of a full Greenland Ice Sheet during the Pleistocene, initially stripping
 previously exposed ¹⁰Be-rich surface material, followed by progressively deeper and thus
 ¹⁰Be-poorer material from Greenland. Intensity of shading corresponds to relative ¹⁰Be
 concentrations in bedrock, regolith, and sediment.

Figure 2. Location map. ODP site 918 shown as black dot, modern ocean currents
indicated by arrows, and contours on Greenland give ice sheet thickness during the last
interglacial as simulated by a multi-model ensemble²⁶. Stars show the locations of ¹⁰Be
measurements made on modern sediments²⁰.

Figure 3. Site 918 age model and measured ¹⁰Be concentrations. (a) Age constraints from strontium isotope²⁷, paleomagnetic²⁸, and biostratigraphic¹⁰ data. Age-depth curve (black line) and 2σ uncertainty (gray shading) were calculated using a published age model algorithm²⁹. (b) Measured ¹⁰Be concentrations with 1 σ uncertainty (gray shading).

Figure 4. Site 918 decay-corrected ¹⁰Be record. (a) Sand (>63 µm) fraction at site 918 278 by weight. Arrow points to lowest (oldest) sample (918-30) with IRD at site 918^{10} . (b) 279 Decay-corrected concentrations of *in situ* produced ¹⁰Be measured in quartz isolated from 280 281 site 918 assuming age model shown in Figure 3a. Gray lines show results of 1000 Monte Carlo simulations perturbing age model with chronological uncertainties and measured 282 ¹⁰Be concentrations with analytical uncertainties. Dotted black line gives the average ¹⁰Be 283 concentration of 62 modern ice-contact and fluvial sediment samples collected from three 284 regions in southern Greenland²⁰. (c) Global deep ocean δ^{18} O, a proxy for global ice 285 volume and deep ocean temperature³⁰. 286

290 Figure 1. Bierman and Shakun

306 Figure 4. Bierman and Shakun

SUPPLEMENTRAY INFORMATION TABLE 1. Isotopic data and age model, Site 918

Sample	CAMS #	Top Depth (mbsf)	Bottom Depth (mbsf)	Top age (Ma)	Bottom age (Ma)	Blank corrected 10Be/9Be	quartz (g)	carrier 9Be (ug)	Measured 10Be (atoms/g)	Decay-corrected 10Be (atoms/g)
B504918-1	BE35206	0.5	6.1	0.012	0.141	8.44E-15 ± 4.47E-16	18.86	254.3	7601 ± 402	7898 ± 418
B507918-2	BE35234	6.3	11.3	0.149	0.224	9.32E-15 ± 7.72E-16	24.31	252.5	6463 ± 536	7095 ± 588
B504918-3	BE35207	11.9	18.5	0.249	0.331	2.77E-14 ± 1.47E-15	18.80	254.4	24991 ± 1325	28892 ± 1532
B507918-4	BE35235	19.4	25.4	0.367	0.456	3.05E-15 ± 2.70E-16	16.13	254.7	3211 ± 284	3944 ± 349
B504918-5	BE35208	25.8	32.3	0.475	0.558	1.14E-14 ± 5.65E-16	24.40	255.3	7958 ± 395	10302 ± 511
B507918-6	BE35237	32.8	36.3	0.561	0.615	6.27E-15 ± 4.56E-16	19.33	253.8	5494 ± 400	7372 ± 537
B507918-7	BE35238	36.9	41.3	0.625	0.689	1.86E-14 ± 6.30E-16	24.54	253.6	12849 ± 435	17843 ± 604
B505918-8	BE35211	41.8	44.3	0.691	0.745	8.17E-15 ± 4.05E-16	14.85	253.6	9308 ± 462	13326 ± 662
B507918-9	BE35239	45.0	45.6	0.748	0.762	4.17E-15 ± 3.13E-16	17.36	254.0	4072 ± 305	5938 ± 445
B505918-10	BE35212	47.3	50.6	0.911	1.019	1.96E-14 ± 7.71E-16	15.50	254.2	21409 ± 844	34676 ± 1367
B507918-11	BE35240	52.7	55.3	1.060	1.107	1.76E-14 ± 5.99E-16	19.93	254.2	14960 ± 510	25713 ± 876
B507918-12	BE35241	56.7	58.8	1.131	1.170	3.69E-14 ± 8.60E-16	19.96	252.9	31214 ± 728	55469 ± 1293
B505918-13	BE35213	59.0	68.3	1.172	1.339	1.48E-14 ± 6.00E-16	24.82	253.4	10063 ± 409	18849 ± 766
B505918-14	BE35214	69.7	86.7	1.363	1.811	1.65E-14 ± 5.89E-16	20.73	253.8	13501 ± 482	29842 ± 1065
B505918-15	BE35215	87.3	91.7	1.814	1.835	6.73E-15 ± 3.79E-16	10.22	254.1	11176 ± 630	27815 ± 1567
B505918-16	BE35216	96.3	96.9	1.857	1.859	1.33E-14 ± 5.12E-16	22.62	253.6	9939 ± 383	25157 ± 970
B505918-17	BE35217	98.3	116.0	1.866	1.953	2.59E-14 ± 7.60E-16	13.66	253.0	32054 ± 940	83251 ± 2441
B506918-17X	BE35233	98.3	116.0	1.866	1.953	2.19E-14 ± 1.01E-15	12.02	255.6	31072 ± 1432	80700 ± 3720
B505918-18	BE35218	117.8	147.3	1.964	2.137	1.84E-14 ± 6.16E-16	19.68	253.7	15833 ± 531	44114 ± 1479
B505918-19	BE35219	148.6	159.8	2.145	2.198	5.53E-15 ± 3.45E-16	15.31	254.0	6122 ± 382	18121 ± 1130
B506918-20	BE35222	161.1	168.8	2.201	2.206	4.90E-15 ± 4.11E-16	12.08	252.7	6841 ± 573	20573 ± 1724
B505918-21	BE35220	171.4	201.1	2.210	2.233	5.37E-15 ± 3.48E-16	8.49	253.6	10712 ± 693	32517 ± 2104
B506918-22	BE35224	204.3	232.5	2.242	2.369	2.64E-14 ± 7.34E-16	11.25	254.3	39927 ± 1108	126352 ± 3506
B506918-23	BE35225	233.2	251.0	2.378	2.551	1.25E-14 ± 5.70E-16	25.77	253.0	8217 ± 373	28157 ± 1279
B506918-24	BE35226	252.8	271.9	2.574	2.834	1.98E-15 ± 3.64E-16	11.23	253.9	2993 ± 549	11562 ± 2122
B506918-25	BE35227	273.6	316.3	2.856	3.499	5.12E-15 ± 4.95E-16	10.86	253.8	7990 ± 772	39103 ± 3779
B507918-26	BE35242	318.1	324.0	3.526	3.612	8.35E-15 ± 4.78E-16	14.78	254.1	9579 ± 549	57014 ± 3265
B506918-27	BE35228	386.6	405.2	4.529	4.806	3.36E-15 ± 4.55E-16	26.78	254.4	2134 ± 289	21993 ± 2976
B506918-28	BE35229	413.2	504.4	4.925	6.334	2.10E-15 ± 2.50E-16	10.47	253.9	3397 ± 404	56595 ± 6738
B506918-29	BE35230	504.7	543.1	6.334	9.491	1.32E-15 ± 2.11E-16	7.81	253.8	2875 ± 458	149907 ± 23874
B506918-30	BE35231	543.3	553.9	9.527	10.257	4.98E-15 ± 4.02E-16	25.30	253.4	3329 ± 269	466965 ± 37714

