Elsevier Editorial System(tm) for Geomorphology Manuscript Draft

Manuscript Number:

Title: Local and watershed controls on large wood storage in a mountainous stream network

Article Type: Research Paper

Keywords: large wood; wood storage; wood volume; floodplain; in-channel; out-of-channel

Corresponding Author: Mr. Matthew Christopher Vaughan, M.S.

Corresponding Author's Institution: University of California, Davis

First Author: Matthew Christopher Vaughan, M.S.

Order of Authors: Matthew Christopher Vaughan, M.S.; Gregory B Pasternack, PhD; Anne E Senter, MS; Helen E Dahlke, PhD

Abstract: A combination of differing large wood (LW) storage metrics and LW nomenclature used in previous studies has led to the current conceptualization that LW storage generally decreases downstream through a mountainous stream network. This study provides evidence that this conceptual model may be misguided. The goal of this study was to investigate numerous and diverse local and watershed scale variables that might control LW storage as well as to assess downstream trends in LW storage. The testbed catchment was the 2.874 km2 mountainous Yuba River watershed in northern California, USA, which is mostly forested and impacted by flow manipulation and hydraulic gold mining. One hundred fourteen stream sites of drainage areas ranging from < 1 km2 to > 1,000 km2 were inventoried for LW (length > 1 m, diameter > 10 cm), and the LW volume of storage per channel length was calculated. Potential control variables were derived from a 10-m digital elevation model and measured or estimated in the field. Nonparametric Mann-Whitney U tests showed that the total LW volume per channel length did not decrease in the downstream direction based on drainage area, and was highest in 3rd order streams. Using the Akaike Information Criterion for multiple linear regression model selection, bankfull channel width, local shrub cover and percent of contributing stream cells over intrusive igneous geologies were significant positive predictors of total LW volume per channel length. Local side slope and percent contributing stream cells in urban areas were significant negative predictor variables in the model. Models run at smaller spatial scales successfully identified which subbasins and elevation bands were driving controls on LW storage. A higher percentage of LW volume was found outside of baseflow-wetted channels in downstream reaches than in upstream reaches, suggesting that lateral distribution of LW is impacted by channel morphology and drainage area, and that surveying for LW only within the bankfull channel neglects a significant portion of the LW budget available for fluvial transport. In addition, results suggest that LW deposition onto floodplains may have been previously understated when considering LW supply and transport capacities in streams of different drainage areas.

Suggested Reviewers: Samantha Capon PhD Australian Rivers Institute, Griffith University s.capon@griffith.edu.au Riparian and flooplain ecology

Adelaide Johnson PhD

Hydrologist, PNW Research Station, USDA Forest Service ajohnson03@fs.fed.us Hydrologist, geomorphologist

Lenka Kuglerova PhD Ecology and Environmental Sciences, Umea University lenka.kuglerova@emg.umu.se Riparian vegetation scientest

Bernadette Blamauer PhD Institute for Water Management, Hydrology, and Hydraulic Engineering, University of Natural Resources and Life Sciences, Vienna bernadette.blamauer@boku.ac.at Riparian vegetation, fluvial geomorphology

Gregory Egger PhD Karlsruhe Institute for Technology, University of the State of Baden-Wuerttemberg gregory.egger@umweltbuero.at Riparian woodlands, large wood

Virginia Garófano-Gómez PhD Hydraulic Engineering and Environment, Polytechnical University of Valencia virginiagarofano@gmail.com Riparian vegetation, fluvial geomorphology

Jung I Seo PhD Forest Resources, Kongju National University jiseo.watershed@gmail.com Hydrology, forest ecosystems, GIS, geomorphology

Martin Doyle PhD Nicholas School of the Environment, Duke University martin.doyle@duke.edu Large wood, fluvial geomorphology

Jeff Opperman PhD Great Rivers Partnership, The Nature Conservancy jopperman@tnc.org Floodplain ecology

John Stella PhD Forest and Natural Resources Management, SUNY Environmental Science and Forestry stella.jc@gmail.com Riparian and stream ecology

UNIVERSITY OF CALIFORNIA, DAVIS

 $\mathsf{BERKELEY} \bullet \mathsf{DAVIS} \bullet \mathsf{IRVINE} \bullet \mathsf{LOS} \; \mathsf{ANGELES} \bullet \mathsf{RIVERSIDE} \bullet \mathsf{SAN} \; \mathsf{DIEGO} \bullet \mathsf{SAN} \; \mathsf{FRANCISCO}$

SANTA BARBARA • SANTA CRUZ

ONE SHIELDS AVENUE DAVIS, CALIFORNIA 95616

LAND, AIR AND WATER RESOURCES WATERSHED HYDROLOGY & GEOMORPHOLOGY LAB 219 VEIHMEYER HALL (585) 506-5565

November 20^{th} , 2014

Geomorphology

Dear Editor:

We are writing on behalf of our submission of the research paper, "Local and watershed controls on large wood storage in a mountainous stream network" for publication in Geomorphology.

We previously submitted this manuscript to Ecological Applications. Their reviewers returned the manuscript with many positive reviews, and suggested that we submit to Geomorphology instead. We have addressed all Ecological Application reviews calling for revision and improvement, and have included the details of our revision in our submission.

We believe that this study provides a major step forward in the understanding of large wood distribution at the watershed scale. A combination of large wood storage metrics and nomenclature has led to the current conceptualization that large wood storage generally decreases in the downstream direction throughout a stream network. Our data from the Yuba River watershed along with a robust statistical analysis showed that no such simple trend existed, and a mix of watershed and local controls were able to significantly predict large wood storage. In addition, smaller spatial scales were investigated so that individual control factors could be traced back to the subbasin where the effect was greatest. Changes in lateral distribution were also investigated, since our field surveys included floodplains, while most others have not. These types of analyses have not been done on a mountainous watershed with a similar disturbance history to that of the Yuba River watershed. In addition, our findings are put into context with the existing literature, and a new conceptual model for large wood distribution is outlined.

We understand that the scope of Geomorphology includes the development of scientific principles to support environmental decision-making and management, and that articles on the dynamics of large wood in streams have been included in the journal commonly before. We believe that this manuscript is in line with the goals of the journal to present significant and novel science, and would provide a unique and valuable perspective to the understanding and management of large wood in streams.

In order to obtain high-quality, independent reviews of our manuscript at a time when the response rate of potential reviewers can be low, we are providing a list of ten potential reviewers who are American and international experts on riparian science and large wood. We have never discussed this manuscript with any of those listed or collaborated

BERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

with any of them on research projects. See below. Meanwhile we have to report two experts whom we have conflicts of interest with regarding this manuscript. Those two are Dr. Herve Piegay whom we are collaborating with on another large wood manuscript and Dr. Ellen Wohl whom we have discussed this manuscript and research with extensively.

This manuscript has not been previously published, nor is it currently under review in any other journal. Each co-author approves of this manuscript in its present form. Thank you for your consideration – we look forward to your response.

Sincerely,

Matthew Vaughan & Professor Greg Pasternack Hydrologic Sciences Graduate Group

List of suggested reviewers:

Dr. Samantha Capon (s.capon@griffith.edu.au). Australian Rivers Institute, Griffith University.

Dr. Adelaide Johnson (ajohnson03@fs.fed.us). PNW Research Station, USDA Forest Service.

Dr. Lenka Kuglerova (<u>lenka.kuglerova@emg.umu.se</u>). Department of Ecology and Environmental Sciences, Umea University.

Dr. Bernadette Blamauer (<u>bernadette.blamauer@boku.ac.at</u>). Institute for Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Life Sciences, Vienna.

Dr. Gregory Egger (<u>gregory.egger@umweltbuero.at</u>). Karlsruhe Institute for Technology, University of the State of Baden-Wuerttemberg.

Dr. Virginia Garófano-Gómez (<u>virginiagarofano@gmail.com</u>). Department of Hydraulic Engineering and Environment, Polytechnical University of Valencia.

Dr. Jung Il Seo (jiseo.watershed@gmail.com). Department of Forest Resources, Kongju National University.

Dr. Martin Doyle (martin.doyle@duke.edu). Nicholas School of the Environment, Duke University.

Dr. Jeff Opperman (jopperman@tnc.org). The Nature Conservancy.

Dr. John Stella (<u>stella.jc@gmail.com</u>). Department of Forest and Natural Resources Management SUNY College of Environmental Science and Forestry.

1 Title: Local and watershed controls on large wood storage in a mountainous stream network

- 3 Running Title: Controls on large wood storage4
- Authors: Matthew C. Vaughan*, Gregory B. Pasternack, Anne E. Senter, and Helen E. Dahlke
- ^{*}Corresponding author. mcvaughan@ucdavis.edu
- 7 8 9
- 9
- 11
- 12
- 13 Address: Department of Land, Air, and Water Resources, University of California, One Shields
- 14 Avenue, Davis, CA 95616-8626, USA

15

16 Abstract

17 A combination of differing large wood (LW) storage metrics and LW nomenclature used 18 in previous studies has led to the current conceptualization that LW storage generally decreases 19 downstream through a mountainous stream network. This study provides evidence that this 20 conceptual model may be misguided. The goal of this study was to investigate numerous and 21 diverse local and watershed scale variables that might control LW storage as well as to assess downstream trends in LW storage. The testbed catchment was the 2,874 km² mountainous Yuba 22 23 River watershed in northern California, USA, which is mostly forested and impacted by flow 24 manipulation and hydraulic gold mining. One hundred fourteen stream sites of drainage areas ranging from $< 1 \text{ km}^2$ to $> 1,000 \text{ km}^2$ were inventoried for LW (length > 1 m, diameter > 10 cm), 25 and the LW volume of storage per channel length was calculated. Potential control variables 26 27 were derived from a 10-m digital elevation model and measured or estimated in the field. 28 Nonparametric Mann-Whitney U tests showed that the total LW volume per channel length did not decrease in the downstream direction based on drainage area, and was highest in 3rd order 29 30 streams. Using the Akaike Information Criterion for multiple linear regression model selection, 31 bankfull channel width, local shrub cover and percent of contributing stream cells over intrusive 32 igneous geologies were significant positive predictors of total LW volume per channel length. 33 Local side slope and percent contributing stream cells in urban areas were significant negative 34 predictor variables in the model. Models run at smaller spatial scales successfully identified 35 which subbasins and elevation bands were driving controls on LW storage. A higher percentage 36 of LW volume was found outside of baseflow-wetted channels in downstream reaches than in 37 upstream reaches, suggesting that lateral distribution of LW is impacted by channel morphology