referenced to standard 07KNSTD3110²⁵ assuming a $^{10}Be/^{9}Be$ ratio of 2850 x 10⁻¹⁵

Be extracted using the methods detailed in Corbett, L. Bierman, P., Graly, J., Neumann, T., Rood, D. (2013). Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, Northwest Greenland. Geological Society of America Bulletin. v. 125, no. 9-10, 10.1130/B30813.1

Sample	CAMS #	Blank 10Be/9Be	carrier 9Be (ug)
B504BLKX	BE35209	4.41E-16 ± 1.01E-16	253.9
B505BLK	BE35210	5.77E-16 ± 1.33E-16	251.7
B505BLKX	BE35221	3.39E-16 ± 1.44E-16	255.6
B506BLK	BE35223	3.91E-16 ± 9.66E-17	254.1
B507BLK	BE35236	5.81E-16 ± 1.49E-16	253.8
B506BLKX	BE35232	4.10E-16 ± 2.32E-16	253.4
	AVERAGE (1 SD)	4.57E-16 ± 1.00E-16	

SUPPLEMENTARY INFORMATION TABLE 2. Blank data, ¹⁰Be

referenced to standard 07KNSTD3110²⁵ assuming a $^{10}Be/^{9}Be$ ratio of 2850 x 10⁻¹⁵

SUPPLEMENTARY INFORMATION TABLE 3. Age Model

(Mia) (My) (My) (Pateomag, BioStrat, 873/85/85/) 0 0 Assumed modern 10.26 0.4 0.6 0.6 0.709173 Israelson and Spezzaferri, 1998 16.26 0 0.8 0.6 0.709173 Israelson and Spezzaferri, 1998 46.9 0.78 Brunhes/Matuyama Israelson and Spezzaferri, 1998 45.9 0.78 Brunhes/Matuyama Fukuma, 1998 52.9 1.07 Jaramillo top Fukuma, 1998 71.1 1.39 Niatus Fukuma, 1998 71.1 1.73 Niatus Fukuma, 1998 115.1 1.95 0.5 0.6 0.709145 1162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709076 Israelson and Spezza	Depth	Age	error +	error -	Age constraint	Reference
0 Assumed modern 10.26 0.4 0.6 0.709173 Israelson and Spezzaferri, 1998 16.26 0.8 0.6 0.709173 Israelson and Spezzaferri, 1998 36.01 0.6 0.5 0.6 0.709166 Israelson and Spezzaferri, 1998 49 0.99 Jaramillo top Fukuma, 1998 Fukuma, 1998 52.9 1.07 Jaramillo top Fukuma, 1998 Fukuma, 1998 71.1 1.39 hiatus Fukuma, 1998 Fukuma, 1998 71.1 1.73 Niatus Fukuma, 1998 Fukuma, 1998 71.1 1.73 Olduval top Fukuma, 1998 Fukuma, 1998 115.1 1.95 Olduval top Fukuma, 1998 Fukuma, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709076 Israelson and Spezzaferri, 1998 162.41<	(mbsf)	(Ma)	(My)	(My)	(Paleomag, Biostrat, 87Sr/86Sr)	
10.26 0.4 0.6 0.709173 Israelson and Spezzaferi, 1998 10.26 0.3 0.7 0.6 0.709183 Israelson and Spezzaferi, 1998 16.26 0 0.8 0.6 0.709183 Israelson and Spezzaferi, 1998 45.9 0.78 Brunhes/Matuyama Fukuma, 1998 49 0.99 Jaramillo top Fukuma, 1998 52.9 1.07 Jaramillo top Fukuma, 1998 71.1 1.39 Niatus Fukuma, 1998 71.1 1.73 Niatus Fukuma, 1998 81 1.79 Olduvai top Fukuma, 1998 1165.1 1.95 0.6 0.709145 Israelson and Spezzaferi, 1998 1162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferi, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferi, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferi, 1998 162.45 1.9 1.8 0.6 0.709172 Israelson and Spezzaferi, 1998 162.45 1.9	0	0			Assumed modern	
10.26 0.3 0.7 0.6 0.709178 Israelson and Spezzatern; 1998 16.26 0 0.5 0.6 0.709165 Israelson and Spezzatern; 1998 49 0.99 Jaramillo top Fukuma, 1998 Fukuma, 1998 52.9 1.07 Jaramillo top Fukuma, 1998 Fukuma, 1998 71.1 1.39 0.6 0.709153 Israelson and Spezzatern; 1998 71.1 1.39 Niatus Fukuma, 1998 71.1 1.39 Oldwai top Fukuma, 1998 81 1.79 Oldwai top Fukuma, 1998 164.7 1.7 0.6 0.709167 Israelson and Spezzatern; 1998 164.7 1.7 0.6 0.709068 Israelson and Spezzatern; 1998 162.41 1.9 1.7 0.6 0.709068 Israelson and Spezzatern; 1998 162.41 1.9 1.7 0.6 0.709076 Israelson and Spezzatern; 1998 162.41 1.9 1.7 0.6 0.709076 Israelson and Spezzatern; 1998 162.45 1.9 1.6 0.709077 Israelson and Spezzatern; 1998 </td <td>10.26</td> <td>0.4</td> <td>0.6</td> <td>0.6</td> <td>0.709173</td> <td>Israelson and Spezzaferri, 1998</td>	10.26	0.4	0.6	0.6	0.709173	Israelson and Spezzaferri, 1998
16.26 0 0.8 0.6 0.709163 Israelson and Spezzaferri, 1998 45.9 0.78 Brunhes/Matuyama Fukuma, 1998 49 0.99 Jaramillo top Fukuma, 1998 52.9 1.07 Jaramillo bottom Fukuma, 1998 71.1 1.39 O.5 0.6 0.709153 Israelson and Spezzaferri, 1998 81 1.79 Olduvai top Fukuma, 1998 Fukuma, 1998 81.1 1.79 O.5 0.6 0.709145 Israelson and Spezzaferri, 1998 115.1 1.95 Olduvai bottom Fukuma, 1998 Fukuma, 1998 162.41 1.9 1.7 0.6 0.709096 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709076 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709076 Israelson and Spezzaferri, 1998 162.45 7	10.26	0.3	0.7	0.6	0.709178	Israelson and Spezzaferri, 1998
36.01 0.6 0.79 Israelson and Spezzaferri, 1998 44.9 0.99 Jaramilio top Fukuma, 1998 52.9 1.07 Jaramilio top Fukuma, 1998 56.07 0.9 0.5 0.6 0.709153 Israelson and Spezzaferi, 1998 71.1 1.39 Natural bottom Fukuma, 1998 Fukuma, 1998 71.1 1.39 O.Cd vaia top Fukuma, 1998 71.1 1.39 O.Cd vaia top Fukuma, 1998 71.1 1.95 O.Cd vaia top Fukuma, 1998 156.4 1.95 O.Cd vaia top Fukuma, 1998 156.4 1.9 0.5 0.709107 Israelson and Spezzaferi, 1998 166.4.1 1.9 1.7 0.6 0.709098 Israelson and Spezzaferi, 1998 166.4.1 1.9 1.7 0.6 0.709076 Israelson and Spezzaferi, 1998 206.67 1.8 1.4 0.6 0.709076 Israelson and Spezzaferi, 1998 215.5 2.7 2.3 1 0.709076 Israelson and Spezzaferi, 1998 2246.57 1.9 1.8	16.26	0	0.8	0.6	0.709183	Israelson and Spezzaferri, 1998
45.9 0.78 Brunhes/Matuyama Fukuma, 1998 49 0.99 Jaramillo top Fukuma, 1998 52.9 1.07 Jaramillo top Fukuma, 1998 53.07 0.9 0.5 0.6 0.709153 Israelson and Spezzaferri, 1998 71.1 1.39 Natus Fukuma, 1998 Fukuma, 1998 81 1.79 Olduval top Fukuma, 1998 115.1 1.95 0.6 0.709145 Israelson and Spezzaferri, 1998 115.1 1.95 0.5 0.709145 Israelson and Spezzaferri, 1998 116.4.17 1.7 0.9 0.5 0.709098 Israelson and Spezzaferri, 1998 116.2.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 116.2.7 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 208.67 1.8 1.1 0.6 0.709077 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 220.66 4.4 0.9 2.3 0.7090077	36.01	0.6	0.5	0.6	0.709166	Israelson and Spezzaferri, 1998
49 0.99 Jaramilio top Fukuma, 1998 52.9 1.07 0.9 0.5 0.6 0.709153 Israelson and Spezzaferri, 1998 71.1 1.73 Niatus Fukuma, 1998 71.1 1.73 Niatus Fukuma, 1998 81 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.7090976 Israelson and Spezzaferri, 1998 162.45 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709077 Israelson and Spezzaferri, 1998 246.57 2.3 0.4 0.709076 Israelson and Spezzaferri, 1998 246.	45.9	0.78			Brunhes/Matuyama	Fukuma, 1998
52.9 1.07 Jaramillo bottom Fukuma, 1998 58.07 0.9 0.5 0.6 0.709153 Israelson and Spezzaferri, 1998 71.1 1.73 0.5 0.6 0.709153 Israelson and Spezzaferri, 1998 95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 115.1 1.95 Olduval botom Fukuma, 1998 Fukuma, 1998 146.8 2.14 Reunion top Fukuma, 1998 154.77 1.7 0.9 0.5 0.709107 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709172 Israelson and Spezzaferri, 1998 184.97 1.3 0.6 0.5 0.709172 Israelson and Spezzaferri, 1998 220.967 1.8 1.1 0.6 0.709076 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 2246.57 1.9 1.8 0.6 0.709077 Israelson and Spezzaferri, 1998 226.4 2.3 0.709077 Israelson and Spezzaferri, 1998 226.5 2.6 0.6	49	0.99			Jaramillo top	Fukuma, 1998