38	and drainage area, and that surveying for LW only within the bankfull channel neglects a
39	significant portion of the LW budget available for fluvial transport. In addition, results suggest
40	that LW deposition onto floodplains may have been previously understated when considering
41	LW supply and transport capacities in streams of different drainage areas.
40	

42

43 Key words: large wood; wood storage; wood volume; floodplain; in-channel; out-of-channel

44 **1. Introduction**

45

1.1. Downstream Trends in LW Storage

Large wood (LW) stored in stream channels has substantial influences on stream ecology, 46 47 stream hydraulics, channel morphology, and sediment dynamics (Keller and Swanson, 1979; 48 Gurnell et al., 2002; Montgomery et al., 2003). The storage of LW in any stream is governed by 49 a variety of processes causing input and output of LW. Input of LW into a stream reach can be 50 caused by debris slide, avalanches, windthrow, bank erosion, and fluvial transport from 51 upstream, while LW output can be caused by physical fragmentation, chemical decomposition, 52 and fluvial transport by flotation (Swanson 2003). If these processes could be predicted reliably, 53 calculating LW storage would be a simple operation. In practice, each of these processes is rather 54 complex and stochastic. A more common approach to understand how LW storage is distributed 55 in a stream network has been to measure LW storage in a stream and attempt to relate this to 56 local and landscape scale variables (Fox and Bolton 2007, Baillie et al. 2008). Many LW studies 57 have investigated longitudinal trends in LW storage throughout a watershed in order to 58 understand how geomorphic processes are affected differently by LW at different spatial

locations and scales in a stream network, since more LW volume per channel length or per
channel area presumably increases effects on sediment trapping, habitat creation, step-pool
creation, and other processes influenced by LW (Wohl and Jaeger 2009).

62 Several authors have reported that storage volumes of LW per channel area generally 63 decrease downstream through a stream network, where increasing drainage area, stream order, 64 channel width, or a combination of the three are used to define the downstream direction. Table 1 65 contains a summary of 22 studies that investigated downstream trends in LW storage. Of the eleven studies that calculated LW volume or biomass per channel area, ten showed a 66 67 downstream decrease, with the exception of Seo and Nakamura (2009), who included the 68 floodplain in surveys. Both studies that reported LW piece count per channel area (Montgomery 69 et al., 1995; Baillie et al., 2008) also showed a downstream decrease.

70 Calculating LW volume per channel area is useful for aquatic habitat studies (Fausch and 71 Northcote, 1992) or local effects of LW on channel morphology (Beechie and Sibley, 1997). A 72 thought experiment shows that as streams become wider in the downstream direction through a 73 watershed though, LW per channel area will decrease even if the total volume of LW storage in 74 the stream at each cross-section is constant or random. Consider a hypothetical stream network with a constant longitudinal distribution of LW volume per length (e.g. 10 m³ per 100 m). LW 75 76 volume per channel area will decrease downstream in this stream network because channel area is explicitly correlated with channel width. It follows that volume per channel area is explicitly 77 78 inversely correlated with channel width.

79 To represent LW storage volumes and find longitudinal trends that are statistically
80 distinguishable from those in random data, it is proposed here that calculating and analyzing LW
81 volume per channel length is preferable. This metric represents a cross-sectional sample of LW

storage volume at each surveyed stream site for a given channel length, regardless of channel width or location within the stream network. Another advantage of this metric is that it represents the volume of LW that was deposited and is available for transport within the stream's reach. The seven studies listed in Table 1 for which LW volume per channel length was calculated observed an increasing trend, no trend, or an increase followed by a decrease in the downstream direction.

87 Terminology is problematic in papers investigating trends in LW storage. Studies have 88 used terms such as LW "abundance," "amount," or "frequency" when citing works that showed 89 that LW volume per channel area tends to decrease in the downstream direction (Bisson et al., 90 1987; Fetherston et al., 1995; van der Nat et al., 2003; Atha 2013). These terms could be 91 misleading since they do not reflect the dimensionality of the metric involved. "Wood load," is 92 often used to represent LW volume per channel area, though the use of "load" in this context 93 could also be misleading, since it is used differently in sediment dynamics, where it typically 94 represents the total mass or volume of sediment passing a point or leaving a basin per unit time. 95 In addition, studies that calculated LW volume per channel length and reported an increasing 96 trend downstream (Martin and Benda, 2001; Fox and Bolton, 2007) have been noted as 97 exceptions to the common trend of decreasing LW volume per channel area downstream without 98 mention that a metric with different dimensionality was calculated (Wohl and Jaeger, 2009; 99 Rigon et al., 2012). An effort was made here to reduce ambiguity by explicitly stating what 100 metric was calculated each time it is discussed.

101 The combination of differing LW storage metrics and nomenclature has led to the current 102 conceptualization that LW storage decreases downstream throughout a mountainous stream 103 network. However, Table 1 indicates that this conclusion may be distorted by the methods 104 applied to estimate LW storage. In addition to investigating this downstream trend in LW

storage, this study aimed to directly test whether diverse topographic, land cover, disturbance history, and geological variables at local and watershed scales yielded a statistically significant effect on LW volume per channel length throughout the stream network. To facilitate that, the study was done for a watershed with a complex disturbance and management history in a region with a scarce record of LW dynamics, and tested the potential controls on multiple spatial scales.

110

1.2. LW Storage on Floodplains

111 A recent review of field techniques used in LW studies found that LW storage on 112 floodplains was rarely considered (Macka et al., 2011), though wood on floodplains is known to 113 influence flow resistance, conveyance, and channel-floodplain connectivity (Latterell et al., 114 2006; Wohl, 2013). Sediment storage on floodplains is a central part of the conceptual model for 115 watershed scale sediment dynamics (Hooke, 2003; Owens, 2005), since sediment is often 116 deposited on floodplains during flood events. Similarly, LW tends to mobilize primarily during 117 high flows, including those that inundate floodplains (Fremier et al., 2010), so considering the 118 LW storage both in the baseflow-wetted channel and outside of the baseflow-wetted channel on 119 active floodplains would be reflective of what is available for downstream fluvial transport, and 120 ultimately deposition in areas that are managed for LW.

When studies have mapped LW on floodplains, the standard practice has been to measure along sample transects within the study reach (O'Connor and Ziemer, 1989; Hering et al., 2000), which can introduce considerable error (Gippel et al., 1996; Warren et al., 2008). To the authors' knowledge, Seo and Nakamura (2009) and Lawrence et al. (2012) are the only prior studies that surveyed the active floodplain extent of each stream site, and the results of Seo and Nakamura (2009) suggested that LW volume per bankfull channel area actually increases downstream when 127 active floodplains are considered in addition to baseflow channels. In this study, the entire active 128 stream corridor, including floodplains and wetted channels were surveyed for LW. Observations 129 were analyzed both in combination with and separately from each other to provide insight into 130 lateral changes in LW distribution throughout a stream network. This approach fills a knowledge 131 gap that exists due to the limited survey extents of previous studies.

132

1.3. Study Goals

133 The overall goals of this study were to (i) test for downstream trends in LW storage at the 134 watershed scale, (ii) investigate what local and watershed scale variables might control LW 135 storage, and (iii) investigate downstream trends in lateral LW storage distribution. To do so, a 136 field study was conducted to measure LW storage throughout the Yuba River watershed in 137 California's northern Sierra Nevada. A stratified random sampling scheme was used at the 138 watershed scale to allow robust statistical analyses. A wide range of physically based terrain 139 indices were calculated in a Geographical Information System (GIS) and combined with field 140 measurements in order to investigate local and watershed controls. Statistical analyses included 141 categorical hypothesis testing and continuous multiple linear regression (MLR) modeling to 142 predict LW storage based on indices and measured variables.

143 2. Study Area

The Yuba River watershed is located in California, USA. This study considers the watershed that drains to Englebright Dam (39°14'23.91"N, 121°16'9.32"W; WGS1984 datum), which was completed in 1940 to store alluvial deposits from hydraulic mining operations higher in the watershed. Its 2,590 km of streams drain an area of 2,874 km² on the western slope of the northern Sierra Nevada Mountain Range (Figure 1). The Yuba River headwaters fall from 2,777
m above mean sea level and meet Englebright Dam at 115 m above mean sea level. The
watershed has three major subbasins: the North Yuba (1,271 km²), Middle Yuba (544 km²), and
South Yuba (912 km²).

152 The Northern Sierra Nevada has a Mediterranean-montane climate with hot, dry summers 153 and cool, wet winters. Annual precipitation is generally 50 - 200 cm, depending on elevation. 154 Approximately 70 - 90% of precipitation falls as snow from November to April above 1800 m 155 elevation (Barbour et al., 1991; Mount, 1995). Dry conditions prevail from May to September 156 with occasional summer thunderstorms. In addition to annual snowmelt, rain-on-snow floods 157 driven by atmospheric rivers (Dettinger et al., 2011) have recurred approximately once a decade 158 in the past 30 years, in 1986, 1997, and 2006. These episodically extreme climatic events 159 generate large hydrographic spikes in discharge. Aerial imagery, reservoir management records, 160 and reservoir manager anecdotes suggest that LW transport increases greatly during these events. 161 Approximately six water years had passed since the last hydrologically extreme event at the time 162 of the field surveys reported herein, with regular smaller floods occurring almost annually.

163 Vegetation patterns are similar across the Sierra, with interwoven bands of oak woodland, 164 ponderosa pine, mixed conifer, white fir, red fir, and Lodgepole pine forests ordered by 165 ascending elevation, and subject to variations in aspect and topography (Barbour et al., 2007). In addition to hillslope vegetation that occupies stream corridors, riparian vegetation can often be 166 167 found alongside channels. The distribution of riparian species of willows, alder, cottonwood, and 168 a variety of understory vegetation also depends on elevation, aspect, topography, as well as on 169 stream channel geomorphology, geology, and availability of floodplains (Harris, 1989; Barbour 170 et al., 2007).

171 Like many mountain catchments throughout the world, the one drained by the Yuba 172 River has been subjected to significant anthropogenic impacts; in this case the largest impacts are 173 associated with mining, timber harvesting, and flow regulation. Historic hydraulic gold mining, 174 widespread forest and stream resource extraction, and modern development have combined to 175 dramatically alter the Yuba River watershed. During the California Gold Rush of the mid-to-late 176 1800's, Yuba River morphology, riparian continuity, and aquatic ecology were impacted by 177 hydraulic mining operations, wherein jets of highly pressurized water were directed onto 178 mountain topsoil to slough lower-grade gold-bearing paleo-sedimentary gravels into gravity-179 separation sluice boxes. This high rate of landscape change was concentrated on gold-bearing 180 ridge tops as well as in stream channels, where the mining tailings were shunted as a means of disposal. In all, about $522 \times 10^6 \text{ m}^3$ of sediment were mobilized, the greatest amount of any basin 181 182 in the Sacramento River network (Gilbert, 1917; James, 2005). Clear-cut timber harvesting 183 supplied the mines with steam energy and the working population with heating and cooking fuel 184 (McKelvey and Johnston, 1992). Though hydraulic mining was formally ended in 1884, 185 surreptitious practices continued thereafter, many hillside scars have never recovered, and 186 sedimentary debris is still widespread in river segments connected to source areas. 187 The watershed was also developed for water supply and hydroelectric power; it is now 188 highly managed with impoundments and diversions. The most significant impoundment is New Bullards Bar Reservoir, which is near the outlet of the North Yuba River. Upstream of this 189 190 reservoir the North Yuba catchment lacks any major impoundment, providing an undammed 191 baseline for comparison with the other two regulated major tributaries. Nearly all LW that is 192 deposited into this facility is removed and burned to ensure safety of recreational watercraft. 193 Other major impoundments are Jackson Meadows Reservoir on the Middle Yuba River and Lake

Spaulding on the South Yuba River, which exports water to the Bear and American River
watersheds (Snyder et al., 2004) (Figure 1). LW from these facilities passes over dams only
during high flows.

197 **3. Methods**

198 **3.1. Field Methods**

199 As a key innovation to advance LW studies at the watershed scale, locations for field 200 measurements were selected by a stratified random sampling scheme using an ArcGIS (v.10) 201 geodatabase and the Microsoft Excel random number generator, so that the population of stream 202 sites with a wide variety of contributing drainage area would be nearly equally sampled. 203 Stratified random sampling and related variants using equal effort in each strata have not been 204 widely applied in LW studies to date to capture watershed-scale relations, but are well known 205 and used in field ecology (Johnson, 1980; Miller and Ambrose, 2000; Manly and Alberto, 2014) 206 and hydrology (Thomas and Lewis, 1995; Yang and Woo, 1999). Drainage area was selected as 207 the key variable upon which to stratify a watershed-scale study. Because it spans orders of magnitude in the Yuba watershed, it was necessary to bin logarithmically. Table 2 shows the half 208 209 log-scale drainage area bins that were the basis for stratification to yield equal effort sampling 210 spanning all scales and some basic characteristics of streams in each bin. Stream sections 211 backflooded by reservoirs to the point that the effects were visible from satellite imagery were 212 excluded from the selection process. Since the Yuba River watershed is a remote mountainous 213 region, accessibility was included as a factor in site selection in that potential stream sites were 214 restricted to within 1 km of an extensive primitive road network. This constraint removed only

approximately 11% of the stream network from the selection process, leaving the vast majority
available for stratified random sampling. A total of 150 sites were selected to yield an
oversample list, and then based on available time and resources the first 114 random stream sites
were visited from July to September 2012 (Figure 1).

219 The bankfull channel width was measured and recorded at each site, and the entire active 220 stream corridor was searched for any unrooted LW (length > 1 m, mean diameter > 10 cm) from 221 the stream site location to either 50 or 100 m upstream. Due to the diverse morphology of stream 222 sites, the field indicators used to determine whether a floodplain was active varied. In general, 223 these indicators included slope breaks at the edge of floodplains, fluvial deposition of alluvium 224 or vegetative material, and presence of LW that had been stripped of branches and leaves by high 225 flows. The decision of what upstream length to survey was based on timing and logistics, since 226 some sites took longer to access or survey than others. The total distance surveyed in each 227 contributing area bin was similar (1,050 - 1,300 m for bins 1-7; 800 m for bin 8). To quantifiably 228 characterize each stream site based on factors that could influence LW generation and 229 deposition, three local land cover variables were considered: the percent of the surveyed area that 230 was covered by the canopy of mature living trees (known hereafter as "forest"), the percent 231 covered by shrub foliage (known hereafter as "shrub") and the percent that was exposed bedrock 232 (known hereafter as "bedrock"). Each variable was visually estimated independently by three 233 surveyors, and the means of the estimates were recorded. Estimated percentages did not 234 necessarily sum to 100%, since regions of forest, shrub, and bedrock could overlap.

Attributes of two types of LW were measured and recorded: solitary pieces and jams. Solitary pieces were those not touching any other LW piece and were not functionally connected to any other LW by a significant amount of small woody material. LW jams were defined as

accumulations of two or more LW pieces that were either touching each other or were
functionally connected by a significant amount of continuously connected small woody material.
For all LW, it was recorded whether it was found primarily in the baseflow-wetted channel or
outside of the baseflow-wetted channel. Although an initial attempt was made to distinguish
locally generated LW from fluvially deposited LW, field indicators were not reliable, so this
distinction was not used in any analyses.

244 For each solitary LW piece, the length from end to end (or base of rootwad) was recorded 245 with a measuring tape, and the diameter at each end and rootwad diameter (if present) were 246 measured with large forester calipers. Volume was calculated by assuming that each piece was a 247 cylinder, with diameter equal to the mean of the diameters measured at each end. Rootwads were 248 included in the LW volume calculation, as they are composed of wood and have been shown to 249 contribute to LW stability (Braudrick and Grant, 2000; Manners and Doyle, 2008), though they 250 have often been left out in many previous LW studies. This means LW volume will be calculated 251 more accurately herein, but it is a source of discrepancy when comparing results to previous 252 studies. If the piece had a rootwad, then the volume of the rootwad was approximated by half of 253 an ellipsoid; its major axis was measured in the field, and a minor axis was set equal to the 254 diameter of the LW piece above the rootwad. An estimated fifteen percent porosity was applied 255 to the volume of the rootwad to account for spaces between roots flaring out of the main stem. 256 For each LW jam, the following parameters were measured and recorded: the longest 257 dimension of the accumulation, the axis perpendicular to that measurement, the representative 258 depth of the accumulation, and the approximate jam density as three categories: high, medium 259 and low. The density categories were determined based on how easily another piece of LW could be inserted into the accumulation; care was given to keep this assessment consistent throughoutthe field season and the data was spot-checked using photographs.

262 Manners and Doyle (2008) measured density for LW jams in the Adirondack Mountains, 263 New York, and developed a conceptual model based on the dynamics of wood jam evolution. 264 Their results provided a framework for the estimates used here of 70%, 40%, and 10% density 265 for high, medium and low density classifications, respectively. Initial LW jam volume was 266 calculated by assuming that each jam could be represented by a shallow elliptical cylinder; 267 porosity values were then applied to calculate a final estimated volume of LW within each jam. 268 If a jam would not be well represented by an elliptical cylinder because of a significantly large-269 sized LW piece protruding out from the main accumulation, then the volume of that piece was 270 calculated and added to the volume of the rest of the accumulation.

The storage volume of LW per channel length was calculated for each stream site by summing the volume of all LW pieces and jams, dividing by the channel length that was surveyed, then scaling to 100 m for all sites for comparative purposes. This metric represents a 100 m long cross-sectional sample of LW storage volume at each surveyed stream site.

275

3.2. Derivation of Terrain Indices

A 10-m resolution digital elevation model (DEM) (Gesch, 2007) was used in ArcGIS to calculate a variety of terrain indices to explore potential controls on LW storage and downstream trends (Table 3). Contributing drainage area was a main variable of interest, since it increases in the downstream direction throughout a watershed and is closely tied to the question of how LW storage varies longitudinally. Drainage area was determined by calculating flow direction and flow accumulation rasters by path of steepest descent with ArcHydro Tools 2.0. Cells with a

drainage area of 0.5 km² or greater were designated to represent the stream network (Tucker and 282 283 Slingerland, 1997). In order to reflect the fact that no LW in New Bullards Bar Reservoir was 284 able to be fluvially transported to downstream sites, the amount of contributing drainage area 285 upstream of this reservoir was subtracted from stream sites downstream of the reservoir. This 286 affected ten stream sites in the largest drainage area bin, but no others, and the contributing 287 drainage area bin classifications were not changed based on this distinction. This would allow 288 the largest contributing drainage area bin to be analyzed separately from the others on a 289 categorical basis, since it likely has the highest episodic discharges and potential for LW 290 mobility.

291 Channel slope values estimated from GIS increase in accuracy as channel length over 292 which slope is calculated increases (Neeson et al., 2008). Although this was shown on a slightly 293 larger spatial scale (0.2 - 1 km), the principle was applied herein to calculate the slope for each 294 stream site by using the elevation range extracted from the DEM, then dividing by the survey 295 distance. The side slope of the valley at each stream site was calculated by finding the maximum 296 elevation within a 100 m buffer of the surveyed stream site, subtracting the mean elevation of the 297 reach, then dividing by 100 m. This method calculated the side slope on the steeper side of the 298 valley only. Other local and watershed scale indices calculated using the digital terrain analysis 299 of Wilson and Gallant (2000) are summarized in Table 3.