68.07 0.9 0.5 0.6 0.709153 Israelson and Spezzaferri, 1998 71.1 1.73 Niatus Fukuma, 1998 81 1.79 Oldwal top Fukuma, 1998 95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 115.1 1.95 Oldwal top Fukuma, 1998 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 168.76 1.1 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.1 0.6 0.709098 Israelson and Spezzaferri, 1998 215.5 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.67 1.9 1.8 0.6 0.709077 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.7090077 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.9 0.7090077 Israelson and Spezzaferri, 1998	52.9	1.07			Jaramillo bottom	Fukuma, 1998
71.1 1.39 hiatus Fukuma, 1998 71.1 1.73 Olduval top Fukuma, 1998 81 1.79 Olduval top Fukuma, 1998 95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 115.1 1.95 0.6 0.709107 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709102 Israelson and Spezzaferri, 1998 184.97 1.3 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 220.47 2.6 2.3 0.9 0.709077 Israelson and Spezzaferri, 1998 250.56 4.4 0.9 2.3 0.709008 Israelson and Spezzaferri, 1998 251.5 5.8 0.6 0.6 0.709017 Israelson and Spezzaferri, 1998 252.66	58.07	0.9	0.5	0.6	0.709153	Israelson and Spezzaferri, 1998
71.1 1.7.3 histus Fukuma, 1998 81 1.7.9 Oldwai top Fukuma, 1998 95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferi, 1998 115.1 1.95 Oldwai bottom Fukuma, 1998 162.41 1.9 1.7 0.6 0.709107 Israelson and Spezzaferi, 1998 162.41 1.9 1.7 0.6 0.709108 Israelson and Spezzaferi, 1998 184.77 1.3 0.6 0.5 0.709171 Israelson and Spezzaferi, 1998 209.67 1.8 1.0 0.6 0.709007 Israelson and Spezzaferi, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferi, 1998 264.57 2.3 0.9 0.709076 Israelson and Spezzaferi, 1998 230.56 4.4 0.9 2.3 0.709077 Israelson and Spezzaferi, 1998 320.56 4.4 0.9 2.3 0.709007 Israelson and Spezzaferi, 1998 320.57 8.6 0.6 0.709017 Israelson and Spezzaferi, 1998 320.53 6.6 <t< td=""><td>71.1</td><td>1.39</td><td></td><td></td><td>hiatus</td><td>Fukuma, 1998</td></t<>	71.1	1.39			hiatus	Fukuma, 1998
81 1.7.9 Olduvai top Fukuma, 1986 95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 116.1 1.96 0.0 Reunion top Fukuma, 1998 116.2 1.4 Reunion top Fukuma, 1998 116.1 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 116.2.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 116.8.76 1.1 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 121.5 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709077 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 246.57 2.3 0.7 0.709076 Israelson and Spezzaferri, 1998 245.5 5.8	71.1	1.73			hiatus	Fukuma, 1998
95.45 1 0.5 0.6 0.709145 Israelson and Spezzaferri, 1998 146.8 2.14 Reunion top Fukuma, 1998 154.77 1.7 0.9 0.5 0.709107 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709177 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709173 Israelson and Spezzaferri, 1998 209.67 1.8 1.6 0.6 0.709102 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709076 Israelson and Spezzaferri, 1998 250.56 4.4 0.9 2.3 0.7090076 Israelson and Spezzaferri, 1998 260.57 6.6 0.6 0.709017 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709008 Israelson and Spezzaferri	81	1.79			Olduvai top	Fukuma, 1998
115.1 1.95 Olduval bottom Fukuma, 1998 146.8 2.14 Reunion top Fukuma, 1998 154.77 1.7 0.9 0.5 0.709107 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 184.97 1.3 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.1 0.6 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.7 0.709076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709076 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709018 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.709018 Israelson a	95.45	1	0.5	0.6	0.709145	Israelson and Spezzaferri, 1998
146.8 2.14 Reunion top Fukuma, 1998 154.77 1.7 0.9 0.5 0.709107 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 168.76 1.1 0.6 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.6 0.6 0.709107 Israelson and Spezzaferri, 1998 2246.57 2.3 1 0.709076 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.7090078 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.7090071 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709017 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709017 Israelson and Spezzaferri, 1998 </td <td>115.1</td> <td>1.95</td> <td></td> <td></td> <td>Olduvai bottom</td> <td>Fukuma, 1998</td>	115.1	1.95			Olduvai bottom	Fukuma, 1998
154 77 1.7 0.9 0.5 0.709107 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 168.76 1.1 0.6 0.709098 Israelson and Spezzaferri, 1998 184.97 1.3 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.1 0.6 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 246.57 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 2.3 1.0 0.709076 Israelson and Spezzaferri, 1998 230.56 4.4 0.9 2.3 0.7090076 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.7090076 Israelson and Spezzaferri, 1998 485.15 5 8 0.6 0.709019 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709019 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709014 Israelson and Spezzaferri, 1998 485.2	146.8	2.14			Reunion top	Fukuma, 1998
162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 168.76 1.1 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.1 0.6 0.709102 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 0.9 0.709076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.7090076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709009 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709010 Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998 485.3 5.8 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.6 0.70897 Israelson and Spezzaferri, 1998<	154.77	1.7	0.9	0.5	0.709107	Israelson and Spezzaferri, 1998