300

3.3. Watershed Scale Land Cover, Fire History, and Geology Variables

Geospatial datasets for land cover (2002), fire history (2011), and geology (2000) were
used to calculate variables that represent potential watershed scale controls on LW storage.
These variables were exploratory to see if patterns existed that had not been searched for by

304 previous LW studies. Land cover shapefiles were classified into agricultural, barren, conifer 305 forest, hardwood forest, herbaceous, shrub, urban and wetland categories. Fire history shapefiles 306 were classified into presence or absence of a burn within the 50 years prior to this study. Primary 307 rock type shapefiles were categorized into extrusive igneous, intrusive igneous, metamorphic, 308 sedimentary, and glacial drift lithologies. The percentage of contributing stream cells that passed 309 through each land cover, fire history, and geological category was calculated for each stream site 310 and incorporated into the analyses (Table 3).

311

3.4. Statistical Analyses

The analysis framework used in this study was to identify a suite of physical variables that might influence LW storage throughout the Yuba River watershed and then statistically test if the variables did play a role, either individually or in combinations. Local and watershed control variables were analyzed in two different ways – once using categorical comparisons of LW volume per channel length on the basis of several variables, then as combinations of continuous variables to see if they would provide meaningful predictive capability.

318 In order to assess the lateral distribution of LW throughout the watershed, categorical 319 differences in LW volume per channel length were calculated for three groups of quantities. 320 First, the total LW storage that included all LW found in surveys was considered. This quantity 321 was then partitioned and analyzed in terms of LW storage that was found primarily in the wetted-322 baseflow channel only (in-channel LW storage), and LW that was found primarily outside the 323 baseflow-wetted channel (out-of-channel LW). Differences were statistically compared using the 324 nonparametric Mann-Whitney U test (Mann and Whitney, 1947) on the basis of drainage area, 325 subbasin, elevation, bankfull channel width, stream order, local slope, and local land cover

variables. In all cases, categories were made to yield sufficient sample sizes for statistically robust results. For each variable, every category was tested against every other category for significant differences. In the case of drainage area bins, each bin was tested against each other bin, and bins were combined to compare low drainage area (bins 1-4) to higher drainage area (bins 5-8) stream sites. The null hypothesis for each test was that any difference in the median amount of LW volume per channel length was due to sampling error. Statistical significance for these tests and all others in this study were determined at the $\alpha = 0.05$ level.

333 The extent to which measured and calculated quantities predicted LW volume per 334 channel length for total, in-channel and out-of-channel storage was tested with multiple linear 335 regression (MLR) using a least squares algorithm. To meet assumptions for the distribution of 336 residuals, all data were either log or square-root transformed, depending on the presence of zeros 337 in the dataset (Table 3). A variable consisting of random numbers between 0 and 1 was created 338 and incorporated into all MLR models. This variable acted as a check to ensure that random data 339 would not contribute significantly to the MLR models (Pinheiro and Bates, 2000; Roche et al., 340 2013). Multicollinearity among the predictor variables was undesirable since the contribution of 341 each individual variable in the MLR model was of interest for the objectives of this study. It was 342 reduced by eliminating variables that had a Spearman-rank correlation coefficient, R, of 0.8 or 343 greater with two or more other variables (Table 3). An Akaike information criterion (AIC) based 344 stepwise backward-forward selection algorithm was run in the R statistical environment 345 (stepAIC), so that the most parsimonious model would be chosen (Kutner et al., 2005). 346 Collinearity of remaining variables was checked prior to confirm that none had R values greater 347 than 0.8 with any other remaining variables. The remaining variables were then used in an MLR 348 model to predict total LW volume per channel length for the three different subbasins and

elevation categories within the watershed to see if controls were consistent across multiplespatial scales.

351 The significance of each variable and y-intercept in the MLR model was checked with t-352 tests, using the null hypothesis that the coefficient or the y-intercept was not significantly 353 different from zero. The significance of the MLR model was determined with an ANOVA test, 354 in which the null hypothesis is that no linear combination of the independent variables 355 significantly explains the variance of the dependent variable. Each MLR model was run under 356 three assumptions: (i) observations were randomly chosen, (ii) the residuals were normally 357 distributed about zero, and (iii) the residuals were homoscedastic (Walford, 2011). The first 358 requirement was met by experimental design. Normality of the residuals was checked both 359 visually, and by using a chi-square test to determine whether the distribution was significantly 360 different from normal. Residual homoscedasticity was checked visually, and by using the 361 Breusch-Pagan test (Breusch and Pagan, 1979). It was reasoned that spatial autocorrelation was 362 unlikely to impact results of the MLR models. The data used in this study were not a spatial 363 series and sampling was scale dependent, so the chances for autocorrelation effects were limited. 364 For lower drainage area bins, stream sites were spaced adequately far apart and with random 365 distances, due to the large number of potential stream sites and random site selection. Since 366 channel segments in higher drainage area bins must be close to each other by definition, there was less total channel length to randomly choose sites from. This meant that the sites were closer 367 368 together, but there was still a high level of heterogeneity in stream characteristics and a high 369 variance of LW volume per channel length at stream sites.

To investigate the lateral distribution of LW in channels throughout areas with different
 drainage areas, the ratio of out-of-channel LW volume to in-channel LW volume was calculated
 17

372 for each drainage area bin. If drainage area played a significant role in determining the

373 percentage of LW found in the wetted channel or in areas of flood deposition, then differences

374 should be seen between ratios for each contributing drainage area bin.

375 **4. Results**

376

4.1. Total LW Volume per Channel Length

377 A total of 996 LW pieces and 338 LW jams were measured at the 114 stream sites, including both in-channel and out-of-channel LW. The mean piece volume was 0.3 m^3 and the 378 mean jam volume was 4.9 m³, both with relatively high standard deviations (0.8 and 16.6 m³, 379 380 respectively). LW storage volume per channel length at the stream sites was highly variable, ranging from 0.03 to 283 m³ per 100 m, with a mean of 23.2 m³ per 100 m, a median of 6.8 m³ 381 per 100 m, and a standard deviation of 50.0 m³ per 100 m (Figure 2). When the data were 382 383 extrapolated to the entire stream network on the basis of the mean LW volume per channel 384 length, the total estimated LW volume for the Yuba watershed upstream of Englebright Dam was 385 600,500 m³. Given the high variation among sampled stream sites, there is significant uncertainty associated with this figure, probably on the order of 10^4 m^3 . 386

Differences in total LW volume per channel length were not significant between stream sites with low drainage areas (bins 1-4 combined), and stream sites with high drainage areas (bins 5-8 combined). When stream sites from each of the eight bins were individually compared to each other (eight choose two), 27 out of the possible 28 combinations yielded statistically insignificant differences, with the lone exception that sites in bin 8 stored less total LW per channel length than sites in bin 4 (p = 0.03; Figure 3a). Remarkably, when the contributing drainage area was ~ 1 km^2 (i.e., bin 1) versus ~ $1,800 \text{ km}^2$ (i.e., bin 8), there was no statistically significant difference in total LW volume per channel length.

395 Differences in total LW volume per channel length by stream order were not statistically significant for 25 out of 28 tests, with the notable exception that 3rd order streams stored 396 significantly more LW volume per channel length than 1st, 4th, and 6th order streams (Figure 3b). 397 398 There were no significant differences between any one bankfull channel width category and any other (Figure 3c). Stream sites with low ($S < 0.05 \text{ m m}^{-1}$), medium ($0.05 < S < 0.1 \text{ m m}^{-1}$), and 399 high $(S > 0.1 \text{ m m}^{-1})$ local slope showed no significant differences in total LW volume per 400 401 channel length when each was compared to the others. Stream sites at high (E > 1600 m), 402 medium (800 < E < 1600 m), and low (E < 800 m) elevation showed no significant differences 403 when LW volume per channel length values were compared. Stream sites from the three 404 subbasins did not have significantly different LW volume per channel length values from one 405 another.

406 Total LW volume per channel length compared by different local land cover variables 407 showed significant median differences; reaches with \geq 50% forest or shrub cover had 408 significantly higher LW volume per channel length (Figures 3d-e) and reaches with \geq 50% 409 exposed bedrock had significantly less LW volume per channel length (Figure 3f).

410 Of the variables tested (Table 3), results of the stepwise AIC-based model selection found 411 that five created the most parsimonious model with the highest explanatory power (AIC = 252.4). 412 Local side slope, bankfull channel width, local percent shrub cover, percent contributing stream 413 cells in urban areas, and percent contributing stream cells over intrusive igneous rock together 414 significantly predicted LW volume per channel length (p < 0.0001) with an adjusted R^2 value of 415 0.31. All five variables and the y-intercept had highly significant coefficients in the model.

Directionality of impact for the variables was mixed, in that higher local percent shrub cover,
bankfull channel width, and upslope percent intrusive igneous rock contributed to higher LW
volume per channel length, while higher local side slope and percent contributing stream cells in
urban areas contributed to lower LW volume per channel length (Table 4). Note that the artificial
random variable was not chosen in the AIC-based algorithm, indicating that the MLR model
successfully avoided significant random effects.

422 The five variables chosen by the stepwise AIC algorithm for the entire watershed also 423 significantly predicted total LW volume per channel length for each of the three subbasins and 424 elevation categories individually, though with differing combinations of individual controls 425 (Table 5). Local percent shrub cover was consistently a significant predictor variable across all 426 models. In addition to local percent shrub cover, model results for the three subbasins showed 427 that bankfull channel width and upslope percent stream cells over intrusive igneous rock were 428 significant in the North Yuba, local side slope was significant in the Middle Yuba, and bankfull 429 channel width and upslope percent of stream cells in urban areas were significant in the South 430 Yuba. Models for the three elevation categories showed that local shrub cover, bankfull channel 431 width and upslope percent urban areas were significant at high elevation stream sites, local shrub 432 cover and upslope intrusive igneous rock were significant at medium elevation stream sites, and 433 only local percent shrub cover was significant for low elevation stream sites.

434

4.2. In-channel LW Volume per Channel Length

435 Of all the LW surveyed and characterized above, 146 LW pieces and 57 LW jams were
436 found to be primarily within the baseflow-wetted channel during surveys. The total volume of all
437 these was 258 m³, accounting for 13.5% of all measured LW. The mean in-channel LW storage

438 volume per channel length for all survey reaches was 4.0 m^3 per 100 m, with a standard 439 deviation of 20.2 m³ per 100 m. There were 34 sites where no LW was found to be primarily in 440 the baseflow-wetted channel. When the data were extrapolated to the entire stream network by 441 the mean in-channel LW volume per channel length, the in-channel LW storage in the entire 442 watershed upstream of Englebright Dam was found to be 58,700 m³, with an uncertainty on the 443 order of 10^4 m^3 .

444 In comparing low drainage area stream sites (bins 1-4 combined) to higher drainage area 445 stream sites (bins 5-8 combined), stream sites with lower contributing drainage area had 446 significantly more in-channel LW volume per channel length (p < 0.001). This contrasted with 447 results considering total LW volume per channel length, which showed no significant difference. Similarly, sites on 5th and 6th order streams had significantly less in-channel LW volume per 448 channel length than sites on 1st, 2nd, or 3rd order streams. Sites on 4th order streams also had 449 significantly less in-channel LW volume per channel length than sites on 2nd or 3rd order streams 450 but not significantly less than sites on 1st order streams. 451

The highest elevation (E > 1600 m) stream sites had significantly higher in-channel LW 452 453 volume per channel length than medium (800 < E < 1600 m) and low elevation (E < 800 m) 454 sites, though there was no significant difference between medium and low elevation sites. The 455 narrowest channels (1-10 m) had significantly higher in-channel LW volume per length than all 456 of the other channel width classifications, though no significant differences were found between 457 any two of the other classifications. Results of hypothesis testing of in-channel LW volume per 458 channel length on the basis of subbasin, slope, and land cover variables were identical to that of 459 the total LW volume per channel length, in that subbasins and slope had no significant

460 differences, though differences on the basis of percent forest, shrub and bedrock reach-scale land461 cover variables were statistically significant.

Even after transformation, the residuals of the MLR model for in-channel LW volume per channel length did not meet the requirements for normality or homoscedasticity, so the results were not valid. Thus, although in-channel LW volume per channel length showed statistically significant categorical connections with local and watershed scale variables, none of the links could be described by a linear model to produce predictive empirical equations.

467

4.3. Out-of-channel LW Volume per Channel Length

Of all the LW recorded, 850 LW pieces and 281 LW jams were found outside of the 468 baseflow-wetted area. The volume of these totaled 1,654 m³, accounting for 86.5% of the total 469 470 LW volume found in the surveys. The mean out-of-channel LW storage volume per channel length for all survey reaches was 19.1 m^3 per 100 m, with a standard deviation of 43.5 m^3 per 471 472 100 m. Three out of the 114 stream sites had no LW outside of the baseflow-wetted channel. 473 When the data were extrapolated to the entire stream network by the mean LW volume per 474 channel length, the out-of-channel LW storage in the entire watershed upstream of Englebright Dam was found to be 495,700 m^3 , with an uncertainty on the order of 10^4 m^3 . 475

476 Similar to total LW volume per channel length, out-of-channel LW volume per channel 477 length showed no significant difference between areas of low contributing drainage area (bins 1-478 4 combined) versus high contributing drainage area (bins 5-8 combined). When stream sites from 479 each of the eight bins were individually compared to each other (eight choose two), 25 out of the 480 possible 28 combinations were not statistically significant; out-of-channel LW volume per 481 channel length in bin 4 was significantly higher than bins 1, 2 and 8.

Sites on 1st order streams had significantly less out-of-channel LW volume per channel 482 length than sites on 2nd or 3rd order streams, and sites on 3rd order streams had significantly more 483 out-of-channel LW volume per channel length than sites on 4th and 5th order streams. Just as with 484 485 total LW volume per channel length, no significant differences were found between subbasin, 486 elevation, slope, or channel width categories. Categorical differences in out-of-channel LW 487 volume per channel length on the basis of land cover variables were nearly identical to those of 488 total LW volume per channel length, although the difference based on percent forest cover was 489 just above the level of significance (p = 0.064).

As with the in-channel LW volume per channel length, the residuals of the MLR model
predicting out-of-channel LW volume per channel length were significantly different from
normal based on the chi-square test, so the model was rejected.

493

4.4. Downstream Changes in the Lateral Distribution of LW

The ratio of out-of-channel to in-channel LW volume is shown for each drainage area bin in Table 6. In all drainage area bins, there is more out-of-channel LW volume than in-channel LW volume, though in bin 3, the ratio is nearly 1:1. In general, this ratio was higher in reaches with higher drainage area. This indicates that of the LW that was present in a given reach, one could expect a higher percentage to be deposited out-of-channel in downstream reaches than in reaches with low drainage area, regardless of the downstream trend of total LW volume per channel length.

501 5. Discussion

502 **5.1. Downstream Trends of LW Storage**

503 Total LW volume in the active stream corridor per channel length was highly variable 504 throughout the watershed across stream sites having contributing drainage areas ranging from < $1 \text{ km}^2 \text{ to} > 1,000 \text{ km}^2$. There was no simple decreasing trend for LW volume per channel length 505 506 in the downstream direction on the basis of contributing drainage area, and there was significantly higher total LW volume per channel length at stream sites on 3rd order streams 507 508 (Figure 3b). Keller and Swanson (1979) noted that LW biomass per channel area (kg m^{-2}) decreased downstream from small headwater streams (1 m width; 0.2 km² drainage area) to the 509 large McKenzie River (40 m width; 1,024 km² drainage area). Their results were converted to 510 511 LW volume per 100 m for comparison to this study (Table 7). The conversion indicates that 512 although biomass per channel area decreased downstream, the LW volume per 100 m of channel length actually increased from 1st to 3rd order streams, and then decreased in the downstream 513 514 direction, similar to the results of this study. Wohl and Jaeger (2009) reported higher LW 515 aggregation in mid-sized streams in the Front Range of Colorado, USA, while the LW volume 516 per channel area decreased throughout the channel network.

517 Narrow (1-10 m), high-elevation (\geq 1600 m), and lower contributing drainage area (bins 518 1-4) stream sites were found to have significantly higher in-channel LW volume per channel 519 length than other stream sites on a categorical basis. These differences were confirmed with two-520 way hypothesis testing only, since the MLR model violated statistical assumptions and no 521 continuous trend could be determined. Two-way hypothesis testing did not illuminate any 522 downstream trends for out-of-channel LW volume per channel length and the simplest test showed that the difference in the median value of out-of-channel LW volume per channel length
for bins 1-4 combined versus bins 5-8 combined was not significant.

525 Stream sites with higher drainage areas tended to have a higher ratio of out-of-channel to 526 in-channel LW volume than stream sites with lower drainage areas (Table 6). This redistribution 527 is likely due to a combination of (i) fluvial processes that allow for LW deposition onto active 528 floodplains during the floods capable of entraining LW and (ii) the relatively larger area and 529 greater roughness of floodplains compared to baseflow-wetted channels that exist at these 530 reaches.

531 Previous researchers have offered the interpretation that headwater reaches are transport 532 limited and larger rivers are supply limited for LW based on observations that LW volume or 533 biomass per channel area is higher in headwater streams (Keller and Swanson, 1979; Swanson, 534 2003; Wohl and Jaeger, 2009; Rigon et al., 2012), LW piece count per channel area is higher in 535 headwater streams (Hassan et al., 2005), LW jam count per channel length is higher in headwater 536 streams (Marcus et al., 2002), and LW export is lower in streams with higher drainage area 537 (Fremier et al., 2010). The results of this study indicate that the importance of LW deposition 538 onto floodplains during high flows may have previously been understated or overlooked. The 539 findings that (i) the total LW volume per channel length was not significantly different between 540 headwater and lower streams and (ii) the ratio of out-of-channel to in-channel LW volume 541 increased in the downstream direction together indicate that lower in-channel LW volume per 542 channel length in streams with higher contributing drainage area is largely due to preferential 543 deposition of LW onto floodplains during floods, rather than an increased transport capacity 544 alone. This mechanism has also been suggested as a possible explanation for decreasing inchannel LW storage in the downstream direction by Gurnell et al. (2002) and Hedman et al.(1996), though without quantification.

547

5.2. Controls on LW Storage

548 The stepwise AIC algorithm determined an MLR model with five variables to be the 549 most parsimonious in significantly predicting total LW volume per channel length throughout the 550 entire study area, explaining about a third of the variance (Table 4). This suggests that the 551 approach used here was useful, but also that the distribution of LW volume per channel length in 552 the Yuba River watershed is highly complex. This model included local and watershed scale 553 variables with both positive and negative coefficients. MLR models run at smaller spatial scales 554 with the same remaining variables showed that the effect of these individual controls at the full 555 watershed scale could be traced back to individual subbasins and elevation categories.

556 Local percentage of shrub cover estimated in situ tended to be the most important factor 557 influencing total LW volume per channel length; it was highly significant when combined with 558 the other four variables. It was also the only variable that was consistently significant across all 559 MLR models run at smaller spatial scales in the three subbasins and elevation categories. While 560 they were not significant in the MLR model, differences in local percent forest cover and local 561 percent exposed bedrock had significant or near-significant differences in total, in-channel, and 562 out-of-channel LW volume per channel length based on Mann-Whitney U tests. Fox and Bolton 563 (2007) also observed less LW volume per channel length in bedrock rivers than in alluvial rivers 564 in the Pacific Northwest. The significance of local land cover variables may be attributed to the 565 difference in roughness factors that influence the deposition of LW as it is fluvially transported 566 during high flows. LW may be more likely to be deposited in areas with a higher percentage of

567 shrub or forest cover, since higher roughness reduces flow speeds and may entangle or trap LW 568 pieces, while exposed bedrock is smoother and less likely to permit LW deposition. The 569 differences based on percent forest cover may also reflect higher rates of local tree mortality 570 recruitment in forest dominated streams compared to other types of streams.