162.41 1.9 1.7 0.6 0.709098 Israelson and Spezzaferri, 1998 168.76 1.1 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.1 0.6 0.709126 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709107 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709076 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709063 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709018 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.3 5.4 0.6 0.6 0.709019 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709014 Israelson and Spezzaferri, 1998	162.41	1.9	1.7	0.6	0.709098	Israelson and Spezzaferri, 1998
188.76 1.1 0.6 0.5 0.709137 Israelson and Spezzaferri, 1998 184.97 1.3 0.6 0.709102 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709007 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.9 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709071 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709004 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.6 0.709091 Israelson and Spezzaferri, 1998 485.15 6.8 0.6 0.708979 Israelson and Spezzaferri, 1998 513 5.5 N. attantica colling chance (D to S) Israelson and Spezzaferri, 1998 552.36 10.1 0.	162.41	1.9	1.7	0.6	0.709098	Israelson and Spezzaferri, 1998
184.97 1.3 0.6 0.5 0.709126 Israelson and Spezzaferri, 1998 209.67 1.8 1.1 0.6 0.709102 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709076 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709107 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.709076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709070 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709014 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709014 Israelson and Spezzaferri, 1998 485.15 6.4 0.6 0.6 0.709014 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.70897 Israelson and Spezzaferri, 1998 516.33 6.6	168.76	1.1	0.6	0.5	0.709137	Israelson and Spezzaferri, 1998
209.67 1.8 1.1 0.6 0.709102 Israelson and Spezzaferri, 1998 221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709097 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709107 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709076 Israelson and Spezzaferri, 1998 230.56 4.4 0.9 2.3 0.709009 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709009 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709014 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.708992 Israelson and Spezzaferri, 1998 485.3 5.5 Last occurrence D. quinqueramus Israelson and Spezzaferri, 1998 513 5.6 0.708979 Israelson and Spezzaferri, 1998	184.97	1.3	0.6	0.5	0.709126	Israelson and Spezzaferri, 1998
221.55 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 246.57 1.9 1.8 0.6 0.709097 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709076 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.9 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709009 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709018 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709014 Israelson and Spezzaferri, 1998 485.3 6.6 0.6 0.708922 Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998 513 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.708971 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.708973 Israelson and Spezzaferri, 1998 <	209.67	1.8	1.1	0.6	0.709102	Israelson and Spezzaferri, 1998
246.57 1.9 1.8 0.6 0.709097 Israelson and Spezzaferri, 1998 246.57 2.3 2.4 0.7 0.709107 Israelson and Spezzaferri, 1998 273.06 2.7 2.6 2.3 0.9 0.709076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709003 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.709004 Israelson and Spezzaferri, 1998 485.9 0.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 485.3 5.5 0.6 0.709024 Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998 513 5.5 1.8 Last occurrence D. quinqueramus Israelson and Spezzaferri, 1998 513 5.6 0.6 0.6 0.708979 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708979 Israelson and Spezzaferri, 19	221.55	2.7	2.3	1	0.709076	Israelson and Spezzaferri, 1998
246.57 2.3 2.4 0.7 0.709107 Israelson and Spezzaferri, 1998 273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709083 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709009 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.709018 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.709014 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.709011 Israelson and Spezzaferri, 1998 485 3.94 Last occurrence R. gelida Larsen, 1994 505.39 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 515.83 6.4 0.6 0.708979 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708931 Israelson and Spezzaferri, 1998 561.26 10 0.8 0.8 0.708931 Israelson and Spezzaferri, 1998 562.36 10.1 0.8 0.8 0.708894 Israelson and Spezzaferri	246.57	1.9	1.8	0.6	0.709097	Israelson and Spezzaferri, 1998
273.06 2.7 2.3 1 0.709076 Israelson and Spezzaferri, 1998 280.47 2.6 2.3 0.9 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709083 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.709018 Israelson and Spezzaferri, 1998 486.9 6.2 0.5 0.6 0.709014 Israelson and Spezzaferri, 1998 485.3 5.5 0.6 0.709014 Israelson and Spezzaferri, 1998 495 3.94 Last occurrence R. gelida Larsen, 1994 513 5.5 Last occurrence D. quinqueramus Larsen, 1994 516.93 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.708915 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.708931 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708931 Israelson and Spezzaferri, 1998 621.66	246.57	2.3	2.4	0.7	0.709107	Israelson and Spezzaferri, 1998
280.47 2.6 2.3 0.9 0.709077 Israelson and Spezzaferri, 1998 320.56 4.4 0.9 2.3 0.709083 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709009 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.9 6.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 495 3.94 Last occurrence R. gelida Larsen, 1994 Larsen, 1994 513 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 514.3 6.4 0.6 0.6 0.70897 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708913 Israelson and Spezzaferri, 1998 553.46 10.6 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 561.41 12.7 0.8 0.8	273.06	2.7	2.3	1	0.709076	Israelson and Spezzaferri, 1998