Bankfull channel width showed no significant differences on a categorical basis (Figure
3c), but was a highly significant predictor of LW volume per channel length when combined
with the other four variables in the final MLR model. This suggests that LW volume per channel
length does not simply increase downstream as bankfull channel width increases, but that it can
be higher in wider streams if other factors are also at play. Bankfull channel width was a
significant predictor in the North and South Yuba subbasins, but not in the Middle subbasin.
Among the elevation categories, it was only significant for high elevation stream sites.

578 The percentage of contributing stream cells that were over intrusive igneous rock was a 579 highly significant predictor of LW volume per channel length with a positive coefficient. The 580 intrusive igneous rocks in the Yuba River watershed are gabbro, granodiorite, and peridotite, 581 which are highly resistant layers. In addition to its significance in the full watershed scale MLR 582 model, this variable was significant in the North Yuba subbasin, and at medium elevations, but 583 not in other subbasins or in other elevation categories. After reviewing field photographs, no 584 qualitative differences could be found between stream morphologies over intrusive igneous rocks 585 versus other geological facies. Underlying geologies are the building blocks for overlying 586 biological and geomorphological systems. It is possible that the percentage of contributing 587 stream cells that were over intrusive igneous rock was a significant variable in the model since it 588 is correlated with separate process-based variables that were not considered in the study.

589 Local side slope was a significant contributor to the MLR model for total LW volume per 590 channel length, though with surprising directionality (Table 4). One might expect steeper side 591 slopes to recruit more LW onto floodplains due to a higher rate of tree mortality recruitment; to 592 the contrary, side slope had a significantly negative coefficient in the model. A more important 593 effect may be that corridors with less steep side slopes have more width of active floodplains to 594 produce and store wood in conjunction with presence of more saturated and deeper soils as well 595 as more shrubs to capture LW. In addition, corridors with lower side slopes are less constricted, 596 which would cause flood velocities to be lower on floodplains compared to having high 597 velocities impinge on narrower, steeper canyon walls. On a smaller spatial scale, local side slope 598 was only significant for predicting LW volume per channel length in the Middle Yuba subbasin 599 (Table 5). This may be because much of the Middle Yuba River runs through the most constricted canyon in the watershed, where high flood velocities probably provides a strong 600 601 contrast to flood and floodplain hydraulics in locations in the river with gentle side slopes and a 602 wide valley floor.

603 The percent of contributing stream cells passing through urban areas was a highly 604 significant predictor variable in the MLR model when combined with the other four variables, 605 presenting with a negative coefficient (Table 4). The simplest explanation for this effect is that 606 streams that pass through more developed areas may have lower LW volume supply rates per 607 channel length than others, since development has disrupted riparian forest continuity. Stream 608 sites with lower upstream LW supply and a similar capacity to transport LW as other streams 609 would have lower volume per channel length at these stream sites. In addition, LW storage may 610 be reduced by modern or historic wood removal for development purposes. The South Yuba is 611 the only subbasin where this variable is a significant predictor, and it is only significant in high

elevation stream sites (Table 5). A highway corridor parallels the South Yuba River for ~ 20 km, and the nine stream sites with the highest percent contributing stream cells passing through urban areas were in the South Yuba subbasin. While roads parallel parts of the stream network in many other parts of the watershed, the South Yuba River highway corridor is in an area of substantial mountain community development. Construction of the highway was completed in 1960 in preparation for the Squaw Valley Winter Olympics, so development from this corridor has likely been impacting LW storage in these streams for over five decades.

Local slope was among the several variables that were not chosen by the stepwise AIC algorithm in the final MLR model. It also showed no significant differences based on Mann-Whitney U tests. Iroumé et al. (2010) similarly found no significant correlation between LW piece count per channel length and local slope in southern Chile. Rigon et al. (2012) reported statistically significant, but relatively weak correlation (R = 0.31) between local slope and LW volume per channel area in streams of the eastern Italian Alps, but did not report correlations for slope and LW volume per channel length.

626

5.3. Comparison to Other Regions and Impact of Disturbance

The median total LW volume per channel length in the Yuba watershed (6.8 m³ per 100 m) is similar to that found by Fox and Bolton (2007) in Douglas Fir – Ponderosa Pine forests (7 m³ per 100 m) and narrow (0-3 m wide) alpine streams (8 m³ per 100 m) in "stream basins that are relatively unaffected by anthropogenic disturbance" in western Washington State, USA. The median total LW volume per channel length found in the Yuba watershed is less than that found in relatively pristine Western Washington streams and wider alpine streams considered by Fox and Bolton (2007), which had values of 51 – 93 and 18 m³ per 100 m, respectively. The mean total LW volume per channel length in the Yuba watershed (23.2 m³ per 100 m) is similar to the Whirinaki River in New Zealand (19.5 m³ per 100 m) (Baillie et al., 2008), and is higher than that found in the Appalachian Mountains (13.3 m³ per 100 m) (Hedman et al., 1996). The variability in storage in the Yuba watershed was considerably higher than that found in these studies; the range in LW volume per channel length was on the order of 10^2 m³ per 100 m, rather than 10^1 m³ per 100 m.

640 Aside from urban development, it is possible that LW storage in the Yuba River basin 641 may be highly impacted by other recent and historic human disturbance and management, though 642 the directionality of the effect is unclear. Timber harvesting in support of historic mining 643 operations likely decreased the mean tree diameter of forests in the study area, while more recent 644 logging may have increased the abundance of downed LW in the river network. Mobilized 645 sediment as a result of hydraulic gold mining is not known to have a direct effect on LW 646 recruitment, but dams constructed on tributaries certainly affect the movement of LW through 647 the watershed.

In many mountainous watersheds, a significant source of LW recruitment is thought to derive from debris flows (Reeves et al., 2003; Iroumé et al., 2010; Rigon et al., 2012). Curtis et al. (2005) showed that 85% of the Middle and South Yuba subbasins had minor or negligible erosion potential, and that overall, low hillslope erosion rates were found throughout the Yuba River watershed. This result indicates that debris flows are unlikely to be substantial contributors to LW recruitment in the Yuba River.

Comiti et al. (2008) found that in mountain streams of the Southern Andes, the LW piece
count per channel area varied widely between adjacent basins with different fire disturbance
histories. In the Yuba River watershed, however, the percent contributing stream cells that

657 passed through an area that burned in the past 50 years was not a significant predictor of total 658 LW volume per channel length. While fire has likely been active in the Yuba River watershed 659 and throughout the Sierra Nevada from the late Holocene (Anderson and Smith, 1997) until 660 modern times, fire suppression since the early 1900s may be a more important disturbance to 661 forest dynamics and LW storage volumes than fire itself. Widespread fire suppression began in 662 1905, and continued as the dominant practice until the 1960s. This management practice has led 663 to an increase in burnable surface debris and higher density of shrubs and understory trees 664 (Sugihara et al., 2006), which may have led to increased LW volumes in the stream network. 665 Though the authors are not aware of LW studies focused on LW response to fire suppression, 666 Lassettre et al. (2008) observed a general increase in LW mass per channel area over a multi-667 decadal time-scale on the Ain River in Southeastern France, which they attributed in part to 668 afforestation.

669 6. Conclusion

670 This study has shown that the total LW volume per channel length in the Yuba River 671 watershed does not show a simple decreasing trend in the downstream direction when active floodplains are considered, and that this quantity tends to be highest in 3rd order streams. The 672 673 ratio of out-of-channel to in-channel LW volume tended to increase moving downstream, which 674 is likely due to floodplains becoming more prevalent in streams of higher drainage area. The 675 inclusion of floodplains in this study's LW surveys and analyses indicates that LW transport 676 capacities of streams may have been overstated in previous studies. Results herein show that LW 677 is often deposited within the area that is fluvially activated during high flows. Much of this area

678 can be outside of the bankfull channel width, which is the common lateral extent of most679 previous surveys.

The MLR model predicting total LW volume per channel length indicates that a reasonable portion of the variance in this quantity can be significantly predicted using a combination of local and watershed variables. The model results from the smaller spatial scales showed that effects of each variable could be traced back to specific subbasins and elevation bands. Our MLR models were certainly limited in accounting for the full complexity of LW volume per channel length. Future work could incorporate a higher number of observations and additional process-based predictor variables.

In order to understand the change in storage or flux of LW through a watershed, repeat surveys or long-term monitoring are required. These types of investigations are warranted in order to understand LW dynamics in a watershed such as the Yuba River system, where little is known about how disturbances interact to impact the LW budget.

691

692 Acknowledgments

Financial support for this work was provided by (1) a National Science Foundation
doctoral dissertation research grant to co-author Anne Senter (Award 1031850) and (2) a
Cooperative Ecosystem Studies Unit grant from the United States Army Corps of Engineers coauthor Greg Pasternack (Award W912HZ-11-2-0038). The authors thank James Jackson,
Jonathon Martindill, Robert Gonzalez, Leah Kammel and Pedro Vaughan for assistance with
field work, as well as Mark Grismer, Michael Strom, Rocko Brown, and Rachel Hamm for
helpful discussions.

700

701 **References**

- 2000. GIS Data for the Geologic Map of California. US Geological Survey. http://atlas.ca.gov/.
- 703 2002. California Land Cover. California Department of Forestry and Fire Protection.

704 http://atlas.ca.gov/.

- 2011. California Fire History Dataset. California Department of Forestry and Fire Protection.
 http://fire.ca.gov/.
- Anderson, R. S., and S. Smith. 1997. The sedimentary record of fire in montane meadows, Sierra

708 Nevada, California, USA: A preliminary assessment. Pages 313-327 in J. Clark, H.

- Cachier, J. Goldammer, and B. Stocks, editors. Sediment Records of Biomass Burningand Global Change. Springer Berlin Heidelberg.
- Atha, J. B. 2013. Identification of fluvial wood using Google Earth. River Research andApplications.
- Baillie, B. R., L. G. Garrett, and A. W. Evanson. 2008. Spatial distribution and influence of large
 woody debris in an old-growth forest river system, New Zealand. Forest Ecology and
 Management 256:20-27.
- 716 Barbour, M. G., N. H. Berg, T. G. F. Kittel, and M. E. Kunz. 1991. Snowpack and the
- 717 distribution of a major vegetation ecotone in the Sierra-Nevada of California. Journal of
- 718 Biogeography **18**:141-149.
- Barbour, M. G., T. Keeler-Wolf, and A. A. Schoenherr. 2007. Terrestrial vegetation of
 California. University of California Pr.