320.56 4.4 0.9 2.3 0.709083 Israelson and Spezzaferri, 1998 485.15 5.8 0.6 0.6 0.709009 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709004 Israelson and Spezzaferri, 1998 486.9 6.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 505.39 6.6 0.6 0.708992 Israelson and Spezzaferri, 1998 513 5.5 Last occurrence R. gelida Larsen, 1994 516.83 6.4 0.6 0.708979 Israelson and Spezzaferri, 1998 515.83 6.4 0.6 0.708977 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 621.16 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708893 <td>280.47</td> <td>2.6</td> <td>2.3</td> <td>0.9</td> <td>0.709077</td> <td>Israelson and Spezzaferri, 1998</td>	280.47	2.6	2.3	0.9	0.709077	Israelson and Spezzaferri, 1998
485.15 5.8 0.6 0.6 0.709009 Israelson and Spezzaferri, 1998 485.15 6 0.6 0.709018 Israelson and Spezzaferri, 1998 485.45 6.3 0.6 0.709004 Israelson and Spezzaferri, 1998 485.9 6.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 495 3.94 Last occurrence R. gelida Larsen, 1994 505.39 6.6 0.6 0.708972 Israelson and Spezzaferri, 1998 513 5.5 Last occurrence D. quinqueramus Larsen, 1994 Larsen, 1994 515.83 6.4 0.6 0.708977 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 562.116 12 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.61 12 0.8 0.8 0.708833 Israelson an	320.56	4.4	0.9	2.3	0.709083	Israelson and Spezzaferri, 1998
485.15 6 0.6 0.709018 Israelson and Spezzaferri, 1998 485.4 6.3 0.6 0.6 0.709011 Israelson and Spezzaferri, 1998 486.9 6.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 495 3.94 Last occurrence R. gelida Larsen, 1994 Israelson and Spezzaferri, 1998 505.39 6.6 0.6 0.708992 Israelson and Spezzaferri, 1998 513 5.5 Last occurrence D. quinqueramus Larsen, 1994 516.83 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708927 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708931 Israelson and Spezzaferri, 1998 561.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708903 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.708894 Israelson and Spezzaferri, 1998 621.16 13.7 0.8 0.8 0.708833 Israelson and	485.15	5.8	0.6	0.6	0.709009	Israelson and Spezzaferri, 1998
485.4 6.3 0.6 0.709004 Israelson and Spezzaferri, 1998 486.9 6.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 496 3.94 Last occurrence R. gelida Israelson and Spezzaferri, 1998 505.39 6.6 0.6 0.708992 Israelson and Spezzaferri, 1998 513 5.5 Last occurrence D. quinqueranus Larsen, 1994 515.83 6.4 0.6 0.708979 Israelson and Spezzaferri, 1998 516.93 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.708973 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708931 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708873 Israelson and Spezzaferri, 1998 621.61 11.3 0.8 0.8 0.708843 Israelson and Spezzaferri, 1998	485,15	6	0.6	0.6	0.709018	Israelson and Spezzaferri, 1998
486.9 6.2 0.5 0.6 0.709011 Israelson and Spezzaferri, 1998 495 3.94 Jast occurrence R. gelida Larsen, 1994 505.39 6.6 0.6 0.708992 Larsen, 1994 513 5.5 Last occurrence D. quinqueramus Larsen, 1994 513 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 516.93 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 551.61 10 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708973 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708973 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708876 Israelson and Spezzaferri, 1998 625.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998	485.4	6.3	0.6	0.6	0.709004	Israelson and Spezzaferri, 1998
495 3.94 Last occurrence R. gelida Larsen, 1994 505.39 6.6 0.6 0.708992 Israelson and Spezzaferri, 1998 513 5.5 Last occurrence D. quinqueramus Larsen, 1994 513 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 516.93 6.6 0.6 0.708977 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708917 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708893 Israelson and Spezzaferri, 1998 622.166 11.3 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 628 10.7 First occurrence C. foridanus Larsen, 1994 Larsen, 1994 645 11.9	486.9	6.2	0.5	0.6	0.709011	Israelson and Spezzaferri, 1998
505.39 6.6 0.6 0.708992 Israelson and Spezzaferri, 1998 513 5.5 N. atlantica colling chance (D to S) Israelson and Spezzaferri, 1998 515.83 6.4 0.6 0.708979 Israelson and Spezzaferri, 1998 553.86 10.6 0.6 0.708979 Israelson and Spezzaferri, 1998 553.86 10.1 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708971 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 625.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 657 13.25 1.25 G.praemen	495	3.94			Last occurrence R. gelida	Larsen, 1994
513 5.5 Last occurrence D. quinqueramus N. atlantica colling chance (D to S) Larsen, 1994 513 6.6 0.6 0.708979 Israelson and Spezzaferri, 1998 516.93 6.6 0.6 0.70897 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.70897 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 590.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708803 Israelson and Spezzaferri, 1998 628 10.7 First occurrence C. floridanus Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 1.25 1.25 Septocurren	505.39	6.6	0.6	0.6	0.708992	Israelson and Spezzaferri, 1998
513 6.6 N. atlantica colling chance (D to S) Larsen, 1994 515.83 6.4 0.6 0.708979 Israelson and Spezzaferri, 1998 516.93 6.6 0.6 0.708977 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708927 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708903 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708808 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 6245 11.9 Last occurrence C. floridanus Larsen, 1994 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Isra	513	5.5			Last occurrence D. guingueramus	Larsen, 1994
515.83 6.4 0.6 0.708979 Israelson and Spezzaferri, 1998 516.93 6.6 0.6 0.70897 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708927 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 583.86 10.6 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 590.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708804 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708894 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 6557 13.25 1.25 G. praemenardii range Larsen, 1994 Israelson and Spezzaferri, 1998 688 13.6 0.8 0.708855 Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998	513	6.6			N. atlantica coiling chance (D to S)	Larsen, 1994