721	Beechie, T. J., and T. H. Sibley. 1997. Relationships between channel characteristics, woody
722	debris, and fish habitat in northwestern Washington streams. Transactions of the
723	American Fisheries Society 126:217-229.

- 724 Benda, L., D. Miller, J. Sias, D. Martin, R. Bilby, C. Veldhuisen, and T. Dunne. 2003. Wood
- recruitment processes and wood budgeting. Pages 49-73 in S. V. Gregory, K. L. Boyer,
- and A. M. Gurnell, editors. The ecology and management of wood in world rivers.
- 727 Bisson, P. A., R. E. Bilby, M. D. Bryant, C. A. Dolloff, G. B. Grette, R. A. House, M. L.
- Murphy, V. K. Kosko, and J. R. Sedell. 1987. Large woody debris in forested streams in
 the Pacific Northwest: Past, present and future. Pages 143-190.
- Braudrick, C.A. and Grant, G.E. When do logs move in rivers? Water Resources Research 36:
 571-583.
- Breusch, T. S., and A. R. Pagan. 1979. A Simple test for heteroscedasticity and random
 coefficient variation. Econometrica 47:1287-1294.
- 734 Comiti, F., A. Andreoli, L. Mao, and M. A. Lenzi. 2008. Wood storage in three mountain
- streams of the Southern Andes and its hydro-morphological effects. Earth Surface
 Processes and Landforms 33:244-262.
- Curtis, J. A., L. E. Flint, C. N. Alpers, and S. M. Yarnell. 2005. Conceptual model of sediment
 processes in the upper Yuba River watershed, Sierra Nevada, CA. Geomorphology
 68:149-166.
- 740 Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011. Atmospheric rivers,
- floods and the water resources of California. Water **3**:445-478.

742	Fausch, K. D., and T. G. Northcote. 1992. Large woody debris and salmonid habitat in a small
743	coastal British-Columbia stream. Canadian Journal of Fisheries and Aquatic Sciences
744	49 :682-693.

745 Fetherston, K. L., R. J. Naiman, and R. E. Bilby. 1995. Large woody debris, physical process,

and riparian forest development in montane river networks of the Pacific Northwest.
Geomorphology 13:133-144.

- Fox, M., and S. Bolton. 2007. A regional and geomorphic reference for quantities and volumes
 of instream wood in unmanaged forested basins of Washington state. North American
 Journal of Fisheries Management 27:342-359.
- Fremier, A. K., J. I. Seo, and F. Nakamura. 2010. Watershed controls on the export of large
 wood from stream corridors. Geomorphology 117:33-43.
- 753 Gesch, D. B. 2007. The National Elevation Dataset. *in* D. E. M. T. a. Applications, editor.

American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland.

- 755 Gilbert, G. K. 1917. Hydraulic-mining debris in the Sierra Nevada. *in* D. o. t. Interior, editor.
- 756 United States Geological Survey, Washington, D.C.
- Gippel, C. J., B. L. Finlayson, and I. C. Oneill. 1996. Distribution and hydraulic significance of
 large woody debris in a lowland Australian river. Hydrobiologia **318**:179-194.
- Gurnell, A. M., H. Piegay, F. J. Swanson, and S. V. Gregory. 2002. Large wood and fluvial
 processes. Freshwater Biology 47:601-619.
- 761 Harris, R. R. 1989. Riparian communities of the Sierra Nevada and their environmental
- relationships. Pages 393-398 in DL Abel (tech. coord.), Proceedings of the California
- riparian systems conference: Protection, management, and restoration for the 1990s.

764 USDA Forest Service General Technical Report PSW-110.

765	Hassan, M. A., D. L. Hogan, S. A. Bird, C. L. May, T. Gomi, and D. Campbell. 2005. Spatial
766	and temporal dynamics of wood in headwater streams of the Pacific Northwest. JAWRA
767	Journal of the American Water Resources Association 41:899-919.
768	Hedman, C. W., D. H. V. Lear, and W. T. Swank. 1996. In-stream large woody debris loading
769	and riparian forest seral stage associations in the southern Appalachian Mountains.
770	Canadian Journal of Forest Research 26:1218-1227.
771	Hering, D., J. Kail, S. Eckert, M. Gerhard, E. I. Meyer, M. Mutz, M. Reich, and I. Weiss. 2000.
772	Coarse woody debris quantity and distribution in central European streams. International
773	Review of Hydrobiology 85 :5-23.
774	Hooke, J. 2003. Coarse sediment connectivity in river channel systems: a conceptual framework
775	and methodology. Geomorphology 56:79-94.
776	Iroumé, A., A. Andreoli, F. Comiti, H. Ulloa, and A. Huber. 2010. Large wood abundance,
777	distribution and mobilization in a third order Coastal mountain range river system,
778	southern Chile. Forest Ecology and Management 260:480-490.
779	James, L. A. 2005. Sediment from hydraulic mining detained by Englebright and small dams in
780	the Yuba basin. Geomorphology 71 :202-226.
781	Johnson, D.H. 1980. The comparison of use and availability measurements for evaluating
782	resource preference. Ecology 71 :61-65.
783	Keller, E. A., and F. J. Swanson. 1979. Effects of large organic material on channel form and
784	fluvial processes. Earth Surface Processes 4:361-380.
785	Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied linear statistical models.
786	Fifth edition. HcGraw-Hill.

787	Lassettre, N. S., H. Piégay, S. Dufour, and AJ. Rollet. 2008. Decadal changes in distribution
788	and frequency of wood in a free meandering river, the Ain River, France. Earth Surface
789	Processes and Landforms 33 :1098-1112.
790	Latterell, J.J., Scott Bechtold, J., O'Keefe, T.C., Van Pelt, R. and Naiman, R.J. 2006. Dynamic
791	patch mosaics and channel movement in an unconfined river valley of the Olympic
792	Mountains. Freshwater Biology 51: 523-544.
793	Lawrence, J. E., V. H. Resh, and M. R. Cover. 2012. Large-wood loading from natural and
794	engineered processes at the watershed scale. River Research and Applications.
795	Macka, Z., L. Krejci, B. Louckova, and L. Peterkova. 2011. A critical review of field
796	techniques employed in the survey of large woody debris in river corridors: a central
797	European perspective. Environmental Monitoring and Assessment 181:291-316.
798	Manly, B.F.J. and Navarro Alberto, J.A. 2014 Introduction to Ecological
799	Sampling. Taylor and Francis Group, LLC, Boca Raton, FL.
800	Mann, H. B., and D. R. Whitney. 1947. On a test of whether one of two random variables
801	is stochastically larger than the other. The Annals of Mathematical Statistics 18:50-60.
802	Manners, R. B., and M. W. Doyle. 2008. A mechanistic model of woody debris jam evolution
803	and its application to wood-based restoration and management. River Research and
804	Applications 24 :1104-1123.
805	Marcus, W. A., R. A. Marston, C. R. Colvard Jr, and R. D. Gray. 2002. Mapping the spatial and
806	temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem,
807	USA. Geomorphology 44:323-335.

Martin, D. J., and L. E. Benda. 2001. Patterns of instream wood recruitment and transport at the
 watershed scale. Transactions of the American Fisheries Society 130:940-958.
 37

810	McKelvey, K. S., and J. D. Johnston. 1992. Historical perspectives on forests of the
811	Sierra Nevada and the transverse ranges of sourthern California: Forest conditions at the
812	turn of the century.in U. F. Service, editor.
813	Miller, A.W. and Ambrose, R. F. 2000. Sampling patchy distributions:
814	comparison of sampling designs in rocky intertidal habitat. Marine Ecology Progress
815	Series 196 : 1-14.
816	Montgomery, D. R., J. M. Buffington, R. D. Smith, K. M. Schmidt, and G. Pess. 1995. Pool
817	spacing in forest channels. Water Resources Research 31 :1097-1105.
818	Mount, J. F. 1995. California rivers and streams. University of California Press.
819	Neeson, T. M., A. M. Gorman, P. J. Whiting, and J. F. Koonce. 2008. Factors affecting accuracy
820	of stream channel slope estimates derived from geographical information systems. North
821	American Journal of Fisheries Management 28:722-732.
822	O'Connor, M. D., and R. R. Ziemer. 1989. Coarse woody debris ecology in a second-growth
823	Sequoia sempervirens forest stream. USDA Forest Service Gen. Tech. Rep. PSW-
824	110:165-171.
825	Owens, P. N. 2005. Conceptual models and budgets for sediment management at the river basin
826	scale. Journal of Soils and Sediments 5:201-212.
827	Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-PLUS. New York: Springer-
828	Verlag. 528 p.
829	Reeves, G. H., K. M. Burnett, and E. V. McGarry. 2003. Sources of large wood in the main stem
830	of a fourth-order watershed in coastal Oregon. Canadian Journal of Forest Research-
831	Revue Canadienne De Recherche Forestiere 33 :1363-1370.

832	Rigon, E., F. Comiti, and M. A. Lenzi. 2012. Large wood storage in streams of the Eastern
833	Italian Alps and the relevance of hillslope processes. Water Resources Research
834	48 :W01518.

835 Roche, L. M., Kromschroeder, L., Atwill, E. R., Dahlgren, R. a, & Tate, K. W. (2013). Water

Quality Conditions Associated with Cattle Grazing and Recreation on National Forest
Lands. PloS One, 8(6):e68127.

Seo, J. I., and F. Nakamura. 2009. Scale-dependent controls upon the fluvial export of large
wood from river catchments. Earth Surface Processes and Landforms 34:786-800.

840 Snyder, N. P., D. M. Rubin, C. N. Alpers, J. R. Childs, and J. A. Curtis. 2004. Estimating

accumulation rates and physical properties of sediment behind a dam: Enblebright Lake,
Yuba River, northern California. USGS Staff - Published Research Paper 489.