516.93 6.6 0.6 0.70897 Israelson and Spezzaferri, 1998 552.36 10.1 0.8 0.8 0.708927 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 580.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 Larsen, 1994 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 655.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708835 Israelson and Spezzaferri, 1998 682 13.2 1.25 I.25 G. praemenardii range Larsen, 1994 682.13	515.83	6.4	0.6	0.6	0.708979	Israelson and Spezzaferri, 1998
552.36 10.1 0.8 0.8 0.708927 Israelson and Spezzaferri, 1998 553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 590.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708978 Israelson and Spezzaferri, 1998 628 10.7 First occurrence C. floridanus Israelson and Spezzaferri, 1998 Israelson and Spezzaferri, 1998 645 11.9 Larsen, 1994 Larsen, 1994 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 G. praemenarditi range Larsen, 1994 Larsen, 1994 688 13.6 Last occurrence S. heteromorphus Israelson and Spezzaferri, 1998 Sezaferri, 1998 697.07 13 0.8 0.8 0.708835 Israelson and Spezzaferri, 1998	516.93	6.6	0.6	0.6	0.70897	Israelson and Spezzaferri, 1998
553.86 10.6 0.8 0.8 0.708915 Israelson and Spezzaferri, 1998 581.26 10 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 590.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.66 12 0.8 0.8 0.708894 Israelson and Spezzaferri, 1998 624.66 11.3 0.8 0.8 0.708894 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 645 11.9 Last occurrence C. floridanus Larsen, 1994 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 657 13.25 1.25 G. praemenardii range Larsen, 1994 Israelson and Spezzaferri, 1998 687.07 13.6 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13 0.8 0.708855 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708677	552.36	10.1	0.8	0.8	0.708927	Israelson and Spezzaferri, 1998
581.26 10 0.8 0.8 0.708931 Israelson and Spezzaferri, 1998 590.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 Larsen, 1994 645 11.9 Last occurrence C. floridanus Larsen, 1994 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.708835 Israelson and Spezzaferri, 1998 687.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4	553.86	10.6	0.8	0.8	0.708915	Israelson and Spezzaferri, 1998
590.94 11 0.8 0.8 0.708903 Israelson and Spezzaferri, 1998 620.21 10.8 0.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 645 11.9 Last occurrence C. floridanus Larsen, 1994 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 687 13.2 0.8 0.8 0.708845 Israelson and Spezzaferri, 1998 687.07 13 0.8 0.8 0.708835 Israelson and Spezzaferri, 1998 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.7086	581.26	10	0.8	0.8	0.708931	Israelson and Spezzaferri, 1998
620.21 10.8 0.8 0.8 0.708908 Israelson and Spezzaferri, 1998 621.16 12 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708894 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 Larsen, 1994 645 11.9 Last occurrence C. floridanus Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 G. praemenardii range Larsen, 1994 Israelson and Spezzaferri, 1998 682.58 13.2 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 803.99 19.6 <td< td=""><td>590.94</td><td>11</td><td>0.8</td><td>0.8</td><td>0.708903</td><td>Israelson and Spezzaferri, 1998</td></td<>	590.94	11	0.8	0.8	0.708903	Israelson and Spezzaferri, 1998
621.16 12 0.8 0.8 0.708878 Israelson and Spezzaferri, 1998 621.66 11.3 0.8 0.8 0.708894 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 645 11.9 Last occurrence C. floridanus Larsen, 1994 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 657 13.25 1.25 G. praemenardii range Larsen, 1994 Israelson and Spezzaferri, 1998 682 13.2 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 682 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 Israelson and Spezzaferri, 1998 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.708647 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 </td <td>620.21</td> <td>10.8</td> <td>0.8</td> <td>0.8</td> <td>0.708908</td> <td>Israelson and Spezzaferri, 1998</td>	620.21	10.8	0.8	0.8	0.708908	Israelson and Spezzaferri, 1998
621.66 11.3 0.8 0.8 0.708894 Israelson and Spezzaferri, 1998 628 10.7 First occurrence N. acostanensis Larsen, 1994 Larsen, 1994 645 11.9 Last occurrence C. floridanus Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708519 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 </td <td>621.16</td> <td>12</td> <td>0.8</td> <td>0.8</td> <td>0.708878</td> <td>Israelson and Spezzaferri, 1998</td>	621.16	12	0.8	0.8	0.708878	Israelson and Spezzaferri, 1998
628 10.7 First occurrence N. acostanensis Larsen, 1994 645 11.9 Last occurrence C. floridanus Larsen, 1994 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.708757 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998	621.66	11.3	0.8	0.8	0.708894	Israelson and Spezzaferri, 1998
645 11.9 Last occurrence C. floridanus Larsen, 1994 656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708757 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708519 <t< td=""><td>628</td><td>10.7</td><td></td><td></td><td>First occurrence N. acostanensis</td><td>Larsen, 1994</td></t<>	628	10.7			First occurrence N. acostanensis	Larsen, 1994
656.14 13.7 0.8 0.8 0.708832 Israelson and Spezzaferri, 1998 656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708757 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708846 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708519 Israelson and Spezzaferri, 1998 803.99 <	645	11.9			Last occurrence C. floridanus	Larsen, 1994