843 Sugihara, N. G., J. W. Van Wagtendonk, K. E. Shaffer, J. Fites-Kaufman, and A. E. Thode.

844 2006. Fire in California's ecosystems. University of California Press, Berkeley.

845 Swanson, F. J. 2003. Wood in rivers: A landscape perspective. Pages 299-313 in S. V.

846 Gregory, K. L. Boyer, and A. M. Gurnell, editors. The ecology and management of wood847 in world rivers.

Thomas, R.B. and Lewis, J. 1995. An evaluation of flow-stratified sampling for estimating
suspended sediment loads. Journal of Hydrology 170:27-45.

Tucker, G. E., and R. Slingerland. 1997. Drainage basin responses to climate change. Water
Resources Research 33:2031-2047.

van der Nat, D., K. Tockner, P. J. Edwards, and J. V. Ward. 2003. Large wood dynamics of

853 complex alpine river floodplains. Journal of the North American Benthological Society

22:35-50.

- Walford, N. 2011. Practical statistics for geographers and earth sciences. John Wiley & Sons
 Ltd., Singapore.
- Warren, D. R., W. S. Keeton, and C. E. Kraft. 2008. A comparison of line-intercept and census
 techniques for assessing large wood volume in streams. Hydrobiologia 598:123-130.
- Wilson, J. P., and J. C. Gallant. 2000. Digital terrain analysis. Terrain analysis: Principles andapplications:1-27.
- Wohl, E. 2013. Floodplains and wood. Earth-Science Reviews **123**:194-212.
- Wohl, E., and K. Jaeger. 2009. A conceptual model for the longitudinal distribution of wood in
 mountain streams. Earth Surface Processes and Landforms 34:329-344.
- 864 Wyrick, J. R. and Pasternack, G. B. 2012. Landforms of the Lower Yuba River. Prepared for
- 865 the Yuba Accord River Management Team. University of California at Davis, Davis, CA,
 866 91pp.
- 867 Yang, D., Woo, M-K. 1999. Representativeness of local snow data for large scale hydrologic
- 868 investigations. Hydrological Processes **13**:1977-1988

Table 1. Summary of studies that have investigated downstream trends in LW storage

Study	Lateral extent of channel surveys	Term used to describe metric	Downstream trend	Based on	Statistical reasoning	Region	Drainage area (km ²)
		L	W volume per chant	iel area			
Keller and Swanson (1979)*	Unknown	Coarse debris loading	Decreasing	Drainage area, stream order, channel width	Stated general trend	Pacific Northwest	0.2 - 1024
Harmon et al. (1986)	Unknown	Amounts of CWD	Decreasing	Drainage area, channel width	Stated general trend	Temperate ecosystems	Various
Lienkaemper and Swanson (1987)	In-channel only	Amounts of large debris	Decreasing	Drainage area, stream order	Stated general trend	Pacific Northwest	0.1 - 60.5
Robison and Beschta (1990)	In-channel only	-	Decreasing	Stream order	Stated general trend	Southeast Alaska	0.72 - 55.4
Beechie and Sibley (1997)	In-channel only	-	Decreasing	Channel width	Multiple regression	Pacific Northwest	Unknown

Bin	Drainage area range (km ²)	Mean bankfull channel width (m)	Mean slope $(m m^{-1})$	Total stream distance in study area (km)	Number of sites
1	0.5 - 1.58	5.2	0.14	1013.3	17
2	1.58 - 5	5.1	0.12	591.8	16
3	5 - 15.8	7.9	0.05	354.8	14
4	15.8 - 50	12.1	0.08	214.8	16
5	50 - 158	15.2	0.03	196.8	13
6	158 - 500	21.1	0.04	89.9	15
7	500 - 1,581	28.3	0.03	119.8	13
8	1,581 - 5,000	37.5	0.04	9.4	10
All	-	15.2	0.07	2590.6	114

_

Table 2. Half-log scale contributing drainage area bins and stream site characteristics

Notes: Stream sites were chosen at random from these bins.

Watershed scale	Units	Explanation
Drainage area	km ²	Upslope contributing drainage area
Strahler stream order*	-	ArcGIS stream order tool, using the flow direction raster
Elevation	m	Elevation of stream site above mean sea level
Upslope distance*	m	Channel length from stream site to the farthest point in the upslope stream network
Upslope stream density	km km ⁻²	Number of stream cells divided by number of total cells in upslope watershed, converted for units
Upslope channel slope	$m m^{-1}$	Mean slope of all stream cells in drainage area
Upslope terrain slope	$m m^{-1}$	Mean slope of all terrain cells in drainage area
Upslope stream power index*	m ²	Mean stream power index ($A \cdot S$) of all stream cells in contributing area
Upslope wetness index*	-	Mean wetness index (ln (A / S)) of all stream cells in contributing area
Upslope channel elevation range*	m	Vertical distance from highest cell in upslope stream network to the stream site

Table 3.Variables derived from GIS or estimated in the field and used in statistical analyses

Adjusted R^2 =	= 0.31; p < 0.00	01; AIC = 252 .	4	
Variable	β	b	Std. Error	р
Local percent shrub	0.49	0.24	0.04	< 0.0001
Bankfull channel width	0.38	0.83	0.22	< 0.001
Upslope percent intrusive igneous rock	0.22	0.06	0.02	< 0.01
Local side slope	-0.26	-0.76	0.26	< 0.01
Upslope percent urban	-0.31	-0.35	0.10	< 0.01
Intercept	-	-1.51	0.35	< 0.0001

Table 4. Summary of results for the MLR model to predict total LW volume per channel length

Notes: The β coefficient is what would have resulted had all of the variables first been standardized to a mean of 0 and a standard deviation of 1, which allows for comparison of contribution among the variables. The *b* coefficient is the actual value used in the model.

	North Yuba Adj. $R^2 = 0.45; p < 0.01$		Middle Yuba		South Yuba	
Variable			Adj. $R^2 = 0$	Adj. $R^2 = 0.50; p < 0.001$		Adj. $R^2 = 0.27; p = 0.011$
	β	р	β	р	β	р
Local percent shrub	0.55	< 0.01	0.58	< 0.001	0.57	< 0.01
Bankfull channel width	0.57	< 0.01	0.18	0.31	0.59	< 0.01
Upslope percent intrusive igneous rock	0.46	< 0.01	0.22	0.12	-0.02	0.90
Local side slope	-0.025	0.88	-0.37	0.042	-0.065	0.69
Upslope percent urban	-0.16	0.37	0.034	0.84	-0.56	< 0.01
Intercept	-	< 0.01	-	< 0.01	-	0.034

Table 5. Summary of results for the MLR models to predict total LW volume per channel length in each subbasin and elevation category

	High elevation		Medium elevation		Low elevation		
Variable	Adj. $R^2 = 0.42; p < 0.001$		Adj. $R^2 = 0.22; p = 0.022$		Adjusted $R^2 = 0.24; p = 0.017$		
	β	р	β	р	β	р	
Local percent shrub	0.65	< 0.001	0.43	0.015	0.46	0.012	
Bankfull channel width	0.58	< 0.01	0.20	0.24	0.28	0.15	
Upslope percent intrusive igneous rock	0.19	0.17	0.36	0.032	0.010	0.95	
Local side slope	-0.26	0.080	-0.11	0.44	-0.31	0.12	
Upslope percent urban	-0.60	< 0.001	-0.20	0.31	0.045	0.79	
Intercept	-	< 0.01	-	0.021	-	0.088	

Notes: Symbology is the same as Table 4. Elevations were classified as high ($E \ge 1600$ m), medium ($800 \le E < 1600$ m), and low (E < 800 m). Significant values are shown in bold.

	Drainage area bin								
	1	2	3	4	5	6	7	8	All
Percent out-of-channel LW volume	71.1	60.8	55.2	94.1	85.9	99.9	97.2	99.2	86.5
Percent in-channel LW volume	28.9	39.2	44.8	5.9	14.1	0.1	2.8	0.8	13.5
Ratio of out-of-channel to in-channel LW volu	2.5	1.6	1.2	16.0	6.1	1092.5	34.7	132.2	6.4

Table 6. Percent of out-of-channel and in-channel LW volume, and ratio of out-of-channel to in-channel LW volume by drainage area bin

Table 7. LW storage data from Keller and Swanson (1979)

	Biomass per channel	LW volume per channel length (m ³	Length of sampled	Channel width		Drainage area
Stream	area (kg m ⁻²)	per 100 m)*	section (m)	(m)	Stream order	(km^2)
Devilsclub Creek	43.5	8.7	90	1.0	1	0.2
Watershed 2 Creek	38.0	19.8	135	2.6	2	0.8
Mack Creek	28.5	68.4	300	12.0	3	6.0
Lookout Creek	11.6	55.7	300	24.0	5	60.5
McKenzie River	0.5	4.0	800	40.0	6	1024.0

Notes: LW volume per 100 m (*) was back-calculated from the original data to demonstrate that this quantity increases considerably, and then decreases in the downstream direction.

1 Figure captions

2	Figure 1. Map of the Yuba River watershed above Englebright Dam and the 114 stream site
3	locations selected by a stratified random sampling scheme based on drainage area.
4	
5	Figure 2. Box and whisker plot of LW storage per 100 m for 114 field reaches. The horizontal
6	line represents the median value, the top and bottom of the box represent the 75^{th} and 25^{th}
7	percentile, whiskers represent the 90 th and 10 th percentiles, and the circles are outliers.
8	
9	Figure 3. Box and whisker plots of LW storage per 100 m for each (a) drainage area bin, (b)
10	stream order, (c) bankfull channel width category, (d) shrub prevalence, (e) forest prevalence,
11	and (f) exposed bedrock prevalence. Mann-Whitney U tests were performed on all combinations
12	of bins or categories, and only the statistically significant differences are marked with common
13	letters.

Responses to Ecological Applications reviewer comments Click here to download Supplementary material for online publication only: YRWood_review_response_20141129.doc

Previous version of manuscript submitted to EA Click here to download Supplementary material for online publication only: YRwoodvol_20140408_EA.doc