656.14 13.7 0.8 0.8 0.708833 Israelson and Spezzaferri, 1998 657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.70885 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.70885 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708757 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708819 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708648 Israelson and Spezzaferri, 1998 850.27 22.7 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 850.27 <td< td=""><td>656.14</td><td>13.7</td><td>0.8</td><td>0.8</td><td>0.708832</td><td>Israelson and Spezzaferri, 1998</td></td<>	656.14	13.7	0.8	0.8	0.708832	Israelson and Spezzaferri, 1998
657 13.25 1.25 1.25 G. praemenardii range Larsen, 1994 682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Larsen, 1994 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708757 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708468 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.708519 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 850.27 22.7 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.	656.14	13.7	0.8	0.8	0.708833	Israelson and Spezzaferri, 1998
682.58 13.2 0.8 0.8 0.708846 Israelson and Spezzaferri, 1998 688 13.6 Last occurrence S. heteromorphus Israelson and Spezzaferri, 1998 697.07 13 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 697.07 13.6 0.8 0.8 0.708855 Israelson and Spezzaferri, 1998 726.01 16.1 0.4 0.4 0.708757 Israelson and Spezzaferri, 1998 786.22 17.7 0.4 0.4 0.708647 Israelson and Spezzaferri, 1998 803.99 19.9 0.4 0.4 0.7088519 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708519 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 803.927 22.7 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998	657	13.25	1.25	1.25	G. praemenardii range	Larsen, 1994
68813.6Last occurrence S. heteromorphusLarsen, 1994697.07130.80.80.70885Israelson and Spezzaferri, 1998697.0713.60.80.80.708835Israelson and Spezzaferri, 1998726.0116.10.40.40.708757Israelson and Spezzaferri, 1998786.2217.70.40.40.708647Israelson and Spezzaferri, 1998786.2217.70.40.40.708648Israelson and Spezzaferri, 1998803.9919.90.40.40.708519Israelson and Spezzaferri, 1998803.9919.60.40.40.708303Israelson and Spezzaferri, 1998850.2722.70.40.40.708314Israelson and Spezzaferri, 1998850.2722.60.40.40.708311Israelson and Spezzaferri, 1998	682.58	13.2	0.8	0.8	0.708846	Israelson and Spezzaferri, 1998
697.07130.80.80.70885Israelson and Spezzaferri, 1998697.0713.60.80.80.708835Israelson and Spezzaferri, 1998726.0116.10.40.40.708757Israelson and Spezzaferri, 1998786.2217.70.40.40.708647Israelson and Spezzaferri, 1998786.2217.70.40.40.708648Israelson and Spezzaferri, 1998803.9919.90.40.40.708496Israelson and Spezzaferri, 1998803.9919.60.40.40.708519Israelson and Spezzaferri, 1998850.2722.70.40.40.708303Israelson and Spezzaferri, 1998850.2722.60.40.40.708314Israelson and Spezzaferri, 1998850.2722.60.40.40.708311Israelson and Spezzaferri, 1998	688	13.6			Last occurrence S. heteromorphus	Larsen, 1994
697.0713.60.80.80.708835Israelson and Spezzaferri, 1998726.0116.10.40.40.708757Israelson and Spezzaferri, 1998786.2217.70.40.40.708647Israelson and Spezzaferri, 1998786.2217.70.40.40.708648Israelson and Spezzaferri, 1998803.9919.90.40.40.708496Israelson and Spezzaferri, 1998803.9919.60.40.40.708519Israelson and Spezzaferri, 1998850.2722.70.40.40.708303Israelson and Spezzaferri, 1998850.2722.60.40.40.708314Israelson and Spezzaferri, 1998850.2722.60.40.40.708311Israelson and Spezzaferri, 1998	697.07	13	0.8	0.8	0.70885	Israelson and Spezzaferri, 1998
726.0116.10.40.40.708757Israelson and Spezzaferri, 1998786.2217.70.40.40.708647Israelson and Spezzaferri, 1998786.2217.70.40.40.708648Israelson and Spezzaferri, 1998803.9919.90.40.40.708496Israelson and Spezzaferri, 1998803.9919.60.40.40.708519Israelson and Spezzaferri, 1998850.2722.70.40.40.708303Israelson and Spezzaferri, 1998850.2722.60.40.40.708314Israelson and Spezzaferri, 1998850.2722.60.40.40.708311Israelson and Spezzaferri, 1998	697.07	13.6	0.8	0.8	0.708835	Israelson and Spezzaferri, 1998
786.2217.70.40.40.708647Israelson and Spezzaferri, 1998786.2217.70.40.40.708648Israelson and Spezzaferri, 1998803.9919.90.40.40.708496Israelson and Spezzaferri, 1998803.9919.60.40.40.708519Israelson and Spezzaferri, 1998850.2722.70.40.40.708303Israelson and Spezzaferri, 1998850.2722.60.40.40.708314Israelson and Spezzaferri, 1998850.2722.60.40.40.708311Israelson and Spezzaferri, 1998	726.01	16.1	0.4	0.4	0.708757	Israelson and Spezzaferri, 1998
786.2217.70.40.40.708648Israelson and Spezzaferri, 1998803.9919.90.40.40.708496Israelson and Spezzaferri, 1998803.9919.60.40.40.708519Israelson and Spezzaferri, 1998850.2722.70.40.40.708303Israelson and Spezzaferri, 1998850.2722.60.40.40.708314Israelson and Spezzaferri, 1998850.2722.60.40.40.708311Israelson and Spezzaferri, 1998	786.22	17.7	0.4	0.4	0.708647	Israelson and Spezzaferri, 1998
803.99 19.9 0.4 0.4 0.708496 Israelson and Spezzaferri, 1998 803.99 19.6 0.4 0.4 0.708519 Israelson and Spezzaferri, 1998 850.27 22.7 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998	786.22	17.7	0.4	0.4	0.708648	Israelson and Spezzaferri, 1998
803.99 19.6 0.4 0.4 0.708519 Israelson and Spezzaferri, 1998 850.27 22.7 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998	803.99	19.9	0.4	0.4	0.708496	Israelson and Spezzaferri, 1998
850.27 22.7 0.4 0.4 0.708303 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998	803.99	19.6	0.4	0.4	0.708519	Israelson and Spezzaferri, 1998
850.27 22.6 0.4 0.4 0.708314 Israelson and Spezzaferri, 1998 850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998	850.27	22.7	0.4	0.4	0.708303	Israelson and Spezzaferri, 1998
850.27 22.6 0.4 0.4 0.708311 Israelson and Spezzaferri, 1998	850.27	22.6	0.4	0.4	0.708314	Israelson and Spezzaferri, 1998
	850.27	22.6	0.4	0.4	0.708311	Israelson and Spezzaferri, 1998

Israelson, C. & Spezzaferri, S. in *Proceedings of the Ocean Drilling Program, Scientific Results* **152** (eds A.D. Saunders, H.C. Larsen, & S.W. Wise, Jr.) 233-241 (1998).

Fukuma, K. in *Proceedings of the Ocean Drilling Program, Scientific Results* **152** (eds A.D. Saunders, H.C. Larsen, & S.W. Wise, Jr.) 265-269 (1998).

Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264, 952-955 (1994